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Part I

Fun Facts: Chaos and Fractals

This is not a complete set of lecture notes for Math 320, Chaos and Fractals. Additional material
will be covered in class.

1 Logic

In this section we give an informal overview of logic and proofs. For a more formal introduction
see my lecture notes for Math 299.
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1.1 Variables, Expressions, and Statements in Mathematics

We begin with a review of some basic terminology we will use in this course.

Basic Terminology

Term Description

set A set is a collection of items.

element The items in a set are called its elements (or members).

expression An expression is an arrangement of symbols which represents
an element of a set

type The set of elements that an expression can represent is called
the type of the expression.

value The element of the domain that the expression represents is
called a value of that expression.

variable A variable is an expression consisting of a single symbol

constant A constant is an expression whose domain contains a single
element.

statement A statement (or Boolean expression) is an expression whose
domain is { true, false}.

truth value The value of a statement is called its truth value.

solve To solve a statement is to determine the set of all elements for
which the statement is true.

solution set The set of all solutions of a statement is called the solution set.

equation An equation is a statement of the form A = B where A and B are
expressions.

inequality An inequality is a statement of the form A ⋆ B where A and B
are expressions and ⋆ is one of ≤, ≥, >, <, or ,.

Remarks:

• An element is either in a set or it is not in a set, it cannot be in a set more than once.

• It is not necessary that we know specifically which element of the domain an expression
represents, only that it represents some unspecified element in that set.

• We do not have to know if a statement is true or false, just that it is either true or false.

• If a statement contains n variables, x1, . . . xn, then to solve the statement is to find the set of
all n-tuples (a1, . . . , an) such that each ai is an element of the domain of xi and the statement
becomes true when x1, . . . , xn are replaced by a1, . . . , an respectively. In this situation, each
such n-tuple is called a solution of the statement.

• In formal mathematics true means provable.
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1.2 Propositional Logic

The Five Logical Operators

Definition 1.1. Let P,Q be statements. Then the expressions

1. ¬P
2. P and Q
3. P or Q
4. P⇒ Q
5. P⇔ Q

are also statements whose truth values are completely determined by the truth values of P and Q
as shown in the following table

P Q ¬P P and Q P or Q P⇒ Q P⇔ Q

T T F T T T T

T F F F T F F

F T T F T T F

F F T F F T T

Note: In compound statements we usually put parentheses around the statementsφ orψ involved.
For instance if φ is the statement ‘P or Q’ and ψ is the statement ‘R and S’ then φ⇒ψ should be
written

(P or Q)⇒(R and S)

in order to avoid the confusion that ‘P or Q⇒R and S’ might actually mean something like
P or (Q⇒(R and S)). In order to cut down on parentheses, we assign a precedence order for
our operators, meaning we apply the operators in the following order (from highest to lowest).

Precedence of Notation

parentheses, brackets, (), {}, [] etc.

arithmetic operations∗ ∧, ·,+, . . . etc.

set operations ×,−,∩,∪, . . . etc.

arithmetic and set relations =,⊆,≤,,, . . . etc.

not

and , or

⇒
⇔
∀,∃,∃!

∗ with the usual precedence among them
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1.3 Rules of Inference and Proof

Definition 1.2. A rule of inference is a rule which takes zero or more statements (or other items)
as input and returns one or more statements as output.

Notation 1.3. An expression of the form

Rule Name Here

P1 (show)
...

Pk (show)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Q1 (conclude)
...

Qn (conclude)

represents a rule of inference whose inputs are P1 . . .Pk and outputs are Q1, . . . ,Qn.

Definition 1.4. A formal logic system consists of a set of statements and a set of rules of inference.

Definition 1.5. A proof in a formal logic system consists of a finite sequence of statements (and
other inputs to the rules of inference) such that each statement follows from the previous statements
in the sequence by one or more of the rules of inference.

1.4 Natural Deduction

The rules of inference we will use for propositional logic are as follows.

Propositional Logic

and + and −
φ (show)
ψ (show)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
φ and ψ (conclude)

φ and ψ (show)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
φ (conclude)
ψ (conclude)

⇒+ ⇒− (modus ponens)

Assume φ
ψ (show)
←

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
φ⇒ψ (conclude)

φ (show)
φ⇒ψ (show)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ψ (conclude)
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Propositional Logic (cont.)

⇔+ ⇔−
φ⇒ψ (show)
ψ⇒φ (show)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
φ⇔ψ (conclude)

φ⇔ψ (show)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
φ⇒ψ (conclude)
ψ⇒φ (conclude)

or + or − (proof by cases

φ (show)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
φ or ψ (conclude)
ψ or φ (conclude)

φ or ψ (show)
φ⇒ρ (show)
ψ⇒ρ (show)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ρ (conclude)

not+ (proof by contradiction) not− (proof by contradiction)

Assume φ
→← (show)
←

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
¬φ (conclude)

Assume ¬φ
→← (show)
←

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
φ (conclude)

→←+ copy

φ (show)
¬φ (show)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
→← (conclude)

φ (show)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
φ (conclude)

Remarks:

• The symbol← is an abbreviation for “end assumption”.

• The symbol→← is called “contradiction” and represents the logical constant false.

• The word Assume is actually entered as part of the proof itself, it is not just an instruction in
the recipe like ’(show)’ and ’(conclude)’.

• The inputs Assume and “←” are not themselves statements that you prove or are given, but
rather are inputs to rules of inference that may be inserted into a proof at any time. There is
no useful reason however, to insert such statements unless you intend to use one of the rules
of inference that requires them as an input.

• The statement following an Assume is the same as any other statement in the proof and can
be used as an input to a rule of inference.

• Statements in an Assume-← block can be used as inputs to rules of inference whose conclu-
sion is also inside the same block only. Once a Assume is closed with a matching←, only the
entire block can be used as an input to a rule of inference. The individual statements within
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a block are no longer valid outside the block. We usually indent and Assume-← block to
keep track of what statements are valid under which assumptions.

Definition. A compound statement of propositional logic is called a tautology if it is true regardless
of the truth values the atomic statements that comprise it. (Its "truth table" contains only T’s.)

It can be shown that a statement can be proved with Propositional Logic if and only if the statement
is a tautology.

Example 1.6. Prove P⇒ (P or Q) and verify it with a truth table

Example 1.7. Prove (P or Q)⇒ ¬(¬P and ¬Q) and verify it with a truth table

1.5 Predicate Logic

Quantifiers

Definition 1.8. The symbols ∀ and ∃ are quantifiers. The symbol ∀ is called “for all”, “for every”,
or “for each”. The symbol ∃ is called “for some” or “there exists”.

Definition 1.9. If W is a statement and x is any variable then ∀x,W and ∃x,W are both statements.

Notation 1.10. If x is a variable, t an expression, and W(x) a statement then W(t) is the statement
obtained by replacing every free occurrence of x in W(x) with (t),

The rules of inference for these two quantifiers are as follows.

Predicate Logic∗

∀+ ∀−
Let s be arbitrary (variable declaration)
φ(s) (show)
←

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
∀x, φ(x) (conclude)

∀x, φ(x) (show)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
φ(t) (conclude)

∃+ ∃−
φ(t) (show)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
∃x, φ(x) (conclude)

∃x, φ(x) (show)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
For some c, (constant declaration)
φ(c) (conclude)

∗Restrictions and Remarks - there are restrictions on the rules of inference for quantifiers which are
not listed above (see my Math 299 lecture notes for details). In most situations they are not a
concern.

Example 1.11. Prove (∃x,P(x))⇒ ¬∀y,¬P(y)
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1.6 Equality

Definition 1.12. The equality symbol, =, is defined by the following two rules of inference.

Equality

Reflexivity Substitution∗

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
x = x

x = y (show)
φ (show)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
φ with any free occurrences of x replaced by
y. (conclude)

Remark. Note that in the Reflexive rule there are no inputs, so you can insert a statement of the
form x = x into your proof at any time.

Example 1.13. Given x = y and y = z, prove x = z.

Problems - Logic

1.1. Math Zoology 101: (1 point each) Let x, y be real numbers, f , g functions from the set of real
numbers to the set of real numbers, and A,B sets. Classify each of the following expressions
as either a number, statement, function, or set (assuming the expression is defined).

(a) x2 > 0

(b) x2 + y2

(c) A ∪ B

(d) x ∈ A

(e) {x}

(f) f ◦ g

(g) 3

(h) f (x) = 2x

(i) g′ (the derivative of g)

(j) 3 < 2

(k) A ⊆ B

(l) f (y)

(m)
√

x+y
2

1.2. (1 point each) Let P,Q be statements. Use a truth table to show that each of the following is a
tautology.

(a) P⇒ P

(b) (P and ¬P)⇒ Q

(c) P⇒ (Q⇒ P)

(d) ((P or Q) and ¬Q)⇒ P

(e) P or ¬P

(f) ¬(¬P)⇔ P

1.3. (2 points each) Use the rules of natural deduction to prove each of the tautologies in exercise 1.2.

1.4. (2 points each) Let P(x) be a statement containing x and Q(x, y) a statement containing x, y.
Use the rules of natural deduction to prove the following.

(a) (∃x,P(x))⇒ (∃y,P(y))

(b) (∃y,∀x,Q(x, y))⇒ (∀x,∃y,Q(x, y))
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(c) ¬(∀x,P(x))⇒ ∃x,¬P(x)

(d) (∀x,P(x)⇒ Q(x)) and (∀x,¬Q(x))⇒ (∀x,¬P(x))

(e) x = y⇔ y = x

1.5. (1 point each) Give examples of particular statements P(x) and Q(x, y), and then translate each
of the statements in exercise 1.4 into English statements using your examples.

2 Sets, Functions, Numbers

2.1 Some Definitions from Set theory

The symbol ∈ is formally undefined, but it means “is an element of”. Many of the definitions
below are informal definitions that are sufficient for our purposes.

Set notation and operations

Set notation and operations

Term Definition

Finite set notation: x ∈ {x1, . . . , xn} ⇔ x = x1 or · · · or x = xn

Set builder notation: x ∈ { y : P(y)
}⇔ P(x)

Cardinality: #S = the number of elements in a finite set S

Subset: A ⊆ B⇔ ∀x, x ∈ A⇒ x ∈ B

Set equality: A = B⇔ A ⊆ B and B ⊆ A

Def. of <: x < A⇔ ¬(x ∈ A)

Empty set: ∃∅,∀x, x < ∅
Relative Complement: x ∈ B − A⇔ x ∈ B and x < A

Intersection: x ∈ A ∩ B⇔ x ∈ A and x ∈ B

Union: x ∈ A ∪ B⇔ x ∈ A or x ∈ B

Indexed Intersection: x ∈ ⋂
i∈I

Ai ⇔ ∀i, i ∈ I⇒ x ∈ Ai

Indexed Union: x ∈ ⋃
i∈I

Ai ⇔ ∃i, i ∈ I and x ∈ Ai

Two convenient
abbreviations:

(∀x ∈ A,P(x))⇔ ∀x, x ∈ A⇒ P(x)

(∃x ∈ A,P(x))⇔ ∃x, x ∈ A and P(x)

Some Famous Sets

Set Definition

The Natural Numbers N = {0, 1, 2, 3, 4, . . .}
The Integers Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}
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Some Famous Sets (cont.)

Set Definition

The Rational Numbers Q =
{

a
b : a ∈ Z, b ∈N, b , 0, and gcd(a, b) = 1

}
The Real Numbers R =

{
x : x can be expressed as a decimal number

}
The Complex Numbers C =

{
x + yi : x, y ∈ R}where i2 = −1

The positive real numbers R+ = {x : x ∈ R and x > 0}
The negative real numbers R− = {x : x ∈ R and x < 0}
The positive reals in a set A A+ = A ∩R+

The negative reals in a set A A− = A ∩R−

The first n positive integers In = {1, 2, . . . , n}
The first n + 1 natural numbers On = {0, 1, 2, . . . , n}

Cartesian Products

Name Definition

Ordered Pairs: (x, y) = (u, v)⇔ x = u and y = v

Ordered n-tuple: (x1, . . . , xn) = (y1, . . . , yn)⇔ x1 = y1 and · · · and xn = yn

Cartesian Product: A × B =
{
(x, y) : x ∈ A and y ∈ B

}
Cartesian Product: A1 × · · · × An = {(x1, . . . , xn) : x1 ∈ A1 and · · · and xn ∈ An}
Power of a Set An = A×A× · · · ×A where there are n “ A’s” in the Cartesian product

Functions and Relations

Name Definition

Def of relation: R is a relation from A to B⇔ R ⊆ A × B

Def of function:
f : A→ B⇔ f ⊆ A × B and f , ∅ and (∀x,∃y, (x, y) ∈ f ) and

(∀x, ((x, y) ∈ f and (x, z) ∈ f )⇒ y = z)

Alt function notation X Y−→⇔ f : X→ Y

Def of f (x): f (x) = y⇔ f : A→ B and (x, y) ∈ f

Domain: Domain( f ) = A⇔ f : A→ B

Codomain: Codomain( f ) = B⇔ f : A→ B

Image: f (S) =
{
y : ∃x, x ∈ S and y = f (x)

}
Range: Range( f ) = f (Domain( f ))

Identity Map: idA : A→ A and ∀x, idA(x) = x

Composition: f : A→ B and g : B→ C⇒ (g◦ f ) : A→ C and ∀x, (g◦ f )(x) = g( f (x))
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Functions and Relations (cont.)

Name Definition

Injective (one-to-one): f is injective⇔ ∀x,∀y, f (x) = f (y)⇒ x = y

Surjective (onto): f is surjective⇔ f : A→ B and (∀y, y ∈ B→ ∃x, y = f (x))

Bijective: f is bijective⇔ f is injective and f is surjective

Inverse: f−1 : B→ A⇔ f : A→ B and f ◦ f−1 = idB and f−1 ◦ f = idA

Inverse Image: f : A→ B and S ⊆ B⇒ f inv(S) =
{
x ∈ A : f (x) ∈ S

}
Example 2.1. Prove that if A ⊆ B then A ∩ B = A.

Example 2.2. (left cancellation for injective functions) Let X,Y,Z be sets and f : Y→ Z. Show that
if f is injective then for any functions g, h : X→ Y

( f ◦ g = f ◦ h)⇒ g = h

Problems - Sets

In the following problems, let A,B,C,W,X,Y,Z be sets.

2.1. (2 points) Prove that A ∩ B ⊆ A ∪ B.

2.2. (2 points) Prove that if A ⊆ B and B ⊆ C then A ⊆ C.

2.3. (2 points) Let A B−→. Prove that f inv(B) = A.

2.4. (3 points) Let A
f−→ B. Prove f (A) = B if and only if f is surjective.

2.5. (3 points) Prove idA is bijective.

2.6. (2 points) Let f : X→ X. Prove that idX ◦ f = f ◦ idX = f .

2.7. (2 points) Prove that composition of functions is associative, i.e., if f : Z→ W, g : Y→ Z, and
h : X→ Y then f ◦ (g ◦ h) = ( f ◦ g) ◦ h.

2.8. (3 points) Let A
f−→ A × A by f (x) = (x, x) for all x ∈ A. Prove f is injective.

2.9. (2 points) Let t be the infinite sequence

1, 2, 4, 7, 11, 16, 22, 29, 37, 46, 56, 67, 79, 92, 106, 121, . . .

whose sequence of consecutive differences is arithmetic. What is the 1000000th term of t? What
is tt4 (if the first term is t1)?

2.10. (2 points) (left cancellation law for injective functions) Let Y
f−→ Z. Prove that f is injective if

and only if for all nonempty sets X and all functions g, h : X→ Y

( f ◦ g = f ◦ h)⇒ g = h
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2.11. (4 points) (right cancellation law for surjective functions) Let X
f−→ Y. Prove that f is surjective

if and only if for all nonempty sets Z and all functions g, h : Y→ Z

(g ◦ f = h ◦ f )⇒ g = h

2.12. Math Zoology: (1 point each) Let x ∈ R, f : R ×R→ R ×R, and A,B ⊆ R. Classify each of the
following expressions as either a number, statement, function, ordered pair, or set (assuming
the expression is defined).

(a) f (A × A)

(b) Range( f )

(c) f−1

(d) f−1(x, x)

(e) f ({ (x, x) })
(f) f (x, x)

(g) idA

(h) Domain( f ) = R ×R

(i) A × B

(j) f (I4 × I4)

2.2 Sequences

Definition 2.3. A finite sequence is a function t : In → A where n is a natural number and A is a
set. An infinite sequence is a function t : N+ → A where A is a set. In either case, t(k) is called the
kth term of the sequence.

Remark. It is often convenient to say that t is a finite (resp infinite) sequence if t : On → A (resp.
t : N→ A). In this case we say that t(k) is the k + 1st term of the sequence.

Notation 2.4. If t : In → A is a finite sequence we write

t1, t2, t3, . . . , tn

as another notation for t, where tk = t(k) for all k ∈ In. Similarly if t : N+ → A we write

t1, t2, t3, . . .

for t where tk = t(k) for all k ∈N+.

Remark. Sometimes for readability we might want to enclose a sequence in parenthesis. For
example, we might write “ Let t = (1, 2, 3, 4)” instead of “ Let t = 1, 2, 3, 4” . In this sense there is
really no distinction between n-tuples and finite sequences.

Notation 2.5. We use an overbar to indicate an infinite repeating sequence, i.e.,

t0, t1, . . . , tk−1, tk, . . . , tk+n−1

denotes the sequence infinite sequence t such that ti = tk+((i−k) mod n) for all i ≥ k + n.

Example 2.6. Write the first five terms of the sequenceN a−→N by an = n2 + 1.
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Example 2.7. What is the 1000th term in the sequence

9, 0, 8, 3, 2, 4, 1, 5, 7, 6

Example 2.8. Write the first five terms of the sequenceN a−→N given by

a(n) =

 1 if n = 0

n · a(n − 1) otherwise

2.3 Some Facts from Number Theory

Theorem 2.9 (Math Induction). Let P(n) be any statement about a natural number variable n. Then

(P(0) and ∀k ∈N,P(k)⇒ P(k + 1))⇒ ∀n ∈N,P(n)

Theorem 2.10 (Division Algorithm). Let a, b ∈ Z and b > 0. Then there exist unique integers
q, r ∈ Z such that

a = qb + r and 0 ≤ r < b.

Remark. In this theorem the number q is called the quotient and r is called the remainder when a
is divided by b.

Definition 2.11. Let a, b ∈ Zwith b > 0. Then a mod b is the remainder when a is divided by b. The
quotient can be written as

⌊
a
b

⌋
where ⌊x⌋ is the greatest integer less than or equal to a real number

x.

Definition 2.12. Let a, b ∈ Z. We say a divides b if ak = b for some integer k. If a divides b we write
a | b.

Definition 2.13. Let a, b ∈ Z with a , 0 or b , 0. Then gcd(a, b) is the greatest positive integer
which divides both a and b.

Example 2.14. What is the quotient and remainder when 21000 + 1 is divided by 32?

Example 2.15. What is the quotient and remainder when −100 is divided by 7?

