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I. Introduction and Notation

While all of the relations in the Steenrod algebra, A, can be deduced in principle from
the Adem relations, in practice, it is extremely di±cult to determine whether a given poly-
nomial of elements in A is zero for all but the most elementary cases. In his original paper
[Mi] Milnor states \It would be interesting to discover a complete set of relations between
the given generators of A". In particular Milnor shows that every positive dimensional
element of A is nilpotent. Thus it would be desirable to ¯nd a simple closed form for
nilpotence relations in A.
Let x 2 A. We say that x has nilpotence k, if xk = 0 and xk¡1 6= 0 (take x0 = 1).

In this case we write Nil(x) = k. In this paper we investigate Nil(x) for several in¯nite
families of Milnor basis elements of A at the prime 2.
The paper is organized as follows. First, an in¯nite family of subalgebras and isomor-

phisms between them are constructed. The isomorphisms are used to produce in¯nite
families of elements having the same nilpotence. Next, we compute strong upper and
lower bounds for the nilpotence of Milnor basis elements in these subalgebras. Comparing
these bounds and extending to the families produced via the isomorphisms shows that
Sq(2m(2k ¡ 1) + 1) has nilpotence k + 2. Finally a strong lower bound for the nilpotence
of P st is computed for all s; t 2 N. The main results are stated and discussed in Sections
II and III. Detailed proofs are presented in Section IV.

II. Nilpotence in an Odd Subalgebra of A

There is a doubling isomorphism (see Section IV) which implies that

Nil(Sq(2r1; : : : ; 2rm)) ¸ Nil(Sq(r1; : : : ; rm))

for every Milnor basis element in A. Thus it is natural to begin by asking what the
nilpotence of Sq(r1; : : : ; rm) is when some or all of the ri are odd.
We begin by describing a family of isomorphic subalgebras Ok ½ A and a family of

isomorphisms between them.
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De¯nition 2.1. Let k 2 N. Let Ok be the Z2-subspace of A whose basis is the set of
Milnor elements

Bk =
©
Sq(r1; : : : ; rm) j ri ´ ¡1 (mod 2k+1) for i < m; and rm ´ 1 (mod 2k+1)

ª
:

We will write O= O0. Thus we have the vector subspace inclusions

A¾ O= O0 ¾ O1 ¾ O2 ¾ : : : :

Notice O is just the subspace of A generated by the Milnor basis elements Sq(r1; : : : ; rm)
with ri odd for all 1 · i · m .

Theorem 2.2. Ok is a sub-algebra of A for all k 2 N.
Ok is not a Hopf subalgebra, but we do not require this for our purposes.

De¯nition 2.3. Let ¸ : O! O be the Z2-linear map given by

¸(Sq(r1; : : : ; rm)) = Sq(2r1 + 1; 2r2 + 1; : : : ; 2rm¡1 + 1; 2rm ¡ 1)

on elements of the basis.

For example, ¸ (Sq(5) + Sq(3; 1; 3)) = Sq(9) + Sq(7; 3; 5).

Theorem 2.4. ¸ is an algebra monomorphism.

If we let ¸(0) be the identity map on O , and ¸(k) = ¸ ±¸(k¡1) for k > 1 then ¸(k) is also
an monomorphism for every k. It is a routine calculation to check that

¸(k)(Sq(r1; : : : ; rm)) = Sq
¡
2kr1 + (2

k ¡ 1); : : : ; 2krm¡1 + (2k ¡ 1); 2krm ¡ (2k ¡ 1)
¢
(2:5)

Using (2.5) it is elementary to see that ¸(Ok) = Ok+1 and thus that the restriction of
¸ to Ok yields an isomorphism ¸k between Ok and Ok+1. Hence for any x 2 O we have
Nil(x) = Nil(¸(k)(x)) for all k 2 N. Thus
Corollary 2.6. Let Sq(r1; : : : ; rm) 2 O. Then

