
Math 299 Lecture Notes

c© 2010 - Ken Monks
by Ken Monks

Math 299 - Introduction to Mathematical Proof

Department of Mathematics

University of Scranton

This is not a complete set of lecture notes for Math 299, Introduction to Mathematical Proof.

Additional material will be covered in class and discussed in the textbook. This is intended to be a

quick reference for the definitions and rules used in the course.

1

2

Logic

Variables, Expressions, and Statements

Term Definition

set A set is a collection of items.

element The items in a set are called its elements (or members).

expression An expression is an arrangement of symbols which represents an element of a set

type
The set of elements that an expression can represent is called the type of the

expression.

value
The element of the domain that the expression represents is called a value of

that expression.

variable A variable is an expression consisting of a single symbol

constant A constant is an expression whose domain contains a single element.

statement
A statement (or Boolean expression) is an expression whose domain is

{ true, false}.

truth value The value of a statement is called its truth value.

solve
To solve a statement is to determine the set of all elements for which the

statement is true.

solution set The set of all solutions of a statement is called the solution set.

equation An equation is a statement of the form A = B where A and B are expressions.

inequality
An inequality is a statement of the form A ? B where A and B are expressions

and ? is one of ≤, ≥, >, <, or 6=.

Remarks:

• An element is either in a set or it is not in a set, it cannot be in a set more than once.

• It is not necessary that we know specifically which element of the domain an expression repre-
sents, only that it represents some unspecified element in that set.

• We do not have to know if a statement is true or false, just that it is either true or false.

• If a statement contains n variables, x1, . . . xn, then to solve the statement is to find the set of
all n-tuples (a1, . . . , an) such that each ai is an element of the domain of xi and the statement

becomes true when x1, . . . , xn are replaced by a1, . . . , an respectively. In this situation, each such

n-tuple is called a solution of the statement.

Rules of Inference and Proof

Definition: A rule of inference is a rule which takes zero or more statements (or other items) as input

and returns one or more statements as output (conclusions).

3

Notation. A rule of inference can be expressed in recipe notation as

Show: P1
...

Show: Pk

Conclude: Q1
...

Conclude: Qn

Definition: A formal logic system consists of a set of statements and a set of rules of inference.

Definition: A proof in a formal logic system consists of a finite sequence of statements (and other

inputs to the rules of inference) such that each statement follows from the previous statements in the

sequence by one or more of the rules of inference.

Definition: A proof of a statement P in a formal logic system is a proof in the system whose last

statement is P .

Propositional Logic

The Five Logical Operators

Definition: Let P ,Q be statements. Then the five expressions “¬P”, “P andQ”, “P orQ”, “P ⇒ Q”,
and “P ⇔ Q” are also statements whose truth values are completely determined by the truth values
of P and Q as Shown in the following table:

P Q ¬P P andQ P orQ P ⇒ Q P ⇔ Q

T T F T T T T

T F F F T F F

F T T F T T F

F F T F F T T

4

Natural Deduction

Notation. The symbol ← is an abbreviation for “end assumption”.

Rules of Inference for Propositional Logic

and+ and−
Show: W

Show: V

Conclude: W and V

Show: W and V

Conclude: W

Conclude: V

⇒ + ⇒ − (modus ponens)
Assume W

Show: V

←
Conclude: W ⇒ V

Show: W

Show: W ⇒ V
Conclude: V

⇔ + ⇔ −
Show: W ⇒ V
Show: V ⇒ W
Conclude: W ⇔ V

Show: W ⇔ V
Conclude: W ⇒ V
Conclude: V ⇒ W

or+ or− (proof by cases)
Show: W

Conclude: W or V

Conclude: V orW

Show: W or V

Show: W ⇒ U
Show: V ⇒ U
Conclude: U

¬+ (proof by contradiction) ¬− (proof by contradiction)
Assume W

Show: →←
←

Conclude: ¬W

Assume ¬W
Show: →←
←

Conclude: W

→← +
Show: W

Show: ¬W
Conclude: →←

Remarks:

• The italicized word Assume is actually entered as part of the proof itself, not just instructions
in the recipe like the words ’Show:’ and ’Conclude:’

• The inputs “Assume - and “← are not themselves statements that you prove or are given, but
rather are inputs to rules of inference that may be inserted into a proof at any time. There is no

reason however, to insert such statements unless you intend to use one of the rules of inference

that requires them as inputs.

• The statement following an Assume is the same as any other statement in the proof and can
be used as an input to a rule of inference.

5

• Statements in an Assume-← block can be used as inputs to rules of inference whose conclusion
is also inside the same block only. Once a Assume is closed with a matching ←, only the entire
block can be used as an input to a rule of inference. The individual statements within a block

are no longer valid outside the block. We usually indent and Assume-← block to keep track of
what statements are valid under which assumptions.

Predicate Logic

Quantifiers

Definition: The symbols ∀ and ∃ are quantifiers. The symbol ∀ is called “for all, “for every, or “for
each. The symbol ∃ is called “for some or “there exists.