Example 2.16. True or False:

(a) 14 | 7 (b) 7 | 14 (c) 7 | −14 (d) 7 | 0

Example 2.17. What is the gcd(72, 60)? gcd(295927, 304679)?
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Problems - Functions and Sequences

2.13. (1 point) What is the quotient and remainder when −371 is divided by 17?

2.14. Consider the functionN ×N B−→N given by

B(m,n) =

1 if m = 0 or n = 0
B(m − 1,n) + B(m,n − 1) otherwise

(a) (1 point) Make a 10 × 10 table showing the values of B(m,n) for 0 ≤ m,n with m + n ≤ 10.

(b) (1 point) Do the numbers look familiar? Give a closed formula for B(m,n) in terms of
well-known mathematical functions.

2.15. Consider the functionN ×N A−→N given by

A(m,n) =


n + 1 if m = 0
A(m − 1, 1) if n = 0 and m > 0
A(m − 1,A(m,n − 1)) otherwise

(a) (1 point) Compute A(2, 2)

(b) (2 points) Find an explicit formula for A(1,n) ("explicit" means that the formula does not
contain the symbol A).

(c) (3 points) Find an explicit formula for A(2,n) in terms of n.

(d) (4 points) Find an explicit formula for A(3,n).

(e) (4 points) Compute A(4, 2). Can you come up with an explicit formula for A(4,n)?

(f) (1 point) Write an essay discussing just how big A(5, 1) is!

3 Iteration

3.1 Discrete Dynamical Systems

Definition 3.1. Let X be any nonempty set. Any function f : X→ X is called a set theoretic discrete
dynamical system (or simply discrete dynamical system).

Definition 3.2. Let X be a set and f : X→ X. Define f 0 = idX and for all k ≥ 1 define

f k = f ◦ f k−1

Example 3.3. Let f : R→ R by f (x) = 2x + 1. Find a nonrecursive formula for f k(x) for k ≥ 0.
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Theorem 3.4 (Power Theorem). Let f : X→ X. For any k,n ∈N,

f k+n = f k ◦ f n

and
f kn = f n ◦ f n ◦ · · · ◦ f n︸              ︷︷              ︸

k terms

= ( f n)k

Definition 3.5. Let f : X→ X and x ∈ X. The sequence

x, f (x), f 2(x), f 3(x), . . .

is called the f -orbit of x. The first term, x, is called the seed of the orbit. The k + 1st term is called
the kth f -iterate of x (or kth iterate or kth iteration). We write Orb f (x) for the f -orbit of x.

Remark. Orb f (x) : N→ X and Orb f (x)(n) = f n(x) for all n ∈N.

Example 3.6. Find the complete f -orbit of 5 for C− { 0, 1 } f−→ C− { 0, 1 } by f (z) = 1
1−z . What is the

f -orbit of 3? How about a?

Definition 3.7. Let X be a set, x ∈ X, and f : X → X. Then the set of terms in the f -orbit of x is
denoted O f (x), i.e.,

O f (x) =
{

f k(x) : k ∈N
}

We call O f (x) the set of f -iterates of x (or simply the set of terms in the f -orbit of x).

Example 3.8. What is O f (5) in Example 3.6? How many elements are in O f (5)?

3.2 Types of Orbits

Definition 3.9. Let f : X → X and x ∈ X. The f -orbit of x is cyclic if f n(x) = x for some n ≥ 1. In
this situation we say that x is a cyclic point (or periodic point) for f .

Example 3.10. Is Orb f (5) cyclic in Example 3.6?

Definition 3.11. Let f : X → X and x ∈ X. If f n(x) = x for some n ≥ 1, we say x has period n. If in
addition f k(x) , x for all 1 ≤ k < n then we say x has minimum period n. If x has period 1 we say x
is a fixed point of f . If x has period n we also say that Orb f (x) has period n and if x has minimum
period n we also say Orb f (x) has minimum period n as well.

Example 3.12. What is the minimum period of 5 in Example 3.6?

Example 3.13. Does f have any fixed points in Example 3.6?

Lemma 3.14. Let f : X→ X, x ∈ X, and n ∈N+. If x has minimum period n then #O f (x) = n.
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Example 3.15. Why isn’t it if and only if?

Definition 3.16. Let f : X → X and x ∈ X. The f -orbit of x is eventually cyclic if f n(x) = f m(x)
for some n,m with n , m. In this situation we also say that x is an eventually cyclic point (or
eventually periodic point) for f .

Definition 3.17. Let f : X → X and x ∈ X periodic point with period n. We say that O f (x) is an
n-cycle if and only if Orb f (x) is cyclic with minimum period n.

Definition 3.18. Let f : X→ X and x ∈ X. The f -orbit of x is acyclic if it is not eventually cyclic.

Example 3.19. Can you come up with examples of each of these?

Problems - Orbits

3.1. (3 points) Let A P−→ A, s0 ∈ A, and s = (s0, s1, s2, . . .) the P-orbit of s0. Show that if s is cyclic with
period n then it is also cyclic with period kn for any positive integer k. [Hint: Use induction
on k.]

3.2. (3 points) Let A P−→ A, s0 ∈ A, and s = (s0, s1, s2, . . .) the P-orbit of s0. Show that if sn = sm then
sn+k = sm+k for any positive integer k.

3.3. (4 points) Let A P−→ A, s0 ∈ A, and s = (s0, s1, s2, . . .) the P-orbit of s0. Show that if s is both
cyclic with period n and cyclic with period m, then s is cyclic with period gcd(n,m). [Hint: Use
the fact that gcd(n,m) = sn + tm for some integers s, t.]

3.4. (3 points) (Fun with composition!) Let A
f−→ A and A

g−→ A. Show that if f ◦ g ◦ f = g and
g ◦ f ◦ f = f then g = f .

3.3 The Digraph

Definition 3.20. A directed graph (or digraph) is a pair (V,E) where V is a set of elements called
the nodes and E ⊆ V × V is the set of directed edges.

Definition 3.21. Let X
f−→ X be a discrete dynamical system. The digraph of f is the directed

graph (X,S) where S =
{

(a, f (a)) : a ∈ X
}
, i.e., the nodes are the elements of the domain and the

directed edges connect each element a in the domain to f (a).

Problems - Digraphs

3.5. (1 point each) Draw the directed graph of the following discrete dynamical systems.

(a) O11
f−→ O11 by f (n) = (n + 3) mod 12.

(b) O11
f−→ O11 by f (n) = (n + 7) mod 12.

(c) O11
f−→ O11 by f (n) = n6 mod 12.

(d) O6
f−→ O6 by f (n) = n6 Mod 7.
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3.6. (1 point each) Give an example of, and draw the directed graph of a dynamical system X
f−→ X

which has the following properties.

(a) f is neither injective nor surjective

(b) f is bijective

(c) f is injective and not surjective

(d) f is surjective and not injective

4 Examples of Iteration

4.1 The Collatz Conjecture

Definition 4.1. Define T : Z→ Z by ∀x ∈ Z

T(x) =

 x
2 if x is even
3x+1

2 if x is odd

Conjecture 4.2 (Collatz). For all n ∈ N+, ∃k ≥ 0,Tk(n) = 1, i.e., the T-orbit of any positive integer
contains one.

Remark. Note that OrbT(1) = 1, 2 so that the conjecture is equivalent to saying that the T-orbit of
any positive integer is eventually periodic and enters the 2-cycle { 1, 2 }.

4.2 Sumerian Method for Computing Square Roots

Claim 4.3. Let a ∈ R+ and Roota(x) = 1
2 (x + a

x ). For any x ∈ R+, the Roota-orbit of x converges to
√

a.

Example 4.4. Find a fraction and a decimal that are a good approximation to
√

2 and
√

3 by the
Sumerian Method.

4.3 Multiple Inputs: The Euclidean Algorithm

Remark. If f : A × B→ C and a ∈ A, b ∈ B, we usually abbreviate f ((a, b)) as f (a, b).

Claim 4.5. Define Euc: N+ ×N→N+ ×N by

Euc(n,m) =


(m,n) if n < m

(n, 0) if m = 0

(m,n mod m) otherwise

.

for any (n,m) ∈N+ ×N. Then the Euc-orbit of any (n,m) is eventually fixed and contains the fixed point
(gcd(n,m), 0).

Remark. This method of computing gcd(n,m) is called the Euclidean algorithm.

Example 4.6. Reduce the fraction 295927
304679 by hand.
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4.4 Non-numeric Inputs: Post’s Tag Problem

Definition 4.7. Let S be a set and let S∗ be the set of words (finite sequences) which can be made
from the alphabet S, i.e.,

S∗ =
∞⋃

n=1

{
f : In

f−→ S
}

If x ∈ S∗ then #x is the number of letters in the word x. If x, y ∈ S∗ then x · y is the word formed by
concatenating the words x and y. If x = x1x2 · · · xn ∈ S∗ then x[a . . . b] is the word xaxa+1xa+2 · · · xb−1xb
and x[a] = xa.

Example 4.8. What is
{
⋆
}∗? { a, b }∗?

Definition 4.9. Define Tag: { a, b }∗ → { a, b }∗ as follows. If x ∈ { a, b }∗ and n = #x then

Tag(x) =


x if n < 3

x[4..n] · aa if x[1] = a

x[4..n] · bbab if x[1] = b

In other words, if a word is less than three letters long, Tag returns it unchanged, if it is 3 or more
letters and begins with the letter a then Tag deletes the first three letters and appends aa on the
right, and if it is 3 or more letters and begins with b then Tag deletes the first three letters and
appends bbab.

Problem 4.10 (TAG). (Emil Post 1921) Are there any Tag-orbits which are not eventually cyclic?

Example 4.11. What is the Tag-orbit of a? baba? bbbaa?

Problems - Iteration

4.1. Verify the Collatz conjecture for the first 500 positive integers by doing the following.

(a) (2 points) Computing the T-orbit of n for 1 ≤ n ≤ 50. Note that you should compute
the complete orbit of each n, indicating any repeating parts with an overbar or other
appropriate notation. You can do this by hand or by computer or calculator (but not the
internet), its your choice.

(b) (2 points) Define the total stopping time of n to be the number of iterations of T required
for the orbit of n to reach 1 For example, the total stopping time of 1 is 0, the total stopping
time of 2 is 1, and the total stopping time of 3 is 5. Using your results from the first part,
compute the total stopping time of the integers from 1 to 50.

4.2. (3 points) The Collatz function T is defined for all integers, since odd and even are defined
for any integer. Compute the T-orbit if n for all integers n satisfying −50 ≤ n ≤ 0. List all of
the disjoint cycles you find and state their minimum period. You can do this by hand or by
computer or calculator (but not the internet), its your choice.
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4.3. In Post’s tag problem, verify that each of the following seeds have eventually cyclic orbits by
listing the orbits, and determine the number of iterations required before the orbit becomes
cyclic. (1 point each except for part (d).)

(a) aabb

(b) aaaab

(c) baabaa

(d) The “Whose is Longest” Contest: Find a seed whose Tag-orbit is cyclic. You must hand in
the complete orbit and must indicate the number of terms in the cycle itself. The student
who has the longest minimum cycle length will receive a bonus of 3 points added to their
homework grade. In the event of a tie no bonus points will be awarded to any student.

4.4. (3 points) Use the Sumerian method for computing square roots to compute the
√

7 accurate
to five digits (counting the leading 2 as one of the five digits). Use 1 for the value of the seed.
Give the approximations both as fractions and as decimals. How many iterations are required?

4.5. (3 points) Use the Euclidean algorithm to reduce the fraction

498672943
520221547

You must do this by hand, not by Maple and show your work. You can use a calculator to do
the division and remainder computations.

4.6. (4 points) Define a Fibonacci-like sequence

F(a, b) = x0, x1, x2, . . .

as follows:

x0 = a,
x1 = b,
xn = xn−1 + xn−2 for n > 1

Compute the first ten terms for the sequences, F(1, 1), F(2, 1), F(−1, 1), F(−1,−3) and F( 1
3 ,

1
2 ).

Then describe an iterative process (i.e. a discrete dynamical system) that would compute this
sequence.

4.5 Stick Figure Fractals

Definition 4.12. Let A,B be any distinct points in the plane. Then AB denotes the line segment
with endpoints A and B (i.e., the set of all points in the plane which are on the line containing A
and B and are either between A and B or are equal to A and B). The directed segment from A to
B is a pair (AB,A), and is denoted

−→
AB. In this case we say AB is the segment associated with

−→
AB

(and can think of a directed segment as being a set of points in the plane in this sense).

Remark. We use
−→
AB to denote a directed segment, not a ray from Euclidean plane geometry.
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Notation 4.13. If A = (a1, a2),B = (b1, b2) then
−→
AB can be written dseg([a1, a2], [b1, b2]) and AB can be

written seg([a1, a2], [b1, b2]).

Remark. A directed line segment can be thought of as a line segment with an arrow drawn on it
in one of the two possible directions. Note that AB = BA but

−→
AB ,

−→
BA. A directed line segment

can also be thought of as a set of points since the line segment associated with it is a set of points.
So if we talk about a point being "on a directed segment" we mean that it is on the line segment
associated with the directed segment and so on.

Definition 4.14. A stick is either a line segment or a directed line segment. A stick figure is a finite
set of sticks. Let Us f be the set of all stick figures.

Remark. Note that we can also consider a stick figure to be a set of points in the plane by considering
the union of the points in the line segments and (line segments associated with) directed segments.

Definition 4.15. Let s = dseg([a, b], [c, d]). Define Ts : R2 → R2 by

Ts(x, y) = ((c − a)x + (b − d)y + a, (d − b)x + (c − a)y + b)

Ts is called the affine map induced by s.

Remark. We will show how to derive this map later in the course. Intuitively, it is the map that
sends the directed segment from (0, 0) to (1, 0) to the directed segment s = dseg([a, b], [c, d]), and
the directed segment from (0, 0) to (0, 1) to the directed segment obtained by rotating s by 90◦

counterclockwise about (a, b).

Example 4.16. Find the affine map induced by the directed segment from (1, 1) to (2, 2).

Lemma 4.17. Let s be a directed segment and t a line segment. Then Ts(t) is a line segment.

Definition 4.18. Let s, t be directed segments with t =
−→
AB. Then Ts(t) = (Ts(AB),Ts(A)).

Definition 4.19. If G is a stick figure and s a directed segment then Ts(G) is the stick figure⋃
x∈G
{Ts(x) }.

Definition 4.20. For each stick figure G define a dynamical system γG : Us f → Us f as follows. Let
S ∈ Us f be a stick figure. For each x ∈ S, define

g(x) =

 { x } if x is a line segment
Tx(G) if x is a directed segment

Then γG(S) =
⋃
x∈S

g(x). The dynamical system γG is called the stick figure iterator associated with

G. The figure G is called the generator for the stick figure iterator.

Claim 4.21. In many cases the γG-orbit of a seed S converges to a fractal shape.
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Problems - Stick Figures

4.7. (1 point each) Below is the generator of a stick figure iterator that replaces directed line
segments with the indicated collection of line segments. The seed is a single directed line
segment directed from (0, 0) to (1, 0). The green dots are at (0, 0) and the red dots are at (1, 0)
so the stick figure shown is the first iteration. Draw the next two iterations. Be accurate. You
can assume all directed line segments in the figures are congruent, and angles are what they
appear to be (integer multiples of 30 degrees).

You must draw these by hand, no computers allowed. Tip: Draw a large copy of the image
below on a piece of paper, then put a second piece on top of the first as if you are going to trace
the first and us it as a guide to draw the second. When finished you can then draw/trace over
the second iteration in the same manner to produce the third.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

4.8. (1 point) Let n be a positive integer. How many directed sticks are in the nth iteration of the
stick figure fractal system defined in part (c) of 4.7 above?

4.9. Consider the directed segment s = dseg([1, 2], [3, 4]).

© 2022 KEN MONKS PAGE 22 of 88



Chaos and Fractals

(a) (1 point) Find the affine transformation, Ts, induced by s.

(b) (1 point) Let A = Ts(0, 0), B = Ts(1, 0), and C = Ts(0, 1). Compute the coordinates of A,B,C
and plot dseg(A,B) and dseg(A,C) (clearly label everything).

(c) (1 point) Now replace s with dseg([3, 4], [1, 2]) and answer the previous two questions
again.

4.10. (2 points) Stick Figure Art Contest: Make up your own stick figure generator and use
dseg([0, 0], [1, 0]) as you seed. Draw a minimum of two iterations of your stick figure fractal
(but you can draw more iterations for a higher quality picture). The most interesting result
will be awarded an extra three bonus points toward their homework grade.

4.6 GeeBees (Grid Based Fractals)

Algorithm 4.22. Let n ∈ N+ and a1, . . . , ak ∈ In2 . Define a dynamical system GB(n; a1, . . . , ak) as
follows. Let the seed be a set containing one uncolored square. The process is:

1. Subdivide each uncolored square in the input set into an n× n grid of congruent subsquares
and number these subsquares from 1 to n2from left to right and bottom to top, starting in the
lower left corner.

2. Color the subsquares numbered a1, . . . , ak.

3. Output the set of colored and uncolored subsquares.

Claim 4.23. The background (uncolored subsquares of the original square) of a GB converges to a fractal
shape.

Example 4.24. Plot the first few iterations of GB(3; 2, 4).

4.7 HeeBGB’s

Definition 4.25. A directed square is a pair (S,
−→
AB) where S is a square in the plane and

−→
AB is a

directed segment whose associated line segment is a side of S.

Notation 4.26. When drawing a picture of a directed square we will draw the directed segment
inside the square next to the edge instead of directly on top of the edge to avoid confusion when

two directed squares share a common edge, i.e., instead of .

Remark. The arrow is not part of the square S associated with the directed square.

Definition 4.27. A labeled square is a member of the following 9 families:
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Up Dn Lt Rt

−Up −Dn −Lt −Rt

none

Each labeled square must have one of the orientations shown above, but can have any position or
size. Let ULS be the set of all labeled squares.

Remark. Notice that every labeled square is a directed square except for the members of the family
labeled none. Each labeled directed square is either positive or negative (the negative ones have
the arrow on the left when viewed with the arrow pointing upwards).

Definition 4.28. Define the mirror image of each labeled square a to be←→a as follows:

a Up −Up Dn −Dn Lt −Lt Rt −Rt none

←→a −Up Up −Dn Dn −Rt Rt −Lt Lt none

i.e., the sign always changes and left and right are interchanged.

Remark. Note that this is what is obtained if each of the images in Figure 1 above are reflected
about the vertical line through the center of the square.

Definition 4.29. A GB figure is a finite set of labeled squares. Let UGB be the set of all GB figures.

Definition 4.30. Let n ∈ N+ and a1, . . . , an2 ∈ {Up,Dn,Lt,Rt,−Up,−Dn,−Lt,−Rt,none
}

(the label
set). Define a dynamical system HeeBGB(a1, . . . , an2) : UGB → UGB as follows. First define g : ULS →
UGB as follows.

For each x ∈ ULS,

1. If x is labeled ’none’ then g(x) = { x }.
2. If x is a directed square then

(a) Rotate x so its arrow points upwards.

(b) Subdivide x into an n × n grid of congruent subsquares.

i. if x is positive, label these subsquares from a1 to an2 from left to right and bottom to
top, starting in the lower left corner.

ii. if x is negative, label these subsquares from←→a1 to←→an2 from right to left and bottom
to top, starting in the lower right corner.