Nil (Sq(r1; : : : ; rm)) = Nil
¡
Sq
¡
2kr1 + (2

k ¡ 1); : : : ; 2krm¡1 + (2k ¡ 1); 2krm ¡ (2k ¡ 1)
¢¢

for all k 2 N.
In particular, if n is odd then Nil (Sq(n)) = Nil

¡
Sq(2kn¡ (2k ¡ 1))¢ for all k 2 N. For

example, since Nil (Sq(7)) = 4, every element of the family

Sq(7); Sq(13);Sq(25);Sq(49); Sq(97);Sq(193); : : :

also has nilpotence 4.
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Theorem 2.4 reduces the problem of computing the nilpotence of elements of O to that
of ¯nding the nilpotence of elements in O¡ O1. For the case m = 1 this says that the
nilpotence of the Milnor elements Sq(n) with n ´ 1 (mod 4) is completely determined
by the nilpotence of the elements Sq(n) with n ´ ¡1 (mod 4). We begin to attack this
question by obtaining a strong upper bound.

Theorem 2.7. Let Sq(r1; : : : ; rm) 2 O. Then

Nil(Sq(r1; : : : ; rm)) · min
n
k j rm < 2(k¡1)m+1 ¡ 1

o
:

Corollary 2.8. If n is odd then Nil(Sq(n)) · min© k j n < 2k ¡ 1ª.
For example Sq(15; 31)4 = 0 since 31 < 2(4¡1)2+1 ¡ 1 = 127. As a possible application,

notice that Sq(r1; : : : ; rm)
2 = 0 whenever rm < 2

m+1¡1 and Sq(r1; : : : ; rm) 2 O. Elements
whose square is zero have been useful in the past in developing P st homology theory.

It should be noted that this upper bound appears to be quite good. Computer calcu-
lations show that we actually have equality in Corollary 2.8 for every n ´ ¡1 (mod 4)
less than 143 with the exception of n = 67 and n = 131 (note also that these exceptions
eliminate the possibility that one might actually be able to prove equality in all cases).

We now obtain a lower bound on nilpotence for certain of these elements.

Theorem 2.9. Let n be odd. Then

Nil(Sq(n)) > max
©
k j n ´ ¡1 (mod 2k)ª :

Combining all of the previous results yields

Theorem 2.10. Nil
¡
Sq
¡
2m(2k ¡ 1) + 1¢¢ = k + 2 for all m;k ¸ 1.

Notice for m = 1 this implies Nil(Sq(2k ¡ 1)) = k + 1.
As an illustration of the theorem consider that 524281 = 23(216 ¡ 1) + 1. Then by

Theorem 2.10 we have immediately that Sq(524281)17 6= 0 and Sq(524281)18 = 0, which
would be a truly monumental computation by usual means.

Table 2.11 gives a comparison between the nilpotence bounds obtained in this section
and the actual values of Nil(Sq(n)) for odd n less than 64. In the table the values labeled
Nil are the actual values of Nil(Sq(n)) obtained from computer calculations. The values
labeled High are the upper bounds for Nil(Sq(n)) obtained from Corollary 2.6 and Corollary
2.8. Similarly, the values labeled Low are the lower bounds obtained from Corollary 2.6
and Theorem 2.9. Finally, the values labeled Gap are just the di®erence between the upper
and lower bounds. Thus the nilpotence is completely determined whenever the gap is zero.
This occurs at the values of n given in Theorem 2.10.
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Table 2.11: Comparison of Nilpotence Bounds with Computed Values
n Nil High Low Gap n Nil High Low Gap

1 2 2 2 0 33 3 3 3 0

3 3 3 3 0 35 6 6 3 3

5 3 3 3 0 37 5 5 3 2

7 4 4 4 0 39 6 6 4 2

9 3 3 3 0 41 4 4 3 1

11 4 4 3 1 43 6 6 3 3

13 4 4 4 0 45 5 5 4 1

15 5 5 5 0 47 6 6 5 1

17 3 3 3 0 49 4 4 4 0

19 5 5 3 2 51 6 6 3 3

21 4 4 3 1 53 5 5 3 2

23 5 5 4 1 55 6 6 4 2

25 4 4 4 0 57 5 5 5 0

27 5 5 3 2 59 6 6 3 3

29 5 5 5 0 61 6 6 6 0

31 6 6 6 0 63 7 7 7 0

III. Nilpotence of P st

Let P st = Sq(r1; : : : ; rt) where ri = 0 for all i < t and rt = 2
s. There is an old conjecture

which has been growing in notoriety ([Da], [Conf]) which says Nil (Sq(2s)) = 2s+2 for all
k (or equivalently, Nil(P s1 ) = 2s + 2). One naturally might ask what the corresponding
conjecture would be for Nil(P st ) for any t. Some sample calculation leads one immediately
to the following. Let brc denote the greatest integer less than or equal to the rational
number r.

Conjecture 3.1. Nil(P st ) = 2bs=tc+ 2 for all s ¸ 0; t ¸ 1.
Our main result regarding this conjecture is

Theorem 3.2. Nil(P st ) ¸ 2bs=tc+ 2 for all s ¸ 0; t ¸ 1.
This theorem generalizes an original result of Davis [Da], who ¯rst proved this theorem

for the special case t = 1.
It is well known that the conjecture is true if bs=tc = 0, i.e. if s < t. We can also prove

the conjecture for bs=tc = 1.
Theorem 3.3. If bs=tc = 1 then Nil(P st ) = 4.
The conjecture has been veri¯ed by computer calculation for all s; t such that s+ t < 16

and s ¡ 2t < 4 as well as several other cases. For the case t = 1 the conjecture was
originally veri¯ed by Davis for s · 5 [Da]. A summary of the calculation is given in Table
3.4. It is interesting to note that for many of the 56,627 Milnor basis elements, x, which
are a summand of Sq(64)13, the product Sq(64) ¢ x is nonzero, and yet the sum of all such
products is still zero.
The Theorems in this section were ¯rst presented in the author's Ph.D. thesis [Mo].
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Table 3.4: Powers of Sq(2s)

Number of Milnor Basis Elements Which are a Summand of Sq(2s)k

k s = 0 s = 1 s = 2 s = 3 s = 4 s = 5 s = 6
1 1 1 1 1 1 1 1

2 0 1 1 2 3 5 8

3 1 3 5 13 32 84

4 0 2 8 27 131 629

5 2 15 72 473 3,632

6 0 7 93 876 11,454

7 8 153 2,222 37,128

8 0 59 2,070 61,447

9 69 3,297 136,738

10 0 1,093 100,618

11 1,313 158,089

12 0 46,325

13 56,627

14 0

IV. Proof of Results

We begin by recalling some results from [Mi] to which we will need to refer in the proofs
that follow. The mod 2 Steenrod algebra is a graded Z2-vector space with basis all formal
symbols Sq(r1; r2; : : : ) where ri ¸ 0 and ri > 0 for ¯nitely many i. As usual, it is convenient
to write Sq(r1; : : : ; rm) for Sq(r1; : : : ; rm; 0; 0; : : : ) when rm 6= 0. Let R = (r1; : : : ; rm). It
will also be convenient to write Sq(R) for the Milnor basis element Sq(r1; : : : ; rm).
The product is given by

Sq(r1; r2; : : : ) ¢ Sq(s1; s2; : : : ) =
X
X

Sq(t1; t2; : : : )

where the summation is taken over all matrices X = (xij) satisfying:X
i

xij = sj (4:1)

X
j

2jxij = ri (4:2)

Y
h

(xh0; xh¡1 1; : : : ; x0h) ´ 1 (mod 2) (4:3)

where (n1; : : : ; nm) is the multinomial coe±cient (n1 + ¢ ¢ ¢ + nm)!=n1! ¢ ¢ ¢nm!. We will
say such a matrix X is Sq(r1; r2; : : : )Sq(s1; s2; : : : ){allowable. Each such allowable matrix
yields a summand Sq(t1; t2; : : : ) given by

th =
X
i+j=h

xij (4:4)
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In this case we will say that X is the matrix associated with Sq(t1; t2; : : : ) (for the product
Sq(r1; r2; : : : ) ¢ Sq(s1; s2; : : : )). The value of x00 is never used and may be assumed to be
zero.

When evaluating the multinomial coe±cients in (4.3) it is well known (e.g. [Ma]) that
(n1; : : : ; nm) is odd if and only if the ni have disjoint binary expansions. More formally,
let n =

P
j ®j(n)2

j be the binary expansion of an integer n. Then

Lemma 4.5. (n1; : : : ; nm) is odd if and only if for each k < 1, ®k(ni) = 1 for at most
one i.