(c) Undo the rotation from step number 1 to return the square (and all its new subsquares)
to the original position and orientation. g(x) is the set of these subsquares.
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(d) Now, let S ∈ UGB. Define HeeBGB(a1, . . . , an2)(S) =
⋃
x∈S

g(x).

Algorithm 4.31. To draw a HeeBGB fractal starting with a seed consisting of a set containing a single
labeled square whose label is Up and a choice of labels a1, . . . , an2 . Compute the HeeBGB(a1, . . . , an2)-
orbit of the seed, but color the squares labeled ’none’ as you iterate. The uncolored portion of the
HeeBGB-orbit of this seed that is contained in the original square always converges to a fractal
image (i.e., you are coloring the background, not the fractal).

Example 4.32. Draw the first few iterations of HeeBGB(Up,Up,Up,none).

Example 4.33. Draw the first few iterations of HeeBGB(Up,−Dn,Lt,none).

Example 4.34. Draw the first few iterations of HeeBGB(Dn,−Dn,Rt,none).

Problems - HeeBGBs

4.11. (2 points each) Draw the third iteration of the following grid based fractal constructions.
You must draw these by hand and you must use graph paper of the correct size or my online
Fractal Coloring Book. Your choice.

(a) GB(2; 3)

(b) GB(3; 1, 3, 7, 9)

(c) GB(4; 2, 3, 6, 11, 14, 15)

(d) Make up one of your own (a new one, not one from class, the book, or listed above).

4.12. (3 points each) Use the coloring technique I showed you in class to draw the given iteration
of the specified HeeBGB . You must use the specified graph paper and use an approved
highlighter marker or use my online Fractal Coloring Book. Your choice. You must do these
by hand, although you can check your answers with the DrawDetIFS() command in my Maple
chaos library if you wish.

(a) HeeBGB(−Lt,Lt,Lt,none), 5th iteration on 32x32 graph paper.

(b) HeeBGB(Up,none,−Dn,−Rt,Up,none,none,Dn,−Lt), 3rd iteration on 27x27 graph paper

(c) Make up your own HeeBGB of the form HeeBGB(a1, a2, a3,none) and color the 5th iteration
on 32x32 graph paper or my online Fractal Coloring Book. None of your choices for
a1, a2, a3 should be Up or none, and at least one of them must be negative.

4.8 Newton’s Method

Definition 4.35. Let R ⊆ R, f : R→ R, and r ∈ R. We say r is a root of f if f (r) = 0.

Definition 4.36. Let R ⊆ R and f : R→ R a differentiable function. Define Newt f : R̃→ R by

Newt f (x) = x − f (x)
f ′(x)
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for all x ∈ R̃ where R̃ =
{

x ∈ R : f ′(x) , 0
}
.

Remark. Newt f (a) is the x coordinate of point where the tangent line to the graph of f at (a, f (a))
meets the x-axis.

Theorem 4.37 (Newton’s Method). Let R ⊆ R, f : R → R a differentiable function, and r ∈ R a
root of f . If f ′(r) , 0 then there exists and interval I ⊆ R such that r ∈ I, Newt f : I → I and for all
x ∈ I the Newt f -orbit of x converges to r.

Example 4.38. Where does cos(x) = x?

Problems - Newton’s Method

4.13. Let f : R→ R with f (x) = 2 − x2 for all x ∈ R.

(a) (1 point) Find f 2(x). Write your answer as an expanded polynomial.

(b) (1 point) Find f 3(x). Write your answer as an expanded polynomial.

(c) (1 point) Make three plots, one showing the graphs of f and idR, another showing the
graphs of f 2 and idR, and third showing the graphs of f 3 and idR.

Hints: The following Maple command plots the graphs of sin and cos on the same graph.
Imitate this command to make your plots. You can also plot these by hand or using some
other software like Geogebra if you prefer.)

plot({sin(x),cos(x)},x=-3..3,view=[-3..3,3..3],numpoints=1000);

(d) (1 point) Explain how you can tell from the plots in part (c) how many fixed points,
2-cycles, and 3-cycles the function f has.

(e) (2 points) Use algebra to find all of the fixed points of f . Do this calculation entirely by
hand and show your work. No credit will be given for estimates, decimal approximations,
use of Maple, estimating from the graphs, or educated guesses. Exact answers only.

(f) (4 points) Use algebra to find all of the disjoint cycles of minimum period 2 for f . Do this
calculation entirely by hand and show your work. No credit will be given for estimates,
decimal approximations, use of Maple, estimating from the graphs, or educated guesses.
Exact answers only.

Hint: If p(x) is a polynomial function with real coefficients then p(r) = 0 if and only if
(x − r) is a factor of the polynomial p(x).

(g) (1 point) Use the fsolve(); command in Maple (or a graphing calculator, Geogebra, or
some other software) to find decimal approximations to all disjoint cycles of minimum
period three for f .

(h) (4 points) Use Newton’s method to find a decimal approximation to one of the points
of minimum period three that you found in part (g). Use −1.2 for the seed. How many
iterations does it take to find the point accurate to within 10−8?
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4.14. Newton’s method doesn’t always work as expected. Let f : R → R be a differentiable
function.

(a) (2 points) Give an example where Newton’s method fails to produce a root because
f ′(x) = 0 for some x in the orbit of the chosen seed. Also describe geometrically why this
fails.

(b) (3 points) Assume f ′(p) , 0 and f : R → R is differentiable at p. Prove that p is a zero of
f if and only if p is a fixed point of Newt f .

4.15. The Sumerian method for computing square roots is just a special case of Newton’s method.

(a) (2 points) Show that the function used in the Sumerian method is just the Newton’s
method iterator for finding the solutions of x2 = a.

(b) (2 points) Derive a formula for a function analogous to the Sumerian method function,
whose orbits converge to 3√a instead of

√
a.

(c) (2 points) Use your formula from part (b) to compute 3√5 to six digits of accuracy. Give
your approximations as both exact fractions and decimal approximations.

(d) (2 points) Generalize the results of part (a) to derive a formula for a function whose orbits
converge to n√a.

4.9 Changing Integer Base

Theorem 4.39 (base b representation). Let b,n ∈N, b > 1. There are unique integers d0, d1, d2, . . . ∈
Ob−1 such that

n =
∞∑

i=0

dibi

Definition 4.40. The sequence . . . d2d1d0 is called the base b representation of n. If b is not clear
from context we may write . . . d2d1d0(b) to indicate the base.

Remark. Since the sum is finite, there must exist k ∈ N such that di = 0 for all i > k. Thus we often
abbreviate d0d1d2 . . .by d0d1 . . . dk (i.e., drop the trailing zeros).

Definition 4.41. Let b ∈N and b > 1. Define Baseb : N→N by

Baseb(x) =
x − (x mod b)

b

Example 4.42. If b = 2 then

Base2(x) =

 x
2 if x is even
x−1

2 if x is odd
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Example 4.43. If b = 3 then

Base3(x) =


x
3 if x mod 3 is 0
x−1

3 if x mod 3 is 1
x−2

3 if x mod 3 is 2

Theorem 4.44 (base conversion). Let n ∈ N. If each term in the Baseb-orbit of n is replaced by its
value mod b, the sequence produced will be the base b representation of n (with the digits listed from
left to right from least significant to most significant).

Example 4.45. What happens if we apply this to a base ten number?

Example 4.46. Convert 314 to base 2 by this method.

Problems - Iteration II

4.16. Define Qodd to be the set of all reduced fractions having an odd denominator, i.e.,

Qodd =
{ a

b
: a ∈ Z, b ∈N, b is odd, and gcd(a, b) = 1

}
Notice that Z ⊆ Qodd. We say that such a reduced fraction a

b is even if a is even and odd if
a is odd. For example, 2

3 is even whereas 5
7 is odd. With these definitions we can extend the

Collatz function T from the integers to a function from Qodd to itself, i.e., we can consider
T : Qodd → Qodd.

(a) (1 point) Find all fixed points of T in Qodd.

(b) (2 points) Find all disjoint cycles of minimum period 2 for T.

(c) (3 points) Find all disjoint cycles of minimum period 3 for T.

(d) (4 points) Find an explicit piecewise linear formula for T2(x).

4.17. (1 point each) Use the iterative method shown in class to convert 1234 to base

(a) 2

(b) 3

(c) 4

(d) 5

4.10 Conway’s Fractran

Definition 4.47. A Fractran program consists of a finite sequence of positive rational numbers

F = [r1, r2, . . . , rk]
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with rk an integer. Each such sequence defines a dynamical system fF : Z+ → Z+ by

fF(n) = rin

where i = min
{

j : r jn ∈ Z
}

i.e., fF multiplies n by the first rational number in the sequence for
which the product is an integer.

Remark. To do computations with a Fractran program we simply compute the fF-orbit of some
seed and look for certain terms in the orbit for the answers. For example, we might look at the
exponents of the powers of two that appear in the orbit for the Fractan program’s output.

Example 4.48. (Conway) Let

PrimeGame =
[17
91
,

78
85
,

19
51
,

23
38
,

29
33
,

77
29
,

95
23
,

77
19
,

1
17
,

11
13
,

13
11
,

15
2
,

1
7
, 55
]

and define f = fPrimeGame. The powers of 2 which occur in the f -orbit of 2 are

22, 23, 25, 27, 211, 213, 217, 219, . . .

in exactly that order, i.e., PrimeGame computes the prime numbers in order.

Example 4.49. (Monks) Let

CollatzGame =
[ 1
11
,

136
15
,

5
17
,

4
5
,

26
21
,

7
13
,

1
7
,

33
4
,

5
2
, 7
]

and define f = fCollatzGame. The powers of 2 which occur in the f -orbit of 2n are

2n, 2T(n), 2T2(n), 2T3(n), . . .

in exactly that order, i.e., CollatzGame computes the Collatz orbits of natural numbers.

Example 4.50. (Conway) Let

PolyGame =

[
583
559 ,

629
551 ,

437
527 ,

82
517 ,

615
329 ,

371
129 ,

1
115 ,

53
86 ,

43
53 ,

23
47 ,

341
46 ,

41
43 ,

47
41 ,

29
37 ,

37
31 ,

299
29 ,

47
23 ,

161
15 ,

527
19 ,

159
7 ,

1
17 ,

1
13 ,

1
3

]
and define f = fPolyGame. Define fc(n) = m if the fPolyGame-orbit of c22n

stops at 22m
and otherwise

leave fc(n) undefined. Then every computable function appears among f0, f1, f2, . . ..

Problems - Fractran

4.18. (4 points total) Let s be the last two digits of your phone number. Use my CollatzGame
Fractran program to compute the T-orbit of s+ 10, where T is the 3x+ 1 function. State clearly

• what integer you want to compute the T-orbit of,
• what seed you are using for the fCollatzGame-orbit in order to accomplish that,
• how, mathematically, you are obtaining the T orbit of your number from the fCollatzGame-

orbit.
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(a) Do the first ten iterations (of the fCollatzGame-orbit, not the T-orbit) by hand and show your
work.

[Hint: When computing iterations by hand, leave your integers factored into their prime
factorization rather than expanding them in the base-ten representation. Also factor the
numerators and denominators of the fractions that are used to define the Fractran program
function CollatzGame first, and then use that to do the iterations by hand. It’s MUCH
easier that way.]

(b) The rest of the orbit you can compute by Maple, using the syntax shown in the Lecture-
Examples worksheet. You do not have to print the whole orbit if it the orbit is very large
(many are!), just have Maple count how many iterations were required before a cycle was
reached.

4.11 Cellular Automata

Definition 4.51. An n-dimensional k-state cellular automaton is a discrete dynamical system
G c−→ G where G is the set of all functions from Zn to Ok−1. Each element of Zn is called a cell.
Each element f ∈ G is called a state and its value on a particular cell is called the state of that cell.
The set G is called the state space. To each cell we assign a finite neighborhood of cells such that
the neighborhood of the translation of a cell is the translation of the neighborhood of the original
cell. The map c must be completely determined by a single rule that determines c( f )(p) from the
values of f (q) for all q in the neighborhood of p, i.e., the state of a cell after iterating is completely
determined by the states of its neighbors before iterating.

Remark. A cellular automaton (CA) is usually represented by a grid of squares (or n-dimensional
cubes), where each square in the grid represents a cell, and the states of each cell are represented
by colors.

Example 4.52. A one dimensional CA can be represented as a row of cells.

. . . . . .

The states of the cells can be represented by coloring the cells different colors corresponding to
the current state of that cell. The most common neighborhood to consider for a cell consists of the
cell itself, the cell immediately to its left, and the cell immediately to its right (though others are
possible).

Example 4.53. A two dimensional CA can be represented as a grid of cells:

. . . . . .

.

.

.

.

.

.
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Definition 4.54. There are two commonly used neighborhoods. The Moore neighborhood is a
square shaped neighborhood centered at the cell. The most commonly used one consists of a cell
all all of the cells that share a boundary point in common with that cell:

The von Neumann neighborhood consists of a diamond shaped neighborhood centered at the
cell. The most commonly used one consists of the cell and its neighbors immediately to the left,
right, above, and below the cell:

Definition 4.55. An outer totalistic (or simply totalistic) CA is one whose rule (map) is completely
determined by the sum of the state values of the neighbors of each cell.

Definition 4.56. Binary cellular automata are those with only two states for each cell. In this
situation we say that a cell is alive if its state is 1 and dead if its state is 0.

Example 4.57. The most famous CA is Conway’s Game of Life. It is a 2-dimensional binary
(2-state) CA whose rule is given as follows. A dead cell becomes alive if exactly three of its Moore
neighbors are alive, and a live cell stays alive if either two or three of its Moore neighbors (other
than itself) are alive. Otherwise the cell becomes dead.

Example 4.58. Compute the orbits of the following seed states in Conway’s Game of Life if empty
cells are dead and cells with faces are alive (and assuming that all cells other than the ones shown
are dead as well).

Definition 4.59. A fixed point of the Game of Life cellular automaton is called a Still Life.

Example 4.60. See the program Golly for interesting examples.

Example 4.61. In 1999 Paul Rendell impelemented a Turing Machine in Life. In 2002, Paul Chap-
man extended this to construct a universal Turing Machine in Life.
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Problems - Life

4.19. (2 points each) Compute the entire orbit of each of the following seeds in Conway’s Game
of Life. All living cells in each seed are colored blue. In each case compute the first iteration
by hand, showing the values (neighbor counts) of each cell that you used. Also in each case
classify the orbit as cyclic, eventually cyclic but not cyclic, or acyclic and for eventually cyclic
orbits state the period of the cycle that is obtained and the number of iterations that were
required before a cyclic point was reached. You may use Golly to compute the orbits.

(a)

(b)

(c)

(d)

4.20. (3 points) Use your first name as the seed for a Game of Life, that is, in the Golly program,
draw your name in the grid of cells by hand. Hand in the seed that you used by drawing it on
a grid. Then compute the Game of Life orbit of your first name. Describe what happens. What
kind of orbit is it? Eventually fixed? Eventually cyclic? Acyclic? How many iterations before
things stabilize, if ever? Do any cells survive or do they all eventually die? Are any gliders
produced? Do the gliders live forever? Save a copy of your Golly file format in Dropbox.

5 Metric Spaces

Definition 5.1. A metric space is a pair (X, d) where X is a set and d : X × X → R such that for all
x, y, z ∈ X,

1. d(x, y) ≥ 0
2. d(x, y) = 0⇔ x = y
3. d(x, y) = d(y, x)
4. d(x, y) + d(y, z) ≥ d(x, z)

In this situation, d is called a metric (or distance function) on X, and the elements of X are called
the points in the metric space.

5.1 Examples of Metric Spaces

Example 5.2. (R, dEuc) is a metric space where dEuc(x, y) =
∣∣∣ x − y

∣∣∣ for all x, y ∈ R.
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Notice this is just a special case of the more general theorem:

Theorem 5.3. (Rn, dEuc) is a metric space where

dEuc((x1, . . . , xn), (y1, . . . , yn)) =

√√
n∑

i=1

(xi − yi)2

dEuc is called the Euclidean metric on Rn.

Definition 5.4. Let dTaxi : Rn ×Rn → R by

dTaxi((x1, . . . , xn), (y1, . . . , yn)) =
n∑

i=1

∣∣∣ xi − yi
∣∣∣

The map dTaxi is called the lattice metric, the Manhattan metric, or the taxicab metric.

Definition 5.5. Let dmax : Rn ×Rn → R by

dmax((x1, . . . , xn), (y1, . . . , yn)) = max
{ ∣∣∣ xi − yi

∣∣∣ : i ∈ { 1, . . . , n }
}

The map dmax is called the maximum metric.

Definition 5.6. The set of 2-adic integers, denotedZ2, is the set of all infinite sequences of 0’s and
1’s, i.e.,

Z2 = { (s0, s1, . . .) : ∀i ∈N, si ∈ { 0, 1 } }

Definition 5.7. Let d2 : Z2 ×Z2 → R by

d2((s0, s1, . . .), (t0, t1, . . .)) =
1
2k

where k = min { i : si , ti } if (s0, s1, . . .) , (t0, t1, . . .) and

d2((s0, s1, . . .), (t0, t1, . . .)) = 0

if (s0, s1, . . .) = (t0, t1, . . .). The map d2 is called the 2-adic metric.

Theorem 5.8. (Rn, dTaxi), (Rn, dmax), and (Z2, d2) are metric spaces.

Remark. The metric space (Z2, d2) cannot be embedded in (Rn, dEuc) for any n. The 2-adic metric is
simple to compute and work with, but the geometry of (Z2, d2) is very strange.
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5.2 Properties of Metric Spaces

Definition 5.9. Let (X, d) be a metric space, δ ∈ R+, and x ∈ X. Then define

B(x; δ) =
{

y ∈ X | d(x, y) < δ
}

and

B(x; δ) =
{

y ∈ X : d(x, y) ≤ δ }
The set B(x; δ) is called the open ball of radius δ centered at x, and B(x; δ) is called the closed ball
of radius δ centered at x.

Definition 5.10. Let (X, d) be a metric space and U ⊆ X. Then U is open if and only if

∀x ∈ U,∃δ ∈ R+ such that B(x; δ) ⊆ U

Definition 5.11. Let (X, d) be a metric space and U ⊆ X. Then U is closed if and only if X − U is
open.

Remark. There are sets which are neither open nor closed.

Definition 5.12. Let (X, d) be a metric space and U ⊆ X. Then U is bounded if and only if
∃δ ∈ R+,∃x ∈ X, such that U ⊆ B(x; δ).

Definition 5.13. Let x0, x1, x2, . . . ∈ X and (X, d) a metric space. Let x ∈ X. Then

lim
n→∞

xn = x⇔ ∀ε ∈ R+,∃N ∈N+ such that ∀n ∈N,n > N⇒ d(xn, x) < ε

In this case we say that the sequence x0, x1, x2, . . . converges to the limit x in (X, d).