In particular, if (n1; : : : ; nm) is odd then at most one of the ni is odd. We will make
frequent use of this fact.

Proof of Theorem 2.2. It su±ces to show that x ¢ y 2 O for all x; y 2 B0. We will prove a
slightly stronger result which we will need later, namely

Lemma 4.6. Let Sq(r1; : : : ; rm);Sq(s1; : : : ; sn) 2 O. If Sq(t1; : : : ; tp) is a summand of
Sq(r1; : : : ; rm)Sq(s1; : : : ; sn) then Sq(t1; : : : ; tp) 2 O and p =m+ n.
Proof. Let X = (xij) be the matrix associated with Sq(t1; : : : ; tp). Sq(r1; : : : ; rm) 2 O
implies that ri is odd for each 1 · i · m . Thus xi0 is odd for each 1 · i · m by (4.2).
Combining this with (4.3) shows xij is even whenever i + j · m, and j > 0. Let d < n
and assume that xmj is odd for j · d and xij is even whenever i + j · m + d, j > 0,
and i < m. Then Sq(s1; : : : ; sn) 2 O implies sd+1 is odd and thus xmd+1 is odd by (4.1).
Once again invoking (4.3) shows xij is even whenever i + j = m + d + 1, and j > d + 1.
Thus by ¯nite induction on d we have shown xij is odd if and only if j = 0, i · m or
i = m, j · n. Applying (4.4) shows Sq(t1; : : : ; tp) 2 O. Further tp = xmn is odd, therefore
p =m+ n. ¤ ¤

Proof of Theorem 2.4. It is easy to see from the de¯nition that ¸ is injective. Let R =
(r1; : : : ; rm), S = (s1; : : : ; sn), and T = (t1; : : : ; tm+n). To show that ¸ is a homomorphism
we will prove that Sq(T ) is a summand of the product Sq(R)Sq(S) if and only if ¸(Sq(T ))

is a summand of ¸(Sq(R))¸(Sq(S)) for every Sq(R);Sq(S) 2 O. Let bX = (bxij) be a
¸(Sq(R))¸(Sq(S)){allowable matrix. As shown in the proof of Lemma 4.6, bxij is odd if
and only if j = 0, i · m or i = m, j · n. Thus there exist nonnegative integers xij such
that

bxij =
8><>:
2xij + 1 if j = 0, i · m or i = m, j < n

2xmn ¡ 1 if i = m and j = n

2xij otherwise.

(4:7)

Given such an allowable matrix bX we can de¯ne the matrix X = (xij). On the other
hand, if we are given a Sq(R)Sq(S){allowable matrix, X = (xij), we can de¯ne a matrixbX = (bxij) by (4.7). We now wish to show that bX is ¸(Sq(R))¸(Sq(S)){allowable if and
only if X is Sq(R)Sq(S){allowable. We must verify that each of the conditions (4.1),(4.2),

and (4.3) hold for X if and only if they hold for bX.
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Let 1 · j · n and de¯ne ²j =

½ ¡1 if j = n

1 otherwise
. Then ¸(Sq(S)) = Sq(bs1; : : : ; bsn)

where bsj = 2sj + ²j . Thus checking (4.1) we have
mX
i=0

bxij = bsj () Ã
m¡1X
i=0

2xij

!
+ (2xmj + ²j) = 2sj + ²j

()
mX
i=0

xij = sj

Again letting ¸(Sq(R)) = Sq(br1; : : : ; brm) we have bri = 2ri + 1 for 1 · i < m andbrm = 2rm ¡ 1. Veri¯cation for (4.2) breaks up into two cases. If 1 · i < m then

nX
j=0

2jbxij = bri ()
0@ nX
j=1

2j2xij

1A+ (2xi0 + 1) = 2ri + 1
()

nX
j=0

2jxij = ri

But if i =m we have

nX
j=0

2jbxmj = brm ()
0@n¡1X
j=0

2j(2xmj + 1)