Definition 5.14. Let x0, x1, x2, . . . ∈ X and (X, d) a metric space. Then the sequence x0, x1, x2, . . . is
called a Cauchy Sequence ifand only if

∀ε ∈ R+,∃N ∈N+ such that ∀i > N,∀ j > N, d(xi, x j) < ε

i.e., the terms of the sequence get arbitrarily close to each other.

Definition 5.15. Let (X, d) be a metric space. Then (X, d) is a complete metric space if and only if
every Cauchy sequence in (X, d) converges to a limit x ∈ X.

Example 5.16. (R, dEuc) is complete. In fact, this is one of the axioms that define the real numbers.

Example 5.17. (Q, dEuc) is not complete.

Definition 5.18. Let (X, d) be a metric space and U ⊆ X. We say U is compact if and only if every
open cover has a finite subcover, i.e., whenever {Ui }i∈I satisfies U ⊆ ⋃i∈I Ui and ∀i ∈ I,Ui is open,
then there exists k ∈N+ and i1, i2, . . . , ik ∈ I for which U ⊆ Ui1 ∪Ui2 ∪ · · · ∪Uik .

Theorem 5.19. (Heine-Borel) Let A ⊆ (Rn, dEuc). Then A is compact if and only if A is closed and
A is bounded.
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5.3 Continuity

Definition 5.20. Let (X, d) and (Y, d′) be metric spaces and f : X → Y. Then f is continuous with
respect to the metrics d and d′ if and only if

∀U ⊆ Y,U is open in (Y, d′)⇒ f inv(U) is open in (X, d)

Remark. In other words a function between metric spaces is continuous if and only if the inverse
image of every open set is open.

Theorem 5.21. Let (X, d) be a complete metric space, f : X→ X a continuous map, and x0, x1, x2, . . .
a convergent sequence in X with limn→∞ xn = x. Then f (x0), f (x1), f (x2), . . . is a convergent sequence
and

lim
n→∞

f (xn) = f ( lim
n→∞

xn)

i.e., limits commute with continuous maps.

Problems - Metric Spaces

5.1. (1 point) Let a = 1010 and b = 1010 be 2-adic integers and d2 the 2-adic metric. Compute
d2(a, b).

5.2. (3 points) Let (X, d) be a metric space and k ∈ R+. Define dk : X × X→ R by dk(x, y) = kd(x, y)
for all x, y ∈ X. Prove that (X, dk) is a metric space.

5.3. (2 points) Complete the proof of the Euclidean Triangle Inequality given in the lecture notes
by proving the cases where either b = 0 or c = 0.

5.4. (3 points) Prove that (R2, dTaxi) is a metric space.

5.5. (3 points) Prove that (R2, dmax) is a metric space.

5.6. (1 point each) Let dTaxi be the taxicab metric onR2 and define the length of a line segment to be
the dTaxi distance between its endpoints. [Note: A subset S ⊆ R2 is a line segment in (R2, dTaxi)
if and only if S is a line segment in (R2, dEuc).]

(a) Find all equilateral triangles having the segment { (x, 0) : x ∈ [0..1] } for one side.

(b) Repeat part a, but this time use the maximum metric dmax instead of the taxicab metric.

5.7. (1 point each) Sketch the following subsets of (R2, dEuc) and state if they are open, closed,
bounded, or compact (state all the properties that apply to the given set).

(a) B((1, 1); 2)

(b) R2 − B((0, 1); 1/2)

(c)
{

z ∈ R2 : dEuc(z, (2, 2)) ≤ 1
}
∩
{

z ∈ R2 : dEuc(z, (3, 2)) ≤ 1
}

(d) B((0, 0); 1) − { (0, 0) }

(e)
{

(x, y) :
∣∣∣ y ∣∣∣ > | x | }
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(f) { (n,n) : n ∈N }
(g) { (1/n, 1/n) : n ∈ Z+ }
(h) the Middle Thirds Cantor set (i.e. the intersection of all of the iterates that produce the

Cantor set).

5.8. (1 point each) Let (X, d) be a metric space. Prove the following.

(a) If A,B ⊆ X are open, then A ∪ B is open.

(b) If A,B ⊆ X are open, then A ∩ B is open.

(c) If A,B ⊆ X are closed, then A ∪ B is closed.

(d) If A,B ⊆ X are closed, then A ∩ B is closed.

5.9. (1 point) Show by example that the intersection of a collection of open subsets of a metric
space can be closed and not open, and that the union of a collection of closed subsets can be
open and not closed.

5.10. Prove the following.

(a) (2 points) (Z, dEuc) is a metric space.

(b) (2 points) For any x ∈ Z, { x } is open in (Z, dEuc) but closed in (R, dEuc).

5.11. (6 points) Let (X, d) be a complete metric space, X
f−→ X a continuous map, and x0, x1, x2, . . .

a convergent sequence in X with lim
n→∞

xn = x. Prove that f (x0), f (x1), f (x2), . . . is a convergent

sequence and that lim
n→∞

f (xn) = f
(

lim
n→∞

xn

)
, i.e. show that limits commute with continuous

maps.

5.4 The Metric Space of Shapes

Definition 5.22. Let n ∈N+. Define

Kn =
{

A ⊆ Rn | A is compact
}

Example 5.23. In particular, K2 is the set of all compact subsets in the plane.

Definition 5.24. Let (X, d) be a metric space, S ⊆ X, and δ ∈ R+. The open collar of radius δ about
S is the set

B(S; δ) =
⋃
α∈S

B(α; δ)

and the closed collar of radius δ about S is the set

B(S; δ) =
⋃
α∈S

B(α; δ)

Example 5.25. Sketch B(MrFace; δ) for various values of δ.
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Definition 5.26. Let S ⊆ R and t ∈ R∪{∞ }. Then t = sup(S) if and only if ∀x ∈ S, x ≤ t and ∀u ∈ R,
if ∀x ∈ S, x ≤ u then u ≥ t. The number sup(S) is called the supremum of the set S.

Example 5.27. It is the case that sup(0..1) = 1, but (0..1) has no maximum value.

Definition 5.28. Let S ⊆ R and t ∈ R∪ {−∞ }. Then t = inf(S) if and only if ∀x ∈ S, x ≥ t and for all
u, if ∀x ∈ S, x ≥ u then u ≤ t. The number inf(S) is called the infimum of S.

Remark. If a set is closed and bounded, then sup(S) =max(S) and inf(S) =min(S).

Definition 5.29. Let dH : Kn × Kn → R by dH(S,T) = inf
{
δ : S ⊆ B(T; δ) and T ⊆ B(S; δ)

}
. The

function dH is called the Hausdorffmetric.

Example 5.30. Let S = { (x, x) : x ∈ [0..1] } and T =
{

p : dEuc(p, (1, 0)) ≤ 0.2
}

be elements of K2.
Compute dH(S,T).

Theorem 5.31. (Kn, dH) (or the metric space where fractals live) is a complete metric space.

Problems - Metric Space of Shapes

5.12. (6 points) Let

R = B ((2, 0); 1)

S = { (0, 1) }
T = { (−x, 0) : x ∈ [0..1] }
U =

{
(x, y) : y ≥ 0 and x ≤ 0 and y ≤ x + 2

}
V = { z : dEuc(z, (0, 1)) = 1 }

be elements of (K2, dH). Find the distances between all 25 pairs of these five elements and put
your answers in a table of the form:

dH R S T U V

R 0

S

T

U

V

(I filled out dH(R,R) to get you started. ,) Show your work and sketch the regions.

5.13. (2 points) Let z,w ∈ R2. Prove that dH({ z } , {w }) = dEuc(z,w).

5.14. (3 points) Let S =
{

(x, y) : x ∈ [0..2π] and y = 2 sin(x)
}

and T = { (3, 1) }. Compute dH(S,T).
You do not have to give an exact answer but your answer must be accurate to within eight
digits of accuracy. Hint: Time to break out Maple (or a graphing calculator) and your good
old fashioned calculus knowledge!
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6 Chaos

6.1 Dynamical Systems - Take 2

Definition 6.1. Let (X, d) be a metric space (or a topological space). Any function f : X → X is
called a discrete dynamical system. To indicate the metric we sometimes write f : (X, d)→ (X, d)

Definition 6.2. Let f : (X, d) → (X, d), g : (Y, d′) → (Y, d′). We say the dynamical systems f , g are
conjugate if and only if there exists h : X→ Y such that

1. h is a homeomorphism (a continuous bijection with continuous inverse) and
2. h ◦ f = g ◦ h

In this situation h is called a topological conjugacy (or simply conjugacy) between f and g.

Remark. The study of discrete dynamical systems is the study of those properties which are
preserved by conjugacy.

Definition 6.3. Let (X, d) be a metric space, f : X → X, and let q be a fixed point of f . Then q is an
attracting fixed point if and only if

∃δ ∈ R+,∀x ∈ B(q; δ), lim
n→∞

f n(x) = q

i.e., if the f -orbit of every point in some ball centered at q converges to q.

Definition 6.4. Let (X, d) be a metric space, f : X → X, and let q be a fixed point of f . Then q is a
repelling fixed point if and only if

∃δ ∈ R+,∀x ∈ B(q; δ) − { q } ,∃N ∈N, f N(x) < B(q; δ)

i.e., if the f -orbit of every point other than q in some ball centered at q contains a point outside the
ball.

Definition 6.5. Let (X, d) be a metric space, f : X→ X, and let q be a periodic point of f with period
n. We say the n-cycle containing q is an attracting cycle (resp. repelling cycle) if and only if q is an
attracting (resp. repelling) fixed point of f n.

Example 6.6. Classify the fixed points of f : R→ R by f (x) = 3x.

Example 6.7. Classify the fixed points of f : R→ R by f (x) = 1
2 x.

Theorem 6.8. Attracting and repelling fixed points are presevered by topological conjugacy.

6.2 Graphical Analysis and Time Series Plots

Definition 6.9. Let f : R→ R, and x ∈ X. Then the time series plot of the orbit of x is the graph of
the points

(0, x), (1, f (x)), (2, f 2(x)), . . . , (k, f k(x)), . . .
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Remark. Sometimes we connect the points with line segments to make them more visible.

Definition 6.10. Let f : R → R, and x ∈ X. Then the graphical analysis of the orbit of x is the
graph consisting of:

a) the graph of f

b) the graph of y = x

c) a line segment connecting (xk, xk+1) to (xk+1, xk+1) for each k ∈N
d) a line segment connecting to (xk+1, xk+1) to (xk+1, xk+2) for each k ∈N

where xk = f k(x).

Remark. Usually we connect these line segments in order starting from k = 0, drawing the segment
in part (c) before part (d). It is often customary to add the segment from (x, 0) to (x, x1) as an initial
segment.

Example 6.11. Draw the graphical analysis for the f -orbit of seeds 0.23 and 0.230001 for

a) f (x) = 1−x
2

b) g(x) = 2x

c) h(x) = x2 − 2

6.3 Devaney’s Definition of Chaos

Definition 6.12. A dynamical system f : (X, d)→ (X, d) is said to be transitive if and only if

∀x, y ∈ X,∀ε ∈ R+,∃z ∈ B(x; ε),∃k ∈N, f k(z) ∈ B(y; ε)

i.e., for any ε ∈ R+ and for any two points in X there is a third point whose orbit passes within ε
of both points.

Remark. Sometimes this property is called mixing.

Definition 6.13. A dynamical system f : (X, d) → (X, d) is said to have sensitive dependence on
initial conditions if and only if

∃δ ∈ R+,∀x ∈ X,∀ε ∈ R+,∃y ∈ B(x; ε) − { x } ,∃k ∈N, d( f k(x), f k(y)) > δ

i.e., there is a positive constant so that for any x there is a point y arbitrarily close to x such that the
orbits of x and y will eventually be separated by at least the constant.

Definition 6.14. Let (X, d) be a metric space and A ⊆ X. Then A is dense in X if and only if

∀x ∈ X,∀ε ∈ R+,B(x; ε) ∩ A , ∅

i.e., A is dense if every open ball contains a point of A.
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Definition 6.15 (Devaney). A discrete dynamical system is chaotic if and only if

1. it has dense periodic points,

2. it is transitive, and

3. it has sensitive dependence on initial conditions.

Remark. Chaotic maps give us a model for unpredicatable deterministic systems.

6.4 Touhey’s Definition

Theorem 6.16 (Touhey 1997). A discrete dynamical system (on an infinite set) is chaotic if and only
if every finite collection of open sets shares infinitely many periodic orbits.

6.5 Chaotic Maps

The following are examples of chaotic maps:

1. Quadratic maps

For each c ∈ C define Qc(x) = x2 + c.

(a) Q−2(x) = x2 − 2 is chaotic on [−2..2].

(b) Q0(z) = z2 is chaotic on the unit circle.

(c) Qc is chaotic on a fractal set called Jc (more later).

(d) The Logistic Map Q(x) = 4x(1 − x) is chaotic on [0..1].

2. The Doubling Map

D(x) =

 2x if x ∈ [0..1/2)

2x − 1 if x ∈ [1/2..1]

is chaotic on [0..1].

3. The Tent Map
T(x) = 1 − | 2x − 1 |

is chaotic on [0..1].

4. (J. Joseph) The Extended Collatz Map

T(z) =



1
2 z if z ≡

2
0

3z+1
2 if z ≡

2
1

3z+i
2 if z ≡

2
i

3z+1+i
2 if z ≡

2
1 + i

is chaotic on Z2[i].
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Problems - Chaos

6.1. (3 points each) Let (X, d), (Y, d′) be metric spaces and f : X→ X, g : Y→ Y. Let h be a topological
conjugacy between f and g.

(a) Prove that q is an attracting fixed point of f if and only if h(q) is an attracting fixed point
of g.

(b) Prove that q is a repelling fixed point of f if and only if h(q) is a repelling fixed point of g.

(c) Prove that q is a term in an attracting (resp. repelling) n-cycle if and only if h(q) is a term
in an attracting (resp. repelling) n-cycle of g.

6.2. (1 point) Give five different examples of subsets of R2 which are dense in (R2, dEuc).

6.3. (3 points) Prove that f : R → R by f (x) = 2x has sensitive dependence on initial conditions,
but is not chaotic.

6.4. (4 points) The function Q(x) = x2 − 2 is chaotic on the interval [−2..2], therefore, in any
open subinterval (a..b) ⊆ [−2..2] there must be a periodic point. Let Ik = (0.2k..0.2(k + 1)) for
k ∈ { 0, 1, 2, . . . 9 }. For each such k, find a periodic point pk ∈ Ik, and state its minimum period,
nk. List all of your points and their periods in a table and verify that they are periodic by listing
their Q-orbit. You may use decimal approximations, but they should be accurate to at least 10
digits.

6.5. (1 point each) Draw the time series plot and the graphical analysis for the first twenty iterations
starting with seed 1.5 for each of the following functions from R to R.

(a) arctan

(b) f where f (x) = 2 sin(x) + x

(c) your own favorite nonlinear function

6.6. (4 points each) Give an example of differentiable functions f and g from R → R such that f
has an attracting two cycle (that is not a fixed point) and a repelling fixed point and g has an
attracting three cycle (that is not a fixed point) and a repelling fixed point. In each case

(a) explain why your function has the required properties

(b) draw the time series plots for appropriate seeds to illustrate that it behaves as claimed

(c) draw an animated graphical analysis in Maple for several appropriate seeds to illustrate
that it behaves as claimed and

(d) explain how your time series and graphical analysis plots illustrate the required properties.
You can do all of your work and write your explanations for this problem in Maple.

6.7. (3 points) Let n ∈ N+, R
f−→ R a differentiable function, and x0, x1, x2, . . . the f -orbit of

a cyclic point x0 ∈ R with minimum period n. Derive a formula for ( f n)′(x0) in terms of
f ′(x0), f ′(x1), . . . , f ′(xn−1). Use this to prove that if one point in the n-cycle is attracting (resp.
repelling), then they all are.

© 2022 KEN MONKS PAGE 41 of 88



Chaos and Fractals

7 Contraction Mappings

7.1 The Contraction Mapping Theorem

Definition 7.1. Let (X, d) be a metric space and f : X→ X. Then f is called a contraction mapping
if and only if ∃s ∈ (0..1),∀x, y ∈ X, d( f (x), f (y)) ≤ sd(x, y). In this situation s is called a contraction
factor of f .

Theorem 7.2. Every contraction mapping is continuous.

Theorem 7.3 (The Derivative Test). Let I = (a..b) ⊆ R and f : I → I differentiable on I. If
∃s ∈ (0 . . . 1) such that ∀x ∈ I,

∣∣∣ f ′(x)
∣∣∣ ≤ s < 1, then f is a contraction mapping with contraction

factor s.

Theorem 7.4 (The Contraction Mapping Theorem). Let f : X → X be a contraction mapping on
a complete metric space (X, d) with contraction factor s.

1. The map f has a unique fixed point, q.

2. The f -orbit of every element of X converges to q (i.e., ∀x ∈ X, limn→∞ f n(x) = q).

3. If x0, x1, x2, . . . is the f -orbit of x0 ∈ X then

d(xn, q) ≤ sn

1 − s
d(x0, x1)

for all n ∈N.

Remark. Every contraction map has an attracting fixed point.

7.2 Hutchinson Operators

Definition 7.5. Let w0,w1, . . . ,wk be contraction mappings onRn with contraction factors c0, c1, . . . , ck
respectively and define W : Kn → Kn by

W(A) = w0(A) ∪ w1(A) ∪ · · · ∪ wk(A)

Then W is called the Hutchinson operator associated with w0,w1, . . . ,wk and we write W =
Hutch(w0,w1, . . . ,wk).

Theorem 7.6 (Hutchinson). A Hutchinson operator W is a contraction mapping on (Kn, dH) with
contraction factor c = max { c0, c1, . . . , ck }.

Definition 7.7. If W is a Hutchinson operator then the unique fixed point of W is called the attractor
of W and is denoted FW.
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Remark. Applying the three parts of the contraction mapping theorem to W gives us a lot of
information about producing fractals with Hutchinson operators.

Problems - Contraction Mapping Theorem

7.1. (1 point each) Give examples of contraction maps R
f−→ R which satisfy the given condition

and explain why your function has the desired properties. Plot the graph of each of your
functions.

(a) f is bijective and strictly decreasing

(b) f is injective but not surjective

(c) f is surjective but not injective

(d) f is neither surjective nor injective

7.2. Let I ⊆ R be an open interval and f : I → R a twice differentiable function with f ′(x) , 0 for
any x ∈ I. Let N = Newt f be the Newton’s method iterator function for f .

(a) (1 point) Let p ∈ I be a zero of f . Show that N′(p) = 0.

(b) (4 points) Let p be a zero of f in I. Prove there is an open interval U ⊆ I containing p such
that the N-orbit of x0 converges to p for any x0 ∈ U. Thus conclude that Newton’s method
is guaranteed to work if f ′(p) , 0 and your initial guess is close enough to p.

7.3. (2 points each except as noted)

(a) Let S : R+ → R+, be the function used in the Sumerian method for finding
√

2. Find the
largest open interval I ⊆ R+ such that |S′(x) | ≤ 0.5 for all x ∈ I.

(b) Prove that S is a contraction mapping on I. [Hint: you must show that S : I → I first, then
use part (a).]

(c) (1 point) Let x ∈ R+ − I. Show that S(x) ∈ I.

(d) Prove that the Sumerian method for computing
√

2 works for any choice of seed in R+.
[Hint: use parts (b) and (c).]

(e) Use the convergence estimate given by the contraction mapping theorem to compute the
number of iterations required to compute

√
2 to six digits of accuracy starting with seed

1000000. Then compute the actual number of iterations required and show that it is less
than or equal to your estimate.

8 Iterated Function Systems

8.1 Complex Numbers

Definition 8.1. Let C = R2. For each (x, y) ∈ C we formally write (x, y) = x + yi. This form, x + yi,
is called the standard form of the complex number (x, y).

Definition 8.2. Let x + yi, a + bi ∈ C, then:
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1. x + yi = x − yi. (This is called the complex conjugate.)

2.
∣∣∣ x + yi

∣∣∣ = √x2 + y2. (This is called the complex norm.)

3. Arg(x + yi) = the angle in [0..2π) of (x, y) in polar form (not defined for x = y = 0). (This is
called the Argument of x + yi.)

4. Re(x + yi) = x. (This is called the real part of x + yi.)

5. Im(x + yi) = y. (This is called the imaginary part of x + yi.)

6. (x + yi) + (a + bi) = (x + a) + (y + b)i. (This is the definition of addition in C.)

7. (x + yi)(a + bi) = (xa − yb) + (ya + xb)i. (This is the definition of multiplication in C.)

Notation 8.3. We can abbreviate 0 + yi as yi, x + 0i as x, x + 1i as x + i, and x − 1i as x − i with no
ambiguity in the above definitions. With this notation i = (0, 1) and i2 = −1. It is easy to verify
that the usual properties of addition and multiplication (associative, commutative, distributive,
identity, etc.) hold for the complex numbers as well.

Definition 8.4. Let θ ∈ R. Then eiθ = cosθ + i sinθ.

Definition 8.5. Let x + yi ∈ C − { 0 }. The standard polar form of x + yi is reiθ where r =
∣∣∣ x + yi

∣∣∣
and θ = Arg(x + yi).

Theorem 8.6. eiπ + 1 = 0 (The most beautiful theorem in mathematics?)

Theorem 8.7. Let θ, γ ∈ R.

1. eiθeiγ = ei(θ+γ).

2.
∣∣∣ eiθ
∣∣∣ = 1.

3. eiθ = ei(−θ).

Theorem 8.8. Let z, z1, z2 ∈ C.

1. | z1z2 | = | z1 | | z2 |
2. dEuc(z1, z2) = | z2 − z1 |
3. z1z2 = z1 z2 i.e., the conjugate of a product is the product of conjugates.

4. z1 + z2 = z1 + z2 i.e.,the conjugate of a sum is the sum of the conjugates.

5. z z = | z |2

6. | z | =
∣∣∣ z ∣∣∣

7. If z = reiθ in polar form, then z = rei(−θ)
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Problems - Complex Numbers

8.1. (2 points each) Let z,w ∈ C and r, θ, γ ∈ R. Prove the following.

(a)
∣∣∣ reiθ

∣∣∣ = | r |
(b) r = r

(c) | z | ≥ 0

(d)
∣∣∣ eiθ
∣∣∣ = 1

(e) eiθeiγ = ei(θ+γ)

(f) | zw | = | z | |w |

(g) dEuc (z,w) = | z − w |

(h) zw = z w

(i) z + w = z + w

(j) zz = | z |2

(k) | z | =
∣∣∣ z ∣∣∣

(l) eiθ = e−iθ

8.2. (1 point each) Convert the following complex numbers to polar form.

(a) 1 + i

(b) −i

(c) −2

(d) 5

(e) 5 + 6i

8.3. (1 point each) Let z = 1 + i, w = −2 + i, and v = −i. Convert the following expressions to a
complex number in standard form.

(a) zw

(b) z + w

(c) w2 + 3w + 1

(d) w2 + 3w + 1

(e) ww

(f) 5

(g) 3ei

(h) ez

(i) v1000001

8.4. (1 point) Find a complex number α in standard form, such that multiplication of any complex
number z by α has the effect of rotating z about the origin by 20◦ clockwise.

8.2 Affine Maps

Definition 8.9. Define Mm,n(R) to be the set of all m × n matrices with real number entries. Let
A ∈Mm,n(R) and i ∈ Im, j ∈ In. Then A

〈
i, j
〉

is the entry in the ith row and jth column of A. If c ∈ R
then cA ∈Mm,n(R) and

(cA)
〈
i, j
〉
= c(A

〈
i, j
〉
)

If B ∈Mm,n(R) then A + B ∈Mm,n(R) and

(A + B)
〈
i, j
〉
= A
〈
i, j
〉
+ B
〈
i, j
〉

If B ∈Mn,p(R) then AB ∈Mm,p(R) and for all i ∈ Im, j ∈ Ip

AB
〈
i, j
〉
=

n∑
k=1

A ⟨i, k⟩B 〈k, j
〉

Remark. We often identify elements ofRn with elements in M1,n(R) and Mn,1(R) when appropriate.

Definition 8.10. The function T : Rn → Rn is called an affine map or affine transformation if and
only if T(x) =Mx + B for some n × n matrix M and B ∈ Rn.
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Remark. We will mostly restrict our attention to affine maps on R2 in this course.

Theorem 8.11. An affine transformation on R2 is completely determined by where it maps 3 non-
collinear points.

In particular, it will be useful to visualize the effect of an affine transformation on the plane by
seeing where it maps the image of MrFace:

Since MrFace contains at least three non-collinear points, an affine map is completely determine
by where it sends MrFace by theorem 8.11.

Representations of Affine Maps on R2

Let T : R2 → R2 be an affine map, and let p ∈ R2. Let x, y ∈ R such that p = (x, y) and let z = x + yi.
Then there exist a 2 × 2 real matrix M, B ∈ R2, α, β, γ ∈ C, and a, b, c, d, e, f , r, s, θ, ϕ ∈ R such that

Form Name Math Notation

Matrix T(p) =Mp + B

Standard T(x, y) = (ax + by + e, cx + dy + f )

Geometric T(x, y) = (r cos(θ)x − s sin(ϕ)y + e, r sin(θ)x + s cos(ϕ)y + f )

Complex T(z) = αz + βz + γ

These are expressed in the chaos Maple package in the following notation

Form Name Maple Notation

Matrix affineM(M,B)

Standard affine(a, b, c, d, e, f )

Geometric Affine(r, s, θ, ϕ, e, f )

Complex affineC(α, β, γ)

In Maple an IFS (see below) is a Maple list of one or more of these affine maps. Note that in the
Geometric Form, the Maple program assumes that θ, ϕ are in degrees, not radians.
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Each form has its own advantages. We can convert from any form to any other form. It suffices
to give the formulas for converting between any form and standard form. Thus, if you are given
Matrix form and want to convert to Complex form, first convert to standard and then to Complex.

Theorem 8.12. In the above notation:

Converting Standard form to Matrix form and vice-versa:

affine(a, b, c, d, e, f ) = affineM(M,B)⇔

M =

a b

c d

 and B =

ef


Converting Standard form to Complex form and vice-versa:

affine(a, b, c, d, e, f ) = affineC(A + Bi, C +Di, E + Fi)⇔

a = A + C and A = 1
2 (a + d)

b = D − B B = 1
2 (c − b)

c = B +D C = 1
2 (a − d)

d = A − C D = 1
2 (c + b)

e = E E = e

f = F F = f

Converting Standard form to Geometric form and vice-versa:

affine(a, b, c, d, e, f ) = Affine(r, s, θ, ϕ,E,F)⇔

a = r cos(θ) and r =
√

a2 + c2

b = −s sin(ϕ) s =
√

b2 + d2

c = r sin(θ) θ = arctan( c
a )

d = s cos(ϕ) ϕ = arctan( d
b ) − 90◦

e = E E = e

f = F F = f
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The effect of the affine map Affine(r, s, θ, ϕ,E,F) on a geometric figure is as follows.

Geometric Form
parameter geometric effect

r scales the figure horizontally by a factor of | r |
(if r is negative, it also reflects the figure across the y-axis)

s scales the figure vertically by a factor of | s |
(if s is negative, it also reflects the figure across the x-axis)

θ rotates horizontal lines θ degrees CCW about their y-intercept

ϕ rotates vertical lines ϕ degrees CCW about their x-intercept

e translates the figure horizontally by an amount e

f translates the figure vertically by an amount f

Note that if θ = ϕ, then the effect of both numbers combined is to rotate the entire figure about
the origin by an angle θ counterclockwise (CCW). Negative angles rotate clockwise (CW) instead
of counterclockwise. Also note that Affine(r, s, θ, ϕ, e, f ) always sends the origin, (0, 0),to the point
(e, f ).

Contraction Factor for Affine Maps

Theorem 8.13. Let α, β, γ ∈ C and c = |α |+
∣∣∣ β ∣∣∣. Then the map T = affineC(α, β, γ) is a contraction

mapping if and only if c < 1. Further if T is a contraction mapping then c is a contraction factor for T.

Problems - Affine Maps

In what that follows when we refer to affine maps, we are referring to affine maps on R2 unless
specifically stated otherwise.

8.5. (1 point each) Let A =

1 2

4 0

 ,B =
−1 2

−2 1

 , b =
34
. Compute each of the following.

(a) A + B

(b) AB

(c) BA

(d) 3Ab

(e) Ab + 2b

8.6. (2 points) Let M ∈M2,2(R). Prove that for any x, y ∈ R2 and any a, b ∈ R,

M(ax + by) = aMx + bMy
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8.7. (1 point each) For each T and p below, compute T(p). Do it by hand and then check your
answer in Maple using my chaos library.

(a) T = affine(2, 1, 30◦, 45◦,−1, 2), p = (3, 2)

(b) T = affine(2, 1,−1, 3, 0,−1), p = (−1, 3)

(c) T = affineC(2 + i, 1 − i, i), p = −1 + 3i

(d) T = affineM


 2 0.3

− 1
2 −1

 ,
21

, p =

 1

−4


8.8. (4 points) Derive the conversion formulas given in lecture for converting between the four

forms of affine maps: standard, matrix, geometric and complex. Show your work, don’t use
Maple.

8.9. Recall that there is a unique affine map that sends any three noncollinear points to any other
three points.

(a) (2 points) Find an affine map T such that T(0) = i, T(i) = 1 + i, and T(2 + i) = −1. Do this
by hand.

(b) (3 points) Use Maple to convert your answer into standard, matrix, complex, and geomet-
ric form. (Note: there is a command to do this in my chaos library).

(c) (1 point) Use Maple to plot T(MrFace).

8.10. Let T = affineC(α, β, γ) and CT = |α | +
∣∣∣ β ∣∣∣. By the theorem proved in the Appendix, T is a

contraction mapping if and only if CT < 1.

(a) (2 points) Suppose T = affine(a, b, c, d, e, f ). Find a formula for CT in terms of a, b, c, d, e, f .

(b) (2 points) Suppose T = Affine(r, s, θ, ϕ, e, f ). Find a formula for CT in terms of r, s, θ, ϕ, e, f .

8.11. (2 points) Show that if | r | < 1, | s | < 1, and θ = ϕ then Affine(r, s, θ, ϕ, e, f ) is a contraction
mapping.

8.12. (4 points) Prove that affine maps send line segments to line segments (or single points, which
can be thought of as very short line segments. :)), i.e., if T is an affine map and S is a line
segment in the plane, show that T(S) is a line segment.
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8.13. (1 point each) For each image A below, find an affine map T = Affine(r, s, θ, ϕ, e, f ) in geometric
form so that A = T(MrFace). Do the first six by hand and the remaining two any way you like.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)
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8.3 IFS’s

Definition 8.14. A Hutchinson operator W = Hutch(w0,w1, . . . ,wk) such that w0,w1, . . . ,wk are all
affine maps is called an iterated function system or IFS. We write W = [w0,w1, . . . ,wk] in this case.

Remark. Every affine contraction map is an affine map, but there are many contraction mappings
that aren’t affine. For example, f (x) = 1

2 cos(x) on R, or f (x) =
√

x on [1..∞).

Remark. A stick figure generator that contains finitely many directed segments whose associated
affine maps are contraction maps (and no ordinary segments) is an example of a IFS. The attractor
of the IFS can be obtained by iterating the stick figure dynamical system starting with a single
directed segment as the seed.

Remark. Both HeeBGB’s and GB’s are IFS’s which map the original square onto the appropriate
subsquares in the given manner. Coloring a HeeBGB is just producing the attractor of the IFS by
the Deterministic Method (see below) where we color the background, not the image itself.

8.4 The Deterministic Method

Algorithm 8.15. To draw the attractor of an IFS, W, simply compute the terms in the W-orbit of
any seed in Kn until the image is as close to the attractor as you desire.

Remark. By the contraction mapping theorem, the IFS W has an attractor, no matter what shape
we start with for a seed, its orbit will converge to the attractor, and we can compute the number of
iterations required to obtain an image that is within any desired accuracy of the attractor.

8.5 Guess My IFS

Remark. Let W = [w0,w1, . . . ,wk] be an IFS. By the contraction mapping theorem, FW is the unique
fixed point of W, i.e., FW is the only element of Kn such that

W(FW) = FW

By the definition of W this means that FW is the unique solution A in Kn to the equation:

A = w0(A) ∪ w1(A) ∪ · · · ∪ wk(A)

In particular,
Fw = w0(Fw) ∪ w1(Fw) ∪ · · · ∪ wk(Fw)

so that the attractor is a union of finitely many affine images of itself (each of which must therefore
be a finite union of strictly smaller affine images of itself, and so on ad infinitum).

Thus, given the attractor of an IFS, we can determine an IFS that produces it (not unique!) by
identifying a finite number of strictly smaller affine images if the attractor whose union is the entire
shape.
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Problems - Return of the Heebie GB’s

8.14. (1 point each fractal) Plot the fractals (i.e. the attractors of the IFS’s) in problems 3.13, 3.17,
3.18 in the Iteration section above using the DrawIFS command in my Maple chaos library.
Use at least 30000 points. Tips: More points will produce a better picture but will take longer
and may crash Maple if you run out of memory.

8.15. Heebie Geebie Free Three for Three Contest: Try to create the most interesting or beautiful fractal
you can using the DrawIFS command in my Maple chaos library. Your fractal does not have
to be the attractor of a HeeBGB, but can be the attractor of any IFS you like. You can also
make an image that consists of a collage of more than one image using the Maple display()
command in plots package. If you want to add text or a title to your Fractal Work of Art,
you can do so with the Maple textplot() command in the Maple plots package. I will share
all entries (anonymously) and they will be judged by a panel of “experts” of my choosing
(contest participants will not be eligible for judging). The top three winners will receive a
bonus of three free points added directly to their homework grade. If there are three or fewer
contestants they will win by default. In the case of duplicate entries which are winners, the
three point bonus will be evenly divided among those having the duplicate entries. The judges
will be asked to judge the fractals using two criteria: how aesthetically pleasing the image is
and how mathematically interesting it appears. You can change the color of the image if you
wish or even use multiple colors (if you can figure out how to do it). Be sure you show the
Maple commands you used to produce the image in your worksheet along with the image
itself.

8.16. (2 points each) Play Guess My IFS with each of the following IFS attractors by drawing (or
plotting) the first iteration of the IFS applied to MrFace as a seed. Then use the DrawIFS
command in Maple to confirm your guess by plotting the attractor and hand in your plots.
Hint: (a), (b), (c), (e), (g) are grid based IFS’s, the other three are not. You should be able to do
all of these “by eye”, i.e. without resorting to any calculations or measurments.

(a) (b)
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(c)

(e)

(g)

(d)

(f)

(h)
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8.17. (5 points) Find an IFS whose attractor is the following figure. Draw the first iteration of
the IFS applied to MrFace using Maple and then plot the attractor as you did in the previous
problem. You may use Maple as much as you wish in this problem.

8.18. (5 points) Repeat the previous problem for the fractal tree image below. Notice that the
method you are using to make a fractal which looks like this particular tree can be applied
to making a fractal that looks like any shape you like. Thus you have learned how to make
fractals which look like a given image you are trying to model. Hints: Many trees look alike,
but are all unique to some extent... be sure your fractal has all of its branches connected in the
same places as the tree below!
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9 Address My IFS

Definition 9.1. Let n ≥ 2. Define Σn to be the set of all infinite sequences whose terms are in
{ 0, 1, 2, . . . , n − 1 }, i.e., ∑

n
=
{

s0, s1,s2, . . . : si ∈ { 0, 1, 2, . . . , n − 1 } }
Σnis called the sequence space on n letters.

Example 9.2. Σ2 is the set of 2-adic integers Z2.

Definition 9.3. Let W = [w0,w1, . . . ,wn−1] be an IFS and let Fw be the attractor of W. Define the
address map Φ : Σn → Fw by

Φ(s0s1s2 . . .) =
∞⋂

i=0

ws0 ◦ ws1 ◦ · · · ◦ wsi(Fw)

Theorem 9.4. Let W = [w0,w1, . . . ,wn−1] be an IFS.

1. Φ(s) is a single point in Fw for any s = s0s1s2 . . . ∈
∑

n.
2. Φ is onto.
3. limi→∞ws0 ◦ ws1 ◦ · · · ◦ wsi(Fw) = {Φ(s)} in (Kn, dH)
4. limi→∞ws0 ◦ ws1 ◦ · · · ◦ wsi(x) = Φ(s) for any x ∈ Rm in (Rm, dEuc)

Definition 9.5. The sequence s is called an address of the point Φ(s) in the attractor.

Definition 9.6. Let W be an IFS and Fw its attractor. Then W is said to be totally disconnected if
and only if every point in Fw has a unique address, i.e., if and only if Φ is bijective.

How big is the Attractor?

Definition 9.7. Let S ∈ K2 be a compact set. Then the diameter of S is the real number

diam(S) = sup
{

dEuc(x, y) : x, y ∈ S
}

Example 9.8. The diameter of a circle is a special case of this definition.

Remark. You will prove the following for homework: Let W = [w0, . . . ,wn−1] be an IFS and
c0, . . . , cn−1 the contraction factors of w0, . . . ,wn−1 respectively. Let c = max { c0, . . . , cn−1 } and let
a = Φ(t1, . . . , tm, tm+1, . . .) and b = Φ(t1, . . . , tm, t′m+1, . . .) then

dEuc(a, b) ≤ cm diam(FW)

i.e., if two points have addresses that agree in the first m digits, then they will be no further than
cm diam(FW) apart.
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Theorem 9.9 (Monks). Let W = [w0, . . . ,wn] be an IFS, c0, . . . , cn the contraction factors of
w0, . . . ,wn respectively, and q0, . . . , qn the fixed points of w0, . . . ,wn respectively. Define c =
max { c0, . . . , cn } and r = max

{
d(qi, q j) : i, j ∈ On

}
. Then for any a ∈ FW and any i ∈ On

dEuc(a, qi) ≤
1

1 − c
r

Corollary 9.10. FW ⊆
n⋂

i=0
B(qi; r

1−c )

9.1 The Shift Map

Definition 9.11. Let W = [w0, . . . ,wn−1] be a totally disconnected IFS. Define σ : FW → FW by
σ(Φ(s0s1s2 . . .)) = Φ(s1s2s3 . . .). Then σ is called the shift map on FW.