1A+ 2n (2xmn ¡ 1) = 2rm ¡ 1
() 2

nX
j=0

2jxmj +
n¡1X
j=0

2j ¡ 2n = 2rm ¡ 1

() 2
nX
j=0

2jxmj + (2
n ¡ 1)¡ 2n = 2rm ¡ 1

()
nX
j=0

2jxmj = rm

Veri¯cation of (4.3) follows easily from the observation that for any multinomial coe±-
cient (a1; : : : ; ah) we have

(a1; : : : ; ah) ´ (2a1 + °1; : : : ; 2ah + °h) (mod 2)

where °i = 1 for at most one 1 · i · h and is zero otherwise. This follows immediately
from Lemma 4.5. ThusY

h

(xh0; xh¡1 1; : : : ; x0h) ´
Y
h

(bxh0; bxh¡1 1; : : : ; bx0h) (mod 2)
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Finally let Sq(t1; : : : ; tm+n) be the summand of Sq(R)Sq(S) associated with X and let

Sq( bT ) = Sq(bt1; : : : ;btm+n) be the summand of ¸(Sq(R))¸(Sq(S)) associated with bX. Then
by (4.4) for h < m+ n

bth = X
i+j=h

bxij
= 2

0@ X
i+j=h

xij

1A+ 1
= 2th + 1

and tm+n = bxmn = 2xmn ¡ 1 = 2tmn ¡ 1. Thus Sq(bT ) = ¸(Sq(T )) which completes the
proof. ¤
Proof of Theorem 2.7. Let R = (r1; : : : ; rm). It su±ces to show that Sq(R)k = 0 if
rm < 2(k¡1)m+1 ¡ 1. Let Sq(T ) = Sq(t1; : : : ; tp) be any summand of Sq(R)

k¡1. By
Lemma 4.6 p = (k ¡ 1)m. Let X = (xij) be any Sq(R)Sq(T ){allowable matrix. As shown
in the proof of Lemma 4.6, xij is odd if i = m and j · (k ¡ 1)m. Combining this with
(4.2) we have

rm =

(k¡1)mX
j=0

2jxmj ¸
(k¡1)mX
j=0

2j = 2(k¡1)m+1 ¡ 1:

Therefore if rm < 2(k¡1)m+1 ¡ 1 there are no Sq(R)Sq(T ){allowable matrices, and hence
Sq(R)k = 0. ¤
Before continuing we would like to outline an alternate proof of Theorem 3 that lends

some insight into what is going on at the cost of being much more tedious.
Let Qt¡1 = P 0t . It is quite easy to see from the product formula that

QiQj = QjQi for all i; j 2 N (4:8)

Q2i = 0 for all i 2 N (4:9)

and that for any Sq(r1; : : : ; rm) with ri even for all 1 · i ·m

Sq(s1; : : : ; sm)Qi =

mX
j=0

Qj+iSq(s1; : : : ; sj ¡ 2i+1; : : : ; sm) (4:10)

where we de¯ne Sq(t1; : : : ; tm) to be zero if ti < 0 for any i. Notice that (4.10) gives us a
way to shift Qi's from the right side of a Milnor basis element with even entries to the left
side. Also notice that the largest Qj obtainable on the left by shifting a Qi via (4.10) is
Qm+i and that this can only occur if sm ¸ 2i+1. For any Sq(r1; : : : ; rm) 2 O we can write

Sq(r1; : : : ; rm) = Q0Q1 ¢ ¢ ¢Qm¡1Sq(r1 ¡ 1; : : : ; rm ¡ 1)
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and hence

(Sq(r1; : : : ; rm))
k = (Q0Q1 ¢ ¢ ¢Qm¡1Sq(r1 ¡ 1; : : : ; rm ¡ 1))k (4:11)

Applying (4.8), (4.9), and (4.10) repeatedly to the right hand side of (4.11) in order to
collect all of the Qi on the left and computing the e®ect on them

th position in the resulting
Milnor elements yields the desired result. We leave this veri¯cation to the interested reader.

Proof of Theorem 2.9. Let k be the largest integer such that n ´ ¡1 (mod 2k). We can
write n uniquely in the form n = 2ka¡ 1 for some odd integer a ¸ 1. For each 1 · h · k
de¯ne an h{tuple Rn;h = (rn;h;1; rn;h;2; : : : ; rn;h;h) by

rn;h;i =

½
2k¡ia+ 1 if 1 · i < h
2k¡i+1a¡ 1 if i=h

For example, for n = 47 we have

R47;1 = (47)

R47;2 = (25; 23)

R47;3 = (25; 13; 11)

R47;4 = (25; 13; 7; 5)

We now wish to show that Sq(Rn;h) is a summand of Sq(n)h for 1 · h · k , and thus that
Sq(n)k 6= 0.
We proceed by ¯nite induction on h. If h = 1 then Sq(Rn;1) = Sq(n), which is clearly a

summand of Sq(n)1. Assume as the induction hypothesis that Sq(Rn;h) is a summand of
Sq(n)h where h < k. Suppose Sq(Rn;h+1) is a summand of Sq(n)Sq(T ) for some summand
Sq(T ) = Sq(t1; : : : ; th) of Sq(n)h. Let X = (xij) be the associated matrix. Then by (4.4)

x1h = rn;h+1;h+1 = 2
k¡ha¡ 1

and from (4.2)

n =

hX
j=0

2jx1j

=

0@h¡1X
j=0

2jx1j

1A+ 2hx1h
=

0@h¡1X
j=0

2jx1j

1A+ 2h ¡2k¡ha¡ 1¢

=

0@h¡1X
j=0

2jx1j

1A+ n¡ 2h + 1:
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From which we obtain
h¡1X
j=0

2jx1j = 2
h ¡ 1

But once again using the fact from the proof of Lemma 4.6 that x1j is odd for 1 · j · h
we conclude that (4.2) is satis¯ed if and only if x1j = 1 for 1 · j < h (assuming x1h =
2k¡ha¡ 1). But from (4.1) and (4.4) with 1 · j < h we have

tj = x0j + x1j

= (rn;h+1;j ¡ 1) + 1
= 2k¡ja+ 1
= rn;h;j

and

th = x0h + x1h

= (rn;h+1;h ¡ 1) + rn;h+1;h+1
= ((2k¡ha+ 1)¡ 1) + (2k¡(h+1)+1a¡ 1)
= 2k¡h+1a¡ 1
= rn;h;h

Thus we have shown that if Sq(Rn;h+1) is a summand of Sq(n)Sq(T ) for some summand
Sq(T ) = Sq(t1; : : : ; th) of Sq(n)

h then Sq(T ) = Sq(Rn;h). But by our very construction
the matrix X satis¯es (4.1) and (4.2) for the product Sq(n)Sq(Rn;h). It also satis¯es (4.3)
as rn;h;j is always odd and therefore the multinomial coe±cient (1; rn;h;j ¡ 1) is odd also.
ThusX is Sq(n)Sq(Rn;h){allowable and Sq(Rn;h+1) is a summand of Sq(n)

h+1, completing
the induction and the proof. ¤
Proof of Theorem 2.10. By Theorem 2.7 we have Nil(Sq(2k ¡ 1)) · k+1 and by Theorem
2.9 Nil(Sq(2k ¡ 1)) > k. Therefore Nil(Sq(2k ¡ 1)) = k + 1. By (2.5)

¸(m¡1)
¡
Sq(2k+1 ¡ 1)¢ = Sq ¡2m¡1(2k+1 ¡ 1)¡ (2m¡1 ¡ 1)¢

= Sq
¡
2m(2k ¡ 1) + 1)¢

for every m ¸ 1; k ¸ 0. Thus

Nil
¡
Sq
¡
2m(2k ¡ 1) + 1¢¢ = Nil ³¸(m¡1) ¡Sq ¡2k+1 ¡ 1¢¢´

= Nil
¡
Sq
¡
2k+1 ¡ 1¢¢

= k + 2

¤
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In order to prove Theorem 3.2 we must ¯rst recall the following information from [Mi].
Let A¤ be the Hopf dual of A. A¤ is isomorphic to the polynomial algebra Z2[»1; »2; : : : ]
on generators »i in dimension 2