Theorem 9.12. A shift map is chaotic!

9.2 The Address Method

Algorithm 9.13. To draw the attractor of an IFS, W = [w0, . . . ,wn], start with a fixed point, q, of
one of the maps w0, . . . ,wn. Use the preceeding theorem and remark to determine m such that any
two points with addresses that agree on the first m digits will be less than a pixel width apart. For
each finite sequence t1, . . . , tm in O m

n plot the point

wt1 ◦ wt2 ◦ · · · ◦ wtm(q)

Remark. There are (n + 1)m sequences in O m
n so that sometimes this method may be limited by the

number of points you can compute and plot.

9.3 The Random Iteration Method

Remark. If we choose t1, t2, t3, . . . at random fromOn, then it is very likely that every finite sequence
of any given length will eventually occur as a subsequence of our choices.

Algorithm 9.14. To draw the attractor of an IFS, W = [w0, . . . ,wn]. Start with a fixed point, q, of
one of the maps w0, . . . ,wn. This is your current point.

1. Choose a random number i from On and plot wi of the current point. This becomes the new
current point.

2. Iterate!

Remark. You can actually start with any point you like, not necessarily a fixed point, but starting
with the fixed point guarentees that all points you plot will be in the attractor, not just near to it
after a sufficient number of iterations.
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Problems - Chaos Game

9.1. (2 points each) Let W = [w0, . . . ,wn−1] be an IFS and c0, . . . , cn−1 the contraction factors of
w0, . . . ,wn−1 respectively. Let a, b ∈ Rk and c = max { c0, . . . , cn−1 }. Let t1, . . . , tm ∈ { 0, 1, . . . , n − 1 }
and define J = wt1 ◦ wt2 ◦ · · · ◦ wtm .

(a) Prove that dEuc (J(a), J(b)) ≤ cmdEuc(a, b).

(b) Now let a = Φ(t1, . . . , tm, tm+1, . . .) and b = Φ(t1, . . . , tm, t′m+1, . . .). Then

dEuc(a, b) ≤ cm diam(FW)

i.e. if two points have addresses that agree in the first m digits, then they will be no further
than cm diam(FW) apart.

9.2. (1 point each) Define a Generalized Chaos Game as follows. Let p0, . . . , pn−1 be points in
R2 and c0, . . . , cn−1 numbers in (0..1). Then ChaosGame([p0, c0], [p1, c1], . . . , [pn−1, cn−1]) rep-
resents the chaos game in which the current point is moved ci of the distance towards a
randomly selected goal point pi. For example, in this notation the standard Chaos Game is
ChaosGame([(0, 0), 0.5], [(0, 1), 0.5], [(1, 0), 0.5]).

(a) Find an IFS that produces the same attractor as ChaosGame([p0, c0], [p1, c1], . . . , [pn−1, cn−1])
(in terms of the pi and ci).

(b) Prove that pi is the fixed point of the ith affine map in the IFS you found in part a.

(c) Plot the attractor of ChaosGame
(
[e2πi, 0.4], [e2πi/5, 0.5], [e4πi/5, 0.6], [e6πi/5, 0.7], [e8πi/5, 0.8]

)
.

Note: the ChaosGame command in my Maple package does not support multiple ra-
tios ci so it can’t be used to do this.

(d) Find a generalized Chaos Game that produces the Sierpinski Carpet, i.e.,

HeeBGB(Up,Up,Up,Up,none,Up,Up,Up,Up)

and express your answer in the form ChaosGame
(
[p0, c0], [p1, c1], . . . , [pn−1, cn−1]

)
.

(e) Use the ChaosGame in the chaos package to verify that your game works (note: the syntax
is different... see the chaos package help file for details).

9.3. (1 point each) Let W = [w0,w1,w2] = HeeBGB(Rt,−Up,−Rt,none).

(a) Plot Fw. (Note: Turn on boxed style axes before printing.)

(b) Compute the fixed points of w0, w1, and w2 analytically.

(c) Plot the fixed points found in part b on the plot of Fw.

(d) Compute the exact coordinates of Φ(0112).

(e) Plot Φ
(
0112
)

on the plot of Fw.

(f) Indicate all of the points on the attractor which have an address starting with 201.

(g) Does f
(
0.t1t2 . . .(3)

)
= Φ(t1t2 . . .) define a function for this IFS? If yes, explain why and state

whether or not f is continuous. If no, find a number r ∈ [0..1] such that r = 0.r1r2 . . .(3) =
0.s1s2 . . .(3) but Φ(r1r2 . . .) , Φ(s1s2 . . .).
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9.4. Suppose your computer screen has a resolution of 800 × 600 pixels and you want to plot the
attractor of

W = [Affine(0.9, 0.9, 45, 45, 0, 0),Affine(0.8, 0.8, 0, 0, 0.8, 0)]

(a) (3 points) What rectangular region of the plane should you display on the screen so that
you are guaranteed that FW will be entirely visible (and hopefully as large as possible)?
Defend your answer.

(b) (2 points) Using any point on the screen as a seed and the Address Method for producing
the fractal, what is the minimum length addresses should you use in order to be guaranteed
that the results will be accurate to within the size of one pixel width?

(c) (1 point) Given your answer to part b, how many addresses would you need to generate
and how many points would you have to plot in order to produce the attractor by the
Address Method?

10 Applications

10.1 Fractal Randomness Testing

Algorithm 10.1. Given a sequence of values s whose terms are in O3, draw the attractor of
HeeBGB(Up,Up,Up,Up) by the random iteration method, using s as the source of the "random"
numbers.

Remark. Since the attractor of HeeBGB(Up,Up,Up,Up) is the filled-in unit square, if the sequence
is missing any addresses there will be holes in the attractor where the points having those addresses
would be.

Problems - Fractal Data Analysis

10.1. (1 point) A radio astronomer (Jodie Foster) has a 10,000 character sequence of the letters
A,B,C,D which she obtained from signals she received from outer space. The sequence appears
to be random, but she decides to test it using the chaos game. She plots four points labeled
A, B, C, and D at the four corners of a square and starting at the point A, she looks at the first
letter in her sequence and moves half way towards the corner with that label. She then reads
the next letter in the sequence and moves half way to the next corner, and so on in the usual
manner for playing the chaos game. If the sequence was truly random, playing this game
should fill in the square more or less uniformly. However, after plotting the 10,000 points from
her sequence she obtained the following picture:
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What does this picture indicate about the sequence of letters? In particular, what subsequences
never appear in this sequence?

10.2. (1 point) Suppose you ran a fractal data analysis on your data and obtained the following
image. What does that tell you about the data? In particular what finite addresses are missing
from the data?

10.3. (up to bonus 3 points added to homework grade) Find some interesting source of data that
can be grouped into four sets of data uniformly, and test it for randomness using the four
corner chaos game. You should have at least 1000 data points to obtain a reasonable picture.
Discuss your results intelligently.
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10.2 Fractal Curves

Definition 10.2. Let b be an integer greater than 1. Then the Base b Ruler IFS is W = [w0,w1, . . . ,wb−1]
where wi : R→ R by

wi(x) =
1
b

x +
i
b

for i ∈ Ob−1.

Theorem 10.3. The attractor of any Base b Ruler IFS is [0..1]. For each t ∈ [0..1], t = 0.t1t2t3 · · ·(b) if
and only if t = Φ(t1t2t3 · · · ), i.e., the digits in the base b representation of t and an address of t are the
same sequence.

Example 10.4. Determine the points in the Middle Thirds Cantor Set.

Example 10.5. Determine the coordinates of all points in the right Sierpinski triangle.

Theorem 10.6. Let W = [w0, . . . ,wn−1] be an IFS and define

fΦ(0.t1t2t3 · · ·(n)) = Φ(t1t2t3 · · · )

Then fΦ will be a function from [0..1] → Fw if and only if Φ(s1s2 · · · ) = Φ(t1t2 · · · ) whenever
0.s1s2s3 · · ·(n) = 0.t1t2t3 · · ·(n).

Theorem 10.7. If fΦ is a function, then it is continuous.

Theorem 10.8. (Barnsley): Let W = [w0, . . . ,wn−1] be an IFS and Fw its attractor. If there exist
distinct points { (si, ti) ∈ Fw : i ∈ { 0 . . . n } } such that for i ∈ On−1

1. wi(s0, t0) = (si, ti) and
2. wi(sn, tn) = (si+1, ti+1)

then the map fΦ is a continuous map from f : [0..1]→ Fw.

Example 10.9. See Lecture Examples Maple worksheet.

Problems - Address my IFS

10.4. (1 point each)

(a) Convert 1
5 to base 2.

(b) Plot 1
5 on a base 2 ruler.

(c) How many different addresses does 1
5 have with respect to the base 2 ruler IFS?
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10.5. (1 point each) Determine if the following numbers are in the MTC by converting them to
base 3. Explain.

(a) 2
9

(b) 23
27

(c) 13
81

(d) 0.7

10.6. (2 points) Find an IFS that parameterizes the Sierpinski Triangle. Then use the DrawIFSCurve
command in the Maple chaos package to sketch approximations to the curve using 3, 32, 33,
and 34 subdivisions of the unit interval. [Hint: Map MrFace’s “chin”to the left side of w0(FW),
the bottom of w2(FW), and the “hypotenuse”of w1(FW).]

10.7. (1 point) Let P : [0..1]→ [0..1]× [0..1] be the parameterization of the Peano curve. Find P
(

1
2

)
,

P
(

31
81

)
, and P (0.7).

10.8. (1 point each) Determine if the following points are in the Right Sierpinski Triangle by
converting them to base 2. Explain.

(a)
(

11
32 ,

41
64

)
(b)
(

1
3 ,

1
6

)
(c)
(

1
3 ,

1
5

)
(d)
(

1
2 ,

1
2

)
(e)
( √

2
2 ,
√

3
4

)
10.9. (1 point) Plot the points in the previous problem on the Sierpinski Triangle in Maple to verify

your answers.

10.3 Fractal Interpolation

Definition 10.10. A set of data is a collection
{

(xi, yi) ∈ R2 : i ∈ { 0, 1, . . . , n } and x0 < x1 < · · · < xn
}
.

An interpolation function for a given set of data is a continuous map f : [x0..xn] → R such that
f (xi) = yi for all i ∈ { 0, 1, . . . , n }, i.e., its graph passes through all of the data points.

Example 10.11. Linear interpolation, cubic spline, polynomial, etc.

Definition 10.12. Let (x0, y0), . . . , (xn, yn) be a set of data with n > 2. Then a Barnsley Interpolation
Function is an IFS W = [w0,w2, . . . ,wn−1] such that for all i ∈ On−1,

wi

xy
 =
ai 0

ci di


xy
 +
ei

fi
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and

wi

x0

y0

 =
xi

yi

 and wi

xn

yn

 =
xi+1

yi+1


Remark. Simply put, we connect the data points with the chins of Mr Face, keeping the sides of his
head vertical. The seed is the cousin of Mr Face whose chin connects the first and last data points.
We choose the di’s with | di | < 1 to vary the fractal dimension (ruggedness) of the interpolation
graph. Choosing | di | < 1 guarentees that our function is a contraction mapping.

Theorem 10.13. Let W be the IFS in the previous definition. Then for each i ∈ On−1,

wi = affine
(xi+1 − xi

xn − x0
, 0,

yi+1 − yi

xn − x0
− di

yn − y0

xn − x0
, di,

xnxi − x0xi+1

xn − x0
,

xnyi − x0yi+1

xn − x0
− di

xny0 − x0yn

xn − x0

)
Furthermore, FW is the graph of an interpolation function.

Problems - Fractal Interpolation

10.10. (3 points) Consider the data {
(0, 0), (2, 4), (3, 6), (5, 3), (6, 7)

}
Make a Barnsley interpolation function for the given data that has Hausdorff dimension:

(a) 1.0

(b) 1.2

(c) 1.4

(d) 1.6

(e) 1.9

and plot the graph of each function. Show your calculations which verify that the function has
the requested dimension.

10.11. (8 bonus points) Write a Maple program that will compute the value of f (x) for a given x,
where f is a fractal interpolation function. (Note that this is not the same as computing p(t)
where p is a parameterization of the graph of f given by p(0.t1t2 . . .(n)) = Φ(t1t2 . . .) as is done
by my IFSCurve Maple procedure.) For example, if (xi, yi) is one of the original data points
then f (xi) = yi and your procedure should give the value of f (x) for values of x which are in
between the x values of data points for the given interpolation function as well. Give examples
showing that your function actually works.
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11 Dimension

11.1 Topological Dimension

Topological Background

Definition 11.1. Let (X, d) and (Y, d′) be metric spaces. Then (X, d) is said to be homeomorphic to
(Y, d′) if ∃, f : X→ Y such that f is bijective, continuous, and its inverse is continuous. In this case,
f is said to be a homeomorphism.

Definition 11.2. Any property of a metric space which is preserved by homeomorphisms is called a
topological invariant, i.e., if P is a topological invariant, and if (X, d) and (Y, d′) are homeomorphic,
then P(X, d)⇔ P(Y, d′).

Definition 11.3. Let (X, d) be a metric space and U ⊆ X. Then the interior of U is

U◦ = { x ∈ U : ∃δ > 0,B(x; δ) ⊆ U }

Also, the boundary of U is ∂U = X −U ◦ − (X −U)◦, i.e., we take away the interior of the set and
the interior of the complement to get the boundary.

Theorem 11.4. U◦ is open for any set.

Theorem 11.5. A set S is open⇔ S = S◦.

Definition 11.6. Let U ⊆ Rm. Define the topological dimension of U, denoted dimT(U), to be the
integer given by

1. dimT(ϕ) = −1 and ϕ is the only subset A of Rm for which dimT(A) = −1.

2. dimT(U) ≤ n if and only if for any x ∈ U and any open set W ⊆ U containing x, there exists
an open set V with x ∈ V ⊆W such that the topological dimension dimT(∂V) ≤ n − 1. [Note:
V, W must be open in U as a metric subspace of Rm, but not necessarily open as a subset of
Rm. Similary, ∂V refers to the boundary of V in U, not in Rm.]

Then dimT(U) = n if and only if dimT(U) ≤ n but dimT(U) ≰ n − 1.

Remark. The value of dimT(U) is always an integer by definition.

11.2 Hausdorff Dimension

Example 11.7. Consider the following
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Figure: a point unit segment Sierpinski triangle unit square unit cube

# of pts: 1 ∞ ∞ ∞ ∞
Length: 0 1 ∞ ∞ ∞
Area: 0 0 0 1 ∞
Volume: 0 0 0 0 1

Notice that none of these standard measures give a nontrivial value for the Sierpinski triangle.

Definition 11.8. Let ε ∈ R+, 0 ≤ p < ∞, and A ⊆ R2 a bounded subset of the plane. Then

Mp(A; ε) = inf

 ∞∑
i=1

diam(Ai)p : A = ∪∞i=1Ai and ∀i,diam(Ai) < ε


and

Mp(A) = sup
{

Mp(A; ε) : ε ∈ R+
}

We call Mp(A) the Hausdorff p-measure of A.

Remark. The expression Mp(A) can equal ∞. Furthermore, Mp(A; ε) is obviously a nonincreasing
function of ε, so Mp(A) is the same as lim

ε→0
Mp(A; ε).

Theorem 11.9. For each A, ∃d ∈ R such that Mp(A) = ∞ for p < d and Mp(A) = 0 for p > d.

Definition 11.10. The number d in the previous theorem is called the Hausdorff dimension of A,
and written d = dimH(A).

Similarity and Congruence

Definition 11.11. Let (X, d) be a metric space. A similitude (or similarity map) is a surjective map
f : X→ X such that

∃c ∈ R+,∀x, y ∈ X, d( f (x), f (y)) = cd(x, y)

In this case c is called the similarity factor (or scaling factor or ratio of similarity).

Definition 11.12. Let (X, d) be a metric space and A,B ⊆ X. Then A is similar to B if B = f (A) for
some similitude f .

Theorem 11.13. A function f : R2 → R2 is a similitude with scaling factor c if and only if f =
Affine(r, s, θ, ϕ, e, f ) with | r | = | s | = c and θ = ϕ + πk for some k ∈ Z.

Theorem 11.14. If f is a similitude with scaling factor c, then f is bijective and f−1 is a similitude
with scaling factor 1/c.
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Definition 11.15. Let (X, d) be a metric space. Then f : X→ X is called an isometry if and only if f
is a similitude with scaling factor equal to 1.

Remark. In other words f is an isometry if and only if

1. f is surjective and

2. ∀x, y ∈ X, d( f (x), f (y)) = d(x, y),

i.e., f preserves all distances.

Definition 11.16. Let (X, d) be a metric space and A,B ⊆ X. Then A is congruent to B if B = f (A)
for some isometry f .

Corollary 11.17. If f is an isometry, then f is bijective and f−1 is an isometry.

Theorem 11.18. A map f : R2 → R2 is an isometry if and only if f = Affine(r, s, θ, ϕ, e, f ) with
| r | = | s | = 1 and θ = ϕ + πk for some k ∈ Z.

Self-similarity and Dimension

Definition 11.19. Let W = [w0,w1, . . . ,wn−1] be an IFS and Fw its attractor. Then W is said to be
just touching if and only if it is not totally disconnected and there exists an open set U ∈ R2 such
that

1. W(U) ⊆ U and
2. wi(U) ∩ w j(U) = ϕ for all i, j ∈ [0, 1, . . . , n − 1] for i , j.

Definition 11.20. Let W be an IFS. Then W is said to be overlapping if and only if it is not totally
disconnected and not just touching.

Example 11.21. The middle thirds Cantor set is totally disconnected.

Example 11.22. The Sierpinski triangle is just touching.

Example 11.23. A trivial example of an overlapping IFS is an IFS containing the same map twice.

Definition 11.24. Let W = [w0,w1, . . . ,wn−1] be an IFS. Fw is said to be self-similar if and only if Fw
is not overlapping and each wi is a similarity. Fw is strictly self-similar if and only if the similarity
factors are all equal.

Definition 11.25. If Fw is a strictly self-similar attractor of a non-overlapping IFS W = [w1, . . . ,wN],
then the similarity dimension of Fw is defined to be the unique number d such that N = ( 1

r )d where
r is the similarity factor (= contraction factor for the affine maps). We write dimS(Fw) = d in this
case.
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Remark. If we solve the defining equation for d we obtain

dimS(Fw) =
ln N

ln
(

1
r

)

Theorem 11.26. For attractors of non-overlapping IFS’s, dimS(Fw) = dimH(Fw).

Theorem 11.27. (Moran) Let Fw be the attractor of a non-overlapping IFS, W = [w0,w1, . . . ,wn−1]
such that each wi is a similitude with similarity factor ci respectively. Then dimH(Fw) is the unique
number d such that

cd
0 + cd

1 + · · · + cd
n−1 = 1

If W is overlapping then dimH(Fw) ≤ d.