i ¡ 1. If R = (r1; : : : ; rm) we will write »
R to mean the

monomial »r11 ¢ ¢ ¢ »rmm . The basis of monomials »R in A¤ is dual to the Milnor basis for A .
As is common we will write hx; yi for the evaluation of y 2 A¤ on x 2 A. Thus

hSq(R); »Si =
½
1 if R = S

0 otherwise

The algebra homomorphism Á : A¤ ! A¤ ­A¤ by
Á(»k) =

X
i+j=k

»2
j

i ­ »j

is the dual of the product map in A.
Let E be the exterior subalgebra of A generated by fQi j i 2 N g. There is a doubling

isomorphism D : A! A==E given by

D (Sq(s1; s2; : : : )) = [Sq(2s1; 2s2; : : : )]

where [x] denotes the equivalence class in A==E of x 2 A.
Finally, let An be the subalgebra of A generated by

©
Sq
¡
2i
¢ j i · nª.

Proof of Theorem 3.2. Let n; t 2 N, t 6= 0. For each i 2 N let ji and ²i be the unique
integers satisfying i = 2ji + ²i where ²i 2 f0; 1g. De¯ne an integer sequence

Rn;t(i) = (ri;1; ri;2; ri;3; : : : )

recursively on i so that it satis¯es the three conditions

Rn;t(1) = (2
nt; 0; 0; : : : ) (4:12)

ri;k =

½
2¡tri¡1;k¡1 if i is even

ri¡1;k if i is odd
for k > 1 and i > 1 (4:13)

ji+1X
k=1

ri;k = 2
nt+²i : (4:14)

Notice that (4.14) is used to compute ri;1 after obtaining ri;k for k > 1 from (4.13). For
example, for n = 3 and t = 2 (dropping trailing zeros)

R3;2(1) = (64)

R3;2(2) = (48; 16)

R3;2(3) = (112; 16)

R3;2(4) = (32; 28; 4)

R3;2(5) = (96; 28; 4)

R3;2(6) = (32; 24; 7; 1)

R3;2(7) = (96; 24; 7; 1)
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We will require the following implication of (4.14) for odd i.

ri;1 = 2
nt+1 ¡

ji+1X
k=2

ri;k

= 2nt + 2nt ¡
ji+1X
k=2

ri¡1;k

= 2nt +

ji+1X
k=1

ri¡1;k ¡
ji+1X
k=2

ri¡1;k

= 2nt + ri¡1;1

De¯ne the monomial »Rn;t(i) 2 A¤ by »Rn;t(i) =
Qji+1
k=1 »

ri;k
kt (notice this is not the same as

the de¯nition of »R given before because of the kt subscript). Then for i > 1

Á
³
»Rn;t(i)

´
= Á

Ã
ji+1Y
k=1

»
ri;k
kt

!

=

ji+1Y
k=1

Á (»kt)
ri;k

=

ji+1Y
k=1

³
»kt ­ 1 + »2t(k¡1)t ­ »t + S1

´ri;k
=

ji+1Y
k=1

³
»kt ­ 1 + »2t(k¡1)t ­ »t

´ri;k
+ S2

where S1 is a sum of terms of the form a­ b with b =2 f1; »tg and S2 is a sum of terms of

the form a­ b with b 6= »2ntt .
Continuing this derivation with i even yields

Á
³
»Rn;t(i)

´
=

Ã
ji+1Y
k=1

»
2tri;k
(k¡1)t

!
­ »2ntt + S3

=

Ã
ji+1Y
k=1

»
ri¡1;k¡1
(k¡1)t

!
­ »2ntt + S3

=

Ã
jiY
k=1

»
ri¡1;k
kt

!
­ »2ntt + S3

= »Rn;t(i¡1) ­ »2ntt + S3

where S3 is a sum of terms of the form a­ b with b 6= »2ntt because
Pji+1

k=1 ri;k = 2
nt.
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On the other hand, continuing the derivation with i odd yields

Á
³
»Rn;t(i)

´
= (»t ­ 1 + 1­ »t)ri;1

ji+1Y
k=2

³
»kt ­ 1 + »2t(k¡1)t ­ »t

´ri;k
+ S2

= (»t ­ 1 + 1­ »t)2
nt

(»t ­ 1 + 1­ »t)ri¡1;1
ji+1Y
k=2

³
»kt ­ 1 + »2t(k¡1)t ­ »t

´ri;k
+ S2

=
³
»2

nt

t ­ 1 + 1­ »2ntt

´
(»t ­ 1 + 1­ »t)ri¡1;1

ji+1Y
k=2

³
»kt ­ 1 + »2t(k¡1)t ­ »t

´ri¡1;k
+ S2

=

Ã
»
ri¡1;1
t

ji+1Y
k=2

»
ri¡1;k
kt

!
­ »2ntt +

Ã
»2

nt

t

ji+1Y
k=2

»
2tri¡1;k
(k¡1)t

!
­ »2ntt + S4

=

Ã
ji+1Y
k=1

»
ri¡1;k
kt

!
­ »2ntt +

Ã
»
2nt+2tri¡1;2
t

ji+1Y
k=3

»
2tri¡1;k
(k¡1)t

!
­ »2ntt + S4

= »Rn;t(i¡1) ­ »2ntt + »2
nt+1

t

Ã
»
ri¡3;1
t

ji+1Y
k=3

»
2tri¡1;k
(k¡1)t

!
­ »2ntt + S4

where S4 is a sum of terms of the form a ­ b with b 6= »2
nt

t because
Pji+1

k=1 ri¡1;k = 2nt

and in the last equality we have used the fact that 2tri¡1;2 = ri¡2;1 = 2nt + ri¡3;1 (taking
r0;1 = 0).
Thus in both cases we have shown that

Á
³
»Rn;t(i)

´
=
³
»Rn;t(i¡1) + »0

´
­ »2ntt + S5

where S5 is a sum of terms of the form a­b with b 6= »2ntt and »0 is divisible by »2
nt+1

t so that
its evaluation on all elements of At(n+1)¡1 is zero. This shows that for any 1 · i · 2n+1D¡

Pntt
¢i
; »Rn;t(i)

E
=
D¡
Pntt

¢i¡1
; »Rn;t(i¡1)

E
¢
D
Pntt ; »

2nt

t

E
=
D¡
Pntt

¢i¡1
; »Rn;t(i¡1)

E
:

(4:15)

Noting that
­
Pntt ; »

Rn;t(1)
®
=
D
Pntt ; »

2nt

t

E
= 1 we can use (4.15) and ¯nite induction on i

to see that D¡
Pntt

¢i
; »Rn;t(i)

E
for all 1 · i · 2n+ 1 :

Thus (Pntt )
2n+1 6= 0 for all n; t 2 N, t 6= 0.

Invoking the doubling isomorphism we notice that D (P st ) =
£
P s+1t

¤
. Since D is an

algebra isomorphism we have D
³
(P st )

i
´
=
h¡
P s+1t

¢ii
. Thus (P st )

i 6= 0 =) D
³
(P st )

i
´
6=

0 =)
h¡
P s+1t

¢ii 6= 0 =) ¡
P s+1t

¢i 6= 0. So by induction on w, (P st )
i 6= 0 =)¡

P s+wt

¢i 6= 0 for all w 2 N. Since any s can be written uniquely as s = nt + w with

n = bs=tc we see that (Pntt )2n+1 6= 0 =)
¡
Pnt+wt

¢2n+1 6= 0 =) (P st )
2bs=tc+1 6= 0 for all

s; t 2 N, t 6= 0. ¤
Finally, we can prove Theorem 3.3 by the following Lemma.
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Lemma 3. Let s; t 2 N with bs=tc = 1 and let w = s¡ t. Then
(1) (P st )

2 = Sq(t1; t2; : : : ) where

ti =

8><>:
2w(2t ¡ 1) if i = t

2w if i = 2t

0 otherwise

(2) (P st )
3 = Sq(t1; t2; : : : ) where

ti =

8><>:
2w(2t+1 ¡ 1) if i = t

2w if i = 2t

0 otherwise

(3) (P st )
4 = 0

The proof of this Lemma is an elementary, though tedious, exercise in using the product
formula and we shall not present it here. Computer calculations indicate that an analogous
method should work for the case bs=tc = 2 but that this method will not work for the case
bs=tc = 3.
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