Theorem 11.28. Let W be the Barnsley interpolation function IFS given in the definition. If∑n−1
k=0 | dk | > 1 and the interpolation points do not lie on a straight line, then the fractal dimension of

FW is the unique real number D such that

n−1∑
k=0

| dk | aD−1
k = 1

Approximating the Hausdorff Dimension

Grid Dimension

Algorithm 11.29. To estimate the Grid dimension of a shape:

1. Cover the shape with grids of size l1, l2, . . . , lk.

2. For each grid, count the number Ni of grid boxes whose interior intersects the shape.

3. Plot ln(Ni) vs. ln( 1
li

) and compute the least squares linear regression line through the points{
(ln
(

1
l1

)
, ln(N1)), . . . , (ln

(
1
lk

)
, ln(Nk))

}
.

4. The slope is an estimate of the Grid dimension (and is also an estimate of the Hausdorff
dimension).

Remark. The slope is independent of the units used.

Problems - Dimension

11.1. (3 points) Prove that the topological dimension of a metric space having two points is zero.

11.2. (4 points) Prove that the Hausdorff dimension of a metric space having two points is zero.
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11.3. (1 point each) What is the topological dimension of the following shapes. You don’t have to
prove your answer, but give an informal explanation.

(a) { 0 } ∪
{

1
n : n ∈ Z+

}
.

(b) the Sierpinski Carpet (not triangle or gasket!)

(c) the attractor of GridIFS(Up,n,Up,n,n,n,Up,n,n)

(d) the Peano curve

11.4. (4 points) Prove that every isometry is bijective and its inverse is also an isometry.

11.5. (3 points) Prove that affine
(
r, s, θ, ϕ, e, f

)
is an isometry if and only if | r | = | s | = 1 and

θ = ϕ + πk for some k ∈ Z.

11.6. (1 point each) Determine the similarity dimension of the fractals in problem 8.16 parts e, f,
g, and h in the Guess My IFS section above. Give exact answers where possible, and in every
case give a decimal approximation to at least 10 digits of accuracy.

11.7. (3 points) Compute the grid dimension of the following fractal. Use all of the data available
with a least squares linear regression, don’t just use two of the grids. Plot the data points
and the regression line on the same set of axes using Maple. See ?stats[fit] and then click on
leastsquare for examples of doing a least square regression analysis in Maple.
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11.8. (4 points) Prove that f : R2 → R2 is a similitude with scaling factor c if and only if f =
Affine(r, s, θ, ϕ, e, f ) with | r | = | s | = c and θ = ϕ + πk for some k ∈ Z.

12 Complex Fractals

12.1 Julia Sets

Definition 12.1. If z ∈ C and z = reiθ where r = | z | and θ ∈ [0..2π] then
√

z = z
1
2 is (reiθ)

1
2 = r

1
2 e

iθ
2 .

Here
√

z is the principal square root of a complex number.

Example 12.2. Let c ∈ C. Let w0(z) =
√

z − c, w1(z) = −
√

z − c, and W = [w0,w1]. Since w0,w1 are
not affine, W is not an IFS.

Is W a Hutchinson operator? Not quite. But it behaves like a Hutchinson Operator in the sense
that ∃γ ⊆ R2 such that for any A ∈ K2, Wn(A ∩ (R2 − γ)) converges to a unique set Fw such that
W(Fw) = Fw.

Definition 12.3. That unique set Fw is called the Julia Set associated with c and is denoted Jc.
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Definition 12.4. Let c ∈ C. Let Qc(z) = z2 + c. The filled in Julia Set, Kc, is

Kc = { z : the Qc orbit of z is bounded }

Facts about Julia Sets:

1. Jc = ∂Kc

2. Jc = Kc if Jc is totally disconnected

3. All Julia Sets fit into a closed ball of radius two centered at the origin, i.e., if
∣∣∣Qn

c (z)
∣∣∣ > 2 for

any n then z < Kc.

Remark. For each c ∈ C, there is a Julia Set Jc.

Theorem 12.5. Jc is connected if and only if the Qc orbit of 0 is bounded, i.e., if and only if 0 is in the
filled in Julia Set Kc.

12.2 The Mandelbrot Set

Definition 12.6. The Mandelbrot Set, M, is the set of all c ∈ C such that Jc is connected. Because
of the previous theorem, we write

M = { c ∈ C : the Qc-orbit of 0 is bounded }

Remark. While there are infinitely many Julia Sets, there is only one Mandelbrot Set.

Facts about the Mandelbrot Set:

1. It is symmetric with respect to the x-axis.

2. It is connected.

3. Every open set containing any point on the boundary of M contains infinitely many “baby
M’s” . Note: The babies are not similiar to M.

4. Kc “looks like” M near c.

5. Every bulb, B, has the property that ∃n ∈N+ such that ∀c ∈ B, the Qc orbit of 0 converges to
an n-cycle. The integer n is called the period of the bulb.

12.3 The Escape Time Algorithm

Algorithm 12.7. Assign to each screen pixel a representative complex number and color the pixel
based on the number of iterations it required for a term in the Qc-orbit to have absolute value
greater than 2 (or some particular color if no such term is obtained after a predetermined number
of iterations).
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Problems - Complex Fractals

12.1. ( 1 point) For each of the following points c ∈ C, determine if z is in the Mandelbrot set.

(a) 0.2

(b) −0.75 − 0.1i

(c) −1 − i

(d) −i

(e) −0.919 + 0.248i

12.2. (1 point each) For each of the values c in the previous problem, state whether or not the
filled in Julia set Kc is connected. Plot Kc to verify your answer. Note: It takes a long time
to plot these with Maple. They also appear rather small, so you might want to check the
File/Preferences/Plotting/Plot Display/Window menu option before plotting to make
them a little bigger. If you want to make really big ones you can export the image to a jpg or
gif. See the examples at the bottom of the ?chaos help screen if you want to do this. Do not
send me enormous pictures via email! Print them out!

12.3. (4 points) Prove that the Mandelbrot set is symmetric with respect to the x-axis.

12.4. (8 points) The Great Bulb Hunt. Each of the “bulbs” (i.e. solid black regions) of the Mandelbrot
set are characterized by the fact that there exists a positive integer n such that all points c in a
given bulb produce a function f (z) = z2 + c having the property that the f -orbit of 0 converges
to a cycle of period n. We say that this number n is the period of the bulb. The main cardioid is
the only bulb of period 1. There is 1 bulb of period 2, 3 bulbs of period 3, 6 bulbs of period 4,
15 of period 5, and 27 bulbs of period 6. Your job is to find all the bulbs of period less than or
equal to six. Find as many as possible, and your score will be determined by the number you
find. Your answer should consists of

(a) A table listing a representative point from each bulb and the period of that bulb.

(b) Maple calculations showing that the given point does indeed produce a function for which
the orbit of zero converges to a cycle of the stated period.

(c) A plot of the Mandelbrot set with the locations of the bulbs you found clearly marked
similar to Figure 14.19 on page 809 in your book (second edition).

Note that you will only get credit for finding bulbs which are NOT listed on the diagram on
page 809, although these should also be listed in your table. Also note that just randomly
hunting for such points will take you a very very very very long time, but there is a direct way
to find them. It is explained in Chapter 14.1 of the book (in particular on pages 792-796). So I
am finally actually testing you on whether you read the book or not!
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Part II

Appendix

13 Proofs

13.1 The Power Theorem

Theorem 13.1. Let f : X→ X. For any k,n ∈N,

f k+n = f k ◦ f n

and
f kn = f n ◦ f n ◦ · · · ◦ f n︸              ︷︷              ︸

k terms

(where “0 terms” means the identity map).

Proof.

We proceed by induction on k for arbitrary n.

1. Let f : X→ X

2. Let n ∈N -

Base case:

3. f 0+n = f n arithmetic

4. = idX ◦ f n (homework)

5. = f 0 ◦ f n definition of f 0

Inductive hypothesis:

6. Let k ∈N -

7. Assume f k+n = f k ◦ f n -

8. f k+1+n = f 1+k+n arithmetic

9. = f ◦ f k+n def f k

10. = f ◦ ( f k ◦ f n) substitution

11. = ( f ◦ f k) ◦ f n ◦ is associative (homework)

12. = f 1+k ◦ f n def f k

This completes the inductive step.

13. ∀k ∈N, f k+n = f k ◦ f n by induction
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14. ∀n ∈N,∀k ∈N, f k+n = f k ◦ f n ∀+

The proof of the second equation is similar.

2
Lemma 13.2. Let f : X→ X, x ∈ X, and n ∈N+.

x has minimum period n⇒ #O f (x) = n

Proof.

1. Let f : X→ X, x ∈ X, and n ∈N+

(⇒)

2. Assume x has minimum period n -

3. f n(x) = x and ∀k ∈ In−1, f k(x) , x def min period

4. Define S =
{

x, f (x), . . . , f n−1(x)
}

Let’s show that O f (x) = S. First we show OF(x) ⊆ S.

5. Let y ∈ O f (x) -

6. y = f j(x) for some j ∈N def O
7. j = nq + r and 0 ≤ r < n for some q, r ∈N division algorithm

8. y = f j(x) line 6

9. = f nq+r(x) substitution

10. = f r( f nq(x)) Power Thm

11. = f r( f n( f n(· · · f n(x)))) (with q f n’s) Power Thm

12. = f r(x) substitution (q times)

13. ∈ S def S

14. O f (x) ⊆ S def subset

Now we show S ⊆ O f (x)

15. Let z ∈ S -

16. z = f i(x) for some i ∈ On−1 def S

17. ∈ O f (x) def O
18. S ⊆ O f (x) def subset

19. O f (x) = S def set =

Now let’s show that the n elements of S are distinct.

20. Let a, b ∈ On−1 and a ≥ b -
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21. Assume f a(x) = f b(x) -

22. f a−b(x) = f a−b( f n(x)) substitution

23. = f n+a−b(x) Power Thm

24. = f n−b( f a(x)) Power Thm

25. = f n−b( f b(x)) substitution

26. = f n(x) Power Thm

27. = x substitution

28. a − b < In−1 by lines 3,22,27

29. a − b ∈ On−1 since a, b ∈ On−1

30. a − b ∈ On−1 − In−1 def relative complement

31. = {0} def On−1 and In−1

32. a − b = 0 def set notation

33. a = b arithmetic

34. the elements of S are distinct def distinct

35. #S = n def #

36. #O f (x) = n substitution

37. x has minimum period n⇒ #O f (x) = n ⇒ +2
13.2 Change of Basis

Theorem 13.3. Let n ∈ N. If each term in the Baseb-orbit of n is replaced by its value mod b, the
sequence produced will be the base b representation of n (with the least significant digit on the left).

Proof.

We proceed by induction on n

1. Let b ∈N and b > 1

2. Define Orb = OrbBaseb

Base case:

3. Baseb(1) = 1−(1 mod b)
b = 1−1

b = 0 def of Baseb

4. Baseb(1) = 0−(0 mod b)
b = 0−0

b = 0 def of Baseb

5. Orb(1) = 1, 0, 0, 0, . . . by definition of orbit

For any sequence s, define s mod b to be the sequence whose ith term is si mod b.

6. 1 = 100000 . . .(b)

7. = Orb(1) mod b -
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Inductive hypothesis:

8. Let n ∈N+ -

9. Assume Orb(m) mod b = m0m1m2 . . .(b) = m for all m < n -

10. n = (n0n1 . . . nk)(b) for some ni ∈ Ob−1and some k ∈N the representation theorem

Let’s calculate Baseb(n)

11. Baseb(n) = n−(n mod b)
b

12. =
(n0n1...nk)(b)−n0

b

13. =
(n0n1...nk)(b)−n0

b

14. =
(0n1n2...nk)(b)

b

15. = (n1n2 . . . nk)(b)

16. < n

Since its less than n the assumption holds for Baseb(n)

17. Orb(Baseb(n)) mod b = n1n2 . . . nk0

18. Orb(n) = n,Orb(Baseb(n)) def of orbit

19. Orb(n) mod b = n mod b,Orb(Baseb(n)) mod b

20. = n0,n1n2 . . . nk0

21. = n0,n1n2 . . . nk0(b)

22. = n

23. ∀n ∈N,Orb(n) mod b = n0n1n2 . . .(b) = n2
13.3 Triangle Inequality and the Euclidean Metric

Lemma 13.4 (Euclidean Triangle Inequality). Let x, y, z ∈ Rn. Then

dEuc(x, z) ≤ dEuc(x, y) + dEuc(y, z).

Proof.

1. Let x, y, z ∈ Rn

2. For some x1, . . . , xn, y1, . . . , yn, z1, . . . , zn ∈ R, -

3. x = (x1, . . . , xn), y = (y1, . . . , yn), z = (z1, . . . , zn) def of Rn

4. Define a = dEuc(x, z), b = dEuc(x, y), c = dEuc(y, z)

In this notation we are trying to show that a ≤ b + c.

We will prove the case where b , 0 and c , 0. The other cases are for homework.
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5. Define ai = xi − zi, bi = xi − yi, ci = yi − zi for each i ∈ In
6. ∀i ∈ In, ai = bi + ci

7. a, b, c ≥ 0

8. a2 = (dEuc(x, z))2

9. = (
√∑n

i=1(xi − zi)2)2

10. =
∑n

i=1(xi − zi)2

11. =
∑n

i=1 a2
i

A similar argument shows b2 =
∑n

i=1 b2
i and c2 =

∑n
i=1 c2

i .

12. =
∑n

i=1(bi + ci)2

13. =
∑n

i=1(b2
i + 2bici + c2

i )

14. =
∑n

i=1 b2
i +
∑n

i=1(2bici) +
∑n

i=1 c2
i

15. = b2 + c2 +
∑n

i=1(2bici)

16. = b2 + 2bc + c2 +
∑n

i=1(2bici) − 2bc

17. = (b + c)2 +
∑n

i=1(2bici) − 2bc

18. = (b + c)2 +
∑n

i=1(2bici) − (1 + 1)bc

19. = (b + c)2 +
∑n

i=1(2bici) − ( b2

b2 +
c2

c2 )bc

20. = (b + c)2 + bc
bc
∑n

i=1(2bici) − ( 1
b2

∑n
i=1 b2

i +
1
c2

∑n
i=1 c2

i )bc

21. = (b + c)2 + (
∑n

i=1
2bici

bc −
∑n

i=1
b2

i
b2 −
∑n

i=1
c2

i
c2 )bc

22. = (b + c)2 − (−∑n
i=1

2bici
bc +

∑n
i=1

b2
i

b2 +
∑n

i=1
c2

i
c2 )bc

23. = (b + c)2 −∑n
i=1(

b2
i

b2 − 2bici
bc +

c2
i

c2 )bc

24. = (b + c)2 − (
∑n

i=1( bi
b −

ci
c )2)bc

25. ≤ (b + c)2

26. a2 ≤ (b + c)2

27. a ≤ b + c2

Theorem 13.5. (Rn, dEuc) is a metric space.

Proof.

1. dEuc : Rn ×Rn → R
2. Let x, y, z ∈ Rn -

3. For some x1, . . . , xn, y1, . . . , yn, z1, . . . , zn ∈ R, -

4. x = (x1, . . . , xn), y = (y1, . . . , yn), z = (z1, . . . , zn)

Show distances are nonnegative.
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5. dEuc(x, y) =
√∑n

i=1(xi − yi)2

6. ≥ 0

Show distances are symmetric.

7. dEuc(x, y) =
√∑n

i=1(xi − yi)2

8. =
√∑n

i=1(yi − xi)2

9. = dEuc(y, x)

We proved the triangle inequality above.

10. dEuc(x, z) ≤ dEuc(x, y) + dEuc(y, z)

Show zero distances only occur between a point and itself.

11. dEuc(x, x) =
√∑n

i=1(xi − xi)2

12. =
√∑n

i=1 02

13. = 0

14. Assume dEuc(x, y) = 0 -

15.
∑n

i=1(xi − yi)2 =
(√∑n

i=1(xi − yi)2
)2

16. =
(
dEuc(x, y)

)2
17. = 02

18. = 0

19. (xi − yi)2 = 0 for all i ∈ In
20. xi − yi = 0 for all i ∈ In
21. xi = yi for all i ∈ In
22. x = (x1, . . . , xn)

23. = (y1, . . . , yn)

24. = y

25. (Rn, dEuc) is a metric space2
13.4 Contraction Mappings are Continuous

Theorem 13.6. Every contraction mapping is continuous.

Proof.

1. Let (X, d) be a metric space and f : X→ X a contraction mapping

2. f has contraction factor s for some s ∈ (0..1)
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3. Let U ∈ X be an open set -

4. Let x ∈ f inv(U) -

5. f (x) ∈ U

6. B( f (x); δ) ⊆ U for some δ ∈ R+

7. Let y ∈ B(x; δ) -

8. d(x, y) < δ

9. d( f (x), f (y)) ≤ sd(x, y)

10. < sδ

11. < δ

12. f (y) ∈ B( f (x); δ)

13. f (y) ∈ U

14. y ∈ f inv(U)

15. ∀y ∈ B(x; δ), y ∈ f inv(U)

16. B(x; δ) ⊆ f inv(U)

17. ∃δ ∈ R+,B(x; δ) ⊆ f inv(U) -

18. ∀x ∈ f inv(U),∃δ ∈ R+,B(x; δ) ⊆ f inv(U)

19. f inv(U) is open

20. The inverse image of every open set is open

21. f is continuous2
13.5 The Derivative and Contraction Maps of R

Theorem 13.7. Let I = (a..b) ⊆ R and f : I→ I differentiable on I. If there exists s ∈ (0..1) such that
∀x ∈ I,

∣∣∣ f ′(x)
∣∣∣ ≤ s < 1, then f is a contraction mapping with contraction factor s.

Proof.

1. Let I = (a..b) ⊆ R and f : I→ I differentiable on I, and d = dEuc

2. Assume for some s ∈ (0..1),∀x ∈ I,
∣∣∣ f ′(x)

∣∣∣ ≤ s < 1 -

3. Let x, y ∈ I -

4. x = y or x , y

Case 1

5. Assume x = y -

6. d( f (x), f (y)) = d( f (x), f (x))

7. = 0
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8. ≤ s · 0
9. = s · d(x, x)

10. = s · d(x, y)

Case 2

11. Assume x , y -

12. f ′(c) = f (x)− f (y)
x−y for some c between x and y

13.
∣∣∣ f ′(c)

∣∣∣ ≤ s

14. d( f (x), f (y)) =
∣∣∣ f (x) − f (y)

∣∣∣
15. =

∣∣∣ f (x) − f (y)
∣∣∣ | x−y |
| x−y |

16. =
∣∣∣∣ f (x)− f (y)

x−y

∣∣∣∣ ∣∣∣ x − y
∣∣∣

17. =
∣∣∣ f ′(c)

∣∣∣ ∣∣∣ x − y
∣∣∣

18. ≤ s
∣∣∣ x − y

∣∣∣
19. = s · d(x, y)

20. ∃s ∈ (0..1),∀x, y ∈ I, d( f (x), f (y)) ≤ s · d(x, y)

21. f is a contraction map with contraction factor s

22. If ∃s ∈ (0..1),∀x ∈ I,
∣∣∣ f ′(x)

∣∣∣ ≤ s < 1, then f is a contraction mapping with contraction factor s.2
13.6 Contraction Mapping Theorem

Theorem 13.8 (The Contraction Mapping Theorem). Let f : X→ X be a contraction mapping on
a complete metric space (X, d) with contraction factor s. Then

1. f has a unique fixed point, q,

2. the f -orbit of every element of X converges to q (i.e., ∀x ∈ X, limn→∞ f n(x) = q), and

3. if x0, x1, x2, . . . is the f -orbit of x0 ∈ X then

d(xn, q) ≤ sn

1 − s
d(x0, x1)

for all n ∈N.

Proof.

1. Let (X, d) be a complete metric space.

2. Let f : X→ X be a contraction mapping with contraction factor s ∈ (0..1).

We want to show that the f -orbit of an arbitrary seed x0 ∈ X is a Cauchy sequence.

3. Let x0 ∈ X -
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4. Define xi = f i(x0) for i ∈N+ -

i.e., x0, x1, x2, . . . is the f -orbit of x0

5. Define α = d(x0, x1) -

Let’s first prove that d(xi, xi+1) ≤ siα for all i by induction on i.

Base Case:

6. d(x0, x1) = α ≤ s0α

Inductive step:

7. Let i ∈N -

8. Assume d(xi, xi+1) ≤ siα -

9. d(xi+1, xi+2) = d( f (xi), f (xi+1))

10. ≤ s · d(xi, xi+1)

11. ≤ s · siα

12. = si+1α

13. ∀i ∈N, d(xi, xi+1) ≤ siα

That gives us the bound for how far apart consecutive terms in the sequence can be. Now let’s
apply that to get a bound for aribtrary pairs of terms.

14. Let m,n ∈Nwith m ≤ n -

We will prove it by cases.

15. m = n or m < n

Case 1

16. Assume m = n -

17. d(xm, xn) = d(xm, xm)

18. = 0

19. ≤ sm

1−sα

Case 2

20. Assume m < n -

21. d(xm, xn) ≤ d(xm, xm+1) + d(xm+1, xm+2) + · · · + d(xn−1, xn)

22. ≤ smα + sm+1α + · · · + sn−1α

23. = smα(1 + s + s2 + s3 + · · · + sn−1−m)

24. ≤ smα(1 + s + s2 + s3 + · · · )
25. = smα 1

1−s
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26. = sm

1−sα

So in both cases we have shown:

27. d(xm, xn) ≤ sm

1−sα -

But m,n are arbitrary, so

28. ∀m,n ∈N, d(xm, xn) ≤ sm

1−sα

Using this, we can now show the sequence is Cauchy.

29. Let ε ∈ R+ -

30. lim
m→∞

sm

1−sα = 0

31. For some N ∈N, ∀m ≥ N, sm

1−sα < ε

32. Let m,n ≥ N -

33. d(xm, xn) ≤ sm

1−sα

34. < ε

35. ∃N ∈N,∀m,n ≥ N, d(xm, xn) < ε

36. ∀ε > 0,∃N ∈N,∀m,n ≥ N, d(xm, xn) < ε

37. x0, x1, x2, . . . is a Cauchy sequence

We can now use completeness to get q.

38. lim
i→∞

xi = q for some q ∈ X

39. f is continuous

40. f (q) = f (lim
i→∞

xi)

41. = lim
i→∞

f (xi)

42. = lim
i→∞

f ( f i(x0))

43. = lim
i→∞

f i+1(x0)

44. = lim
i→∞

xi+1

45. = lim
i→∞

xi

46. = q

47. q is a fixed point of f

48. the f -orbit of every element of X converges to a fixed point

Let’s show the fixed point is unique.

49. Let p, q ∈ X -

50. Assume p, q are fixed points of f -

51. f (p) = p and f (q) = q
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52. d(p, q) = d( f (p), f (q))

53. d(p, q) ≤ s · d(p, q)

54. Assume d(p, q) , 0 -

55. 1 ≤ s

56. 1 ≰ s

57. →←
58. d(p, q) = 0

59. p = q

60. f has at most one fixed point

Part (2) now follows immediatly from lines 48 and 60

61. ∀x ∈ X, lim
i→∞

f i(x) = q

Finally, we will prove part (3) by contradiction.

62. Assume d(xn, q) > sn

1−s d(x0, x1) for some x0 ∈ X and some n ∈N -

63. d(xn, q) − sn

1−s d(x0, x1) > 0

64. Define ε1 = d(xn, q) − sn

1−s d(x0, x1) -

65. ε1 > 0

66. For some N1 ∈N,∀m > N1, d(xm, q) < ε1

67. ∀m ∈N, d(xn, xm) ≤ sn

1−s d(x0, x1)

68. Let m > N1 -

69. d(xm, q) < ε1 and d(xn, xm) ≤ sn

1−s d(x0, x1)

70. d(xn, q) ≤ d(xn, xm) + d(xm, q)

71. < sn

1−s d(x0, x1) + ε1

72. = sn

1−s d(x0, x1) + d(xn, q) − sn

1−s d(x0, x1)

73. = d(xn, q)

74. →←
75. ∀x0 ∈ X,∀n ∈N, d(xn, q) ≤ sn

1−s d(x0, x1)2
13.7 Hutchinson Operators are Contraction Maps

Theorem 13.9 (Hutchinson). Let w0,w1, . . . ,wk be contraction mappings on Rn with contraction
factors c0, c1, . . . , ck respectively, and define W : Kn → Kn by

W(A) = w0(A) ∪ w1(A) ∪ · · · ∪ wk(A)

Then W is a contraction mapping on (Kn, dH) with contraction factor c = max { c0, c1, . . . , ck }.
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Proof.

1. Let w0,w1, . . . ,wk be contraction mappings on Rn

2. Let c0, c1, . . . , ck be their respective contraction factors

3. Let W : Kn → Kn by W(A) = w0(A) ∪ w1(A) ∪ · · · ∪ wk(A)

4. Define c = max { c0, c1, . . . , ck } -

show it moves arbitrary points closer together

5. Let X,Y ∈ Kn -

6. Define d = dH -

7. Define r = d(X,Y) -

8. X ⊆ B(Y; r) and Y ⊆ B(X; r)

we want to show that d(W(X),W(Y)) ≤ cd(X,Y), so let’s compute d(W(X),W(Y))

9. Let x ∈W(X) -

10. x ∈
k⋃

i=0
wi(X)

11. x ∈ w j(X) for some j ∈ Ok

12. x = w j(a) for some a ∈ X

13. a ∈ B(Y; r)

14. a ∈ ⋃
z∈Y

B(z; r)

15. a ∈ B(z; r) for some z ∈ Y

16. dEuc(a, z) ≤ r

17. dEuc(x,w j(z)) = dEuc(w j(a),w j(z))

18. ≤ c jdEuc(a, z)

19. ≤ c jr

20. ≤ cr

21. w j(z) ∈ w j(Y)

22. ⊆
k⋃

i=0
wi(Y)

23. =W(Y)

24. x ∈ B(w j(z); cr)

25. ⊆ ⋃
α∈W(Y)

B(α; cr)

26. = B(W(Y); cr)

27. W(X) ⊆ B(W(Y); cr)

28. W(Y) ⊆ B(W(X); cr) (by a similar argument)
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29. d(W(X),W(Y)) ≤ cr

30. = cd(X,Y)

31. W is a contraction mapping on (Kn, dH) with contraction factor c2
13.8 Planar Affine Maps are Determined by 3 Points

Theorem 13.10. An affine transformation on R2 is completely determined by where it maps any 3
non-collinear points.

Proof.

1. Let T : R2 → R2 be an affine map

2. Let Let p1, p2, p3 ∈ R2 be noncollinear -

3. p1 = (x1, y1), p2 = (x2, y2), p3 = (x3, y3) for some x1, x2, x3, y1, y2, y3 ∈ R
4. ∀x ∈ R2,T(x) =Mx + B for some M ∈M2,2(R) and some B ∈ R2

5. Define u = p2 − p1 and v = p3 − p1 -

6. u = (x2 − x1, y2 − y1) and v = (x3 − x1, y3 − y1)

7. Define u1 = x2 − x1,u2 = y2 − y1, v1 = x3 − x1, v2 = y3 − y1 -

8. Assume u1v2 − u2v1 = 0 -

9. u1v2 = u2v1

10. Assume v1 = v2 = 0 -

11. x3 − x1 = 0 and y3 − y1 = 0

12. x3 = x1 = 0 and y3 = y1

13. (x1, y1) = (x3, y3)

14. p1 = p3

15. p1, p2, p3 are collinear

16. →←
17. v1 , 0 or v2 , 0

So we have two cases. We will prove the case where v1 , 0 since the other case is similar.

18. Assume v1 , 0 -

19. Define c = u1
v1

-

20. u1 =
u1
v1

v1

21. = cv1

22. u2 = u2
v1
v1

23. = u2v1
v1
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24. = u1v2
v1

25. = u1
v1

v2

26. = cv2

27. u = (u1,u2)

28. = (cv1, cv2)

29. = c(v1, v2)

30. = cv

31. p1, p2, p3 are collinear

32. →←
33. v1 , 0

34. v2 , 0 by a similar argument

35. →←
36. u1v2 − u2v1 , 0

37. Let z ∈ R2 -

38. z = (z1, z2) for some z1, z2 ∈ R

Note we should write az and bz below but omit the subscript where possible to avoid clutter

39. Define a = z1v2−z2v1
u1v2−u2v1

, b = u1z2−u2z1
u1v2−u2v1

-

40. z = (z1, z2)

41. = ( z1v2−z2v1
u1v2−u2v1

u1 +
u1z2−u2z1
u1v2−u2v1

v1,
z1v2−z2v1
u1v2−u2v1

u2 +
u1z2−u2z1
u1v2−u2v1

v2)

42. = (au1 + bv1, au2 + bv2)

43. = (au1 + bv1, au2 + bv2)

44. = au + bv

45. Mz =M(au + bv)

46. = aMu + bMv

47. = aM(p2 − p1) + bM(p3 − p1)

48. = a(Mp2 −Mp1) + b(Mp3 −Mp1)

49. = a(Mp2 + B −Mp1 − B) + b(Mp3 + B −Mp1 − B)

50. = a((Mp2 + B) − (Mp1 + B)) + b((Mp3 + B) − (Mp1 + B))

51. = a(T(p2) − T(p1)) + b(T(p3) − T(p1))

52. ∀z ∈ R2,Mz = az(T(p2) − T(p1)) + bz(T(p3) − T(p1))

53. M
(1
0
)
= v2

u1v2−u2v1
(T(p2) − T(p1)) + −u2

u1v2−u2v1
(T(p3) − T(p1))

54. M
(0
1
)
= −v1

u1v2−u2v1
(T(p2) − T(p1)) + u1

u1v2−u2v1
(T(p3) − T(p1))

55. M
(1
0
)

is the first column of M and M
(0
1
)

is the second column of M

56. M is completely determined by p1, p2, p3,T(p1),T(p2),T(p3)

57. T(p1) =Mp1 + B
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58. B = T(p1) −Mp1

59. B is completely determined by p1, p2, p3,T(p1),T(p2),T(p3)

60. T is completely determined by p1, p2, p3,T(p1),T(p2),T(p3)

61. T is completely determined by where it sends any three noncollinear points2
13.9 Contraction Factor for Affine Maps

Theorem 13.11. Let α, β, γ ∈ C and c = |α |+
∣∣∣ β ∣∣∣. Then the map T = affineC(α, β, γ) is a contraction

mapping if and only if c < 1. Further, if T is a contraction mapping then c is a contraction factor for T.

Proof.

1. Let α, β, γ ∈ C, c = |α | +
∣∣∣ β ∣∣∣ , and T = affineC(α, β, γ)

2. Define d = dEuc.

3. Let z,w ∈ C -

4. Define q = z − w -

5.
∣∣∣ q ∣∣∣ = | z − w | substitution

6. = d(z,w) def of dEuc

7. Define r =
∣∣∣ q ∣∣∣, r1 = |α |, r2 =

∣∣∣ β ∣∣∣ -

8. Define θ = Arg(q), θ1 = Arg(α), θ2 = Arg(β) -

9. q = reiθ, α = r1eiθ1 , and β = r2eiθ2 def polar form

10. d(T(z),T(w)) = d(αz + βz + γ, αw + βw + γ) def of affineC

11. =
∣∣∣ (αz + βz + γ) − (αw + βw + γ)

∣∣∣ definition of dEuc

12. =
∣∣∣α(z − w) + β(z − w)

∣∣∣ arithmetic

13. =
∣∣∣α(z − w) + β(z − w)

∣∣∣ property of conjugates

14. =
∣∣∣αq + βq

∣∣∣ definition of q

15. ≤
∣∣∣αq
∣∣∣ + ∣∣∣ βq

∣∣∣ by the triangle inequality

16. = |α |
∣∣∣ q ∣∣∣ + ∣∣∣ β ∣∣∣ ∣∣∣ q ∣∣∣ property of absolute value

17. = |α |
∣∣∣ q ∣∣∣ + ∣∣∣ β ∣∣∣ ∣∣∣ q ∣∣∣ property of conjugates

18. =
∣∣∣ q ∣∣∣ (|α | + ∣∣∣ β ∣∣∣) arithmetic

19. = cd(z,w) definitions of c, q

20. d(T(z),T(w)) ≤ cd(z,w) transitivity

(⇐)

21. Assume c < 1 -

22. c > 0 def of c and property of | |
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23. 0 < c < 1 by the two last two lines

24. T is a contraction mapping definition of contraction mapping

25. c < 1⇒ T is a contraction mapping

(⇒)

26. Assume T is a contraction mapping -

27. T has contraction factor s for some s ∈ (0..1) def of contraction mapping

28. Define u = 0, v = ei(
θ2−θ1

2 ) -

29. d(T(v),T(u)) =
∣∣∣αv + βv + γ − (αu + βu + γ)

∣∣∣ complex notation

30. =
∣∣∣αv + βv

∣∣∣ subst w = 0 and arithmetic

31. =
∣∣∣∣αei(

θ2−θ1
2 ) + βe−i(

θ2−θ1
2 )
∣∣∣∣ substitution

32. =
∣∣∣∣ r1eiθ1ei(

θ2−θ1
2 ) + r2eiθ2e−i(

θ2−θ1
2 )
∣∣∣∣ substitution

33. =
∣∣∣∣ r1ei(θ1+

θ2−θ1
2 ) + r2ei(θ2−

θ2−θ1
2 )
∣∣∣∣ property of exponentials

34. =
∣∣∣∣ r1ei(

θ1+θ2
2 ) + r2ei(

θ1+θ2
2 )
∣∣∣∣ arithmetic

35. =
∣∣∣∣ (r1 + r2)ei(

θ1+θ2
2 )
∣∣∣∣ distributive law

36. = | r1 + r2 |
∣∣∣∣ ei(

θ1+θ2
2 )
∣∣∣∣ property of | |

37. = | r1 + r2 | property of exponentials

38. = r1 + r2 def of | | (since r1, r2 ≥ 0)

39. = |α | +
∣∣∣ β ∣∣∣ substitution

40. = c substitution

41. d(T(v),T(u)) = c transitivity

42. c = d(T(v),T(u)) substitution

43. ≤ sd(v,u) def of contraction map

44. = sd(ei(
θ2−θ1

2 ), 0) substitution

45. = s
∣∣∣∣ ei(

θ2−θ1
2 ) − 0

∣∣∣∣ def of dEuc

46. = s
∣∣∣∣ ei(

θ2−θ1
2 )
∣∣∣∣ arithmetic

47. = s property of exponentials

48. c is a contraction factor for T substitution

49. c < 1 def of contraction factor

50. T is a contraction mapping⇒ c < 1 -2
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13.10 Attractor Size Theorem

Theorem 13.12. Let W = [w0, . . . ,wn] be an IFS, c0, . . . , cn the contraction factors of w0, . . . ,wn
respectively, and q0, . . . , qn the fixed points of w0, . . . ,wn respectively. Define c = max { c0, . . . , cn }
and r = max

{
d(qi, q j) : i, j ∈ On

}
. Then for any a ∈ FW and any i ∈ On,

dEuc(a, qi) ≤
1

1 − c
r

Proof.

1. Let W = [w0, . . . ,wn] be an IFS on Rk, -

2. Let c0, . . . , cn the contraction factors of w0, . . . ,wn respectively, and -

3. Let q0, . . . , qn the fixed points of w0, . . . ,wn, respectively. -

4. Define c = max { c0, . . . , cn }, d = dEuc, and r = max
{

d(qi, q j) : i, j ∈ On
}
.

5. Let i, j ∈ On -

6. Let z ∈ Rk -

7. d(w j(z), qi) ≤ d(w j(z),w j(q j)) + d(w j(q j), qi)

8. ≤ c jd(z, q j) + d(q j, qi)

9. ≤ cd(z, q j) + r

10. ∀i, j ∈ On,∀z ∈ Rk, d(w j(z), qi) ≤ cd(z, q j) + r

11. Let a ∈ Fw and i ∈ On -

12. a = Φ(t1t2 . . .) for some t1t2 . . . ∈ Σn+1

13. = lim
n→∞

wt1wt2 . . .wtn(qi)

14. Let n ∈N -

15. d(wtn(qi), qi) ≤ cd(qi, qtn) + r ≤ cr + r = (1 + c)r

16. d(wtn−1wtn(qi), qi) ≤ cd(wtn(qi), qtn−1) + r ≤ c(1 + c)r + r = (1 + c + c2)r

17.
...

18. d(wt1wt2 ◦ · · · ◦ wtn−1wtn(qi), qi) ≤ (1 + c + c2 + · · · + cn)r

19. ≤ (1 + c + c2 + · · · )r
20. ≤ 1

1−c r

21. ∀n, d(wt1wt2 ◦ · · · ◦ wtn−1wtn(qi), qi) ≤ 1
1−c r

22. Let ε > 0 -

23. For some N > 0,∀n ≥ N, d(a,wt1 ◦ · · · ◦ wtn(qi)) < ε

24. For some n, n > N

25. d(a, qi) ≤ d(a,wt1 ◦ · · · ◦ wtn(qi)) + d(wt1 ◦ · · · ◦ wtn(qi), qi)

26. ≤ d(a,wt1 ◦ · · · ◦ wtn(qi)) + 1
1−c r

© 2022 KEN MONKS PAGE 87 of 88



Chaos and Fractals

27. < ε + 1
1−c r

28. ∀ε > 0, d(a, qi) < 1
1−c r + ε

29. d(a, qi) ≤ 1
1−c r2

Corollary 13.13. FW ⊆
n⋂

i=0
B(qi; r

1−c )

Proof.

1. Let W = [w0, . . . ,wn] be an IFS on Rk, c0, . . . , cn the contraction factors of

2. w0, . . . ,wn respectively, and q0, . . . , qn the fixed points of w0, . . . ,wn respectively.

3. Let a ∈ FW -

4. Let i ∈ On -

5. d(a, qi) ≤ 1
1−c r

6. a ∈ B(qi; r
1−c )

7. ∀i ∈ On, a ∈ B(qi; r
1−c )

8. a ∈
n⋂

i=0
B(qi; r

1−c )

9. FW ⊆
n⋂

i=0
B(qi; r

1−c )

2
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