Definition: If x is a variable, t an expression, and W (x) a statement then W (t) is the statement

obtained by replacing every free occurance of x in W (x) with t.

Definition: If W is a statement and x is any variable then ∀x,W and ∃x,W are both statements. The
rules of inference for these quantifiers are given in the following table.

Rules of Inference for Quantifiers∗

∀+ ∀−
Let s be arbitrary

Show: W (s)

Conclude: ∀x,W (x)

Show: ∀x,W (x)
Conclude: W (t)

∃+ ∃−
Show: W (t)

Conclude: ∃x,W (x)
Show: ∃x,W (x)
Conclude: W (c) for some c

∗Restrictions:

• In ∀+, s cannot appear as a free variable in any assumption or premise, andW (s) cannot contain
any constants which were produced by the ∃− rule.

• In ∀− and ∃+, no free variable in t may become bound when t is substituted for x in W (x).

• In ∃+, t can be an expression, and W (x) can be the expression obtained by replacing one or
more of the occurrences of t with x .

• In ∃−, c must be a new constant in the proof.

Definition: Let W (x) be a statement and W (y) the statement obtained by replacing every free

occurrence of x in W (x) with y . We define

(∃!x,W (x))⇔ ∃x, (W (x) and ∀y ,W (y)⇒ y = x)

The statement ∃!x,W (x) is read “There exists a unique x such that W (x).

6

Rules of Inference for Unique Existence∗

∃!+ ∃!−
Show: W (s)

Let y be arbitrary.

Assume W (y)

Show: y = s

←
Conclude: ∃!x,W (x)

Show: ∃!x,W (x)
Conclude: ∃x,W (x) and∀y ,W (y)⇒ y = x

Equality

Definition: The equality symbol, =, is defined by the two rules of inference given as follows.

Rules of Inference for Equality

Reflexivity of = Substitution∗

Conclude: x = x Show: x = y

Show: W

Conclude: W with the nth free occurrence of x

replaced by y .

∗Restriction: No free variable in y may become bound when y is substituted for x in W .

Remark. Note that in the Reflexive rule there are no inputs, so you can insert a statement of the form

x = x into your proof at any time.

Precedence: Quantifiers have a lower precedence than ⇔. Thus they quantify the largest statement
to their right possible unless specifically limited by parentheses. In order to eliminate parentheses we

give the operators the following precedence (from highest to lowest):

Precedence of Logical Operators

other math operators (+,=, ·,∪,−, etc.)

¬

and,or

⇒

⇔

∀,∃,∃!

Sets, Functions, Numbers

Basic Definitions from Set theory

The symbol ∈ is formally undefined, but it means “is an element of”. The expression x ∈ A is a
statement that is true if and only if A is a set and x is an element of A. Many of the definitions below

are informal definitions that are sufficient for our purposes.

7

Basic set notation and operations

Finite set notation: x ∈ {x1, . . . , xn} ⇔ x = x1 or · · · or x = xn
Set builder notation: x ∈ { y : P (y) } ⇔ P (x)

Subset: A ⊆ B ⇔ ∀x, x ∈ A⇒ x ∈ B

Set equality: A = B ⇔ A ⊆ B and B ⊆ A

Def. of /∈: x /∈ A⇔ ¬ (x ∈ A)

Empty set: A = ∅⇔ ∀x, x /∈ A

Power set: P (A) = {B : B ⊆ A}

Intersection: x ∈ A ∩ B ⇔ x ∈ A and x ∈ B

Union: x ∈ A ∪ B ⇔ x ∈ A or x ∈ B

Relative Complement: x ∈ B − A⇔ x ∈ B and x /∈ A

Complement: x ∈ A⇔ x /∈ A

Indexed Intersection: x ∈
∩
i∈I
Ai ⇔ ∀i , i ∈ I ⇒ x ∈ Ai

Indexed Union: x ∈
∪
i∈I
Ai ⇔ ∃i , i ∈ I and x ∈ Ai

Two convenient abbreviations:
(∀x ∈ A, P (x))⇔ ∀x, x ∈ A⇒ P (x)
(∃x ∈ A, P (x))⇔ ∃x, x ∈ A andP (x)

Remark: Each such definition can be used as a line in a proof directly, with any of the free variables

replaced by any expression of the same type. As such, each represents a rule of inference with no

inputs and only the entire definition as a conclusion. However, in practice, it is usually quite useful to

use rules of inference that are derived from these definitions. Some of the more useful ones are listed

in the following table.

Rules of Inference for Basic Set Theory

Finite set notation+ Finite set notation−
Show: x = xk (where xk is one of x1, . . . , xn)

Conclude: x ∈ {x1, . . . , xn}
Show: x ∈ {x1, . . . , xn}
Conclude: x = x1 or x = x2 or · · · or x = xn

Set builder+ Set builder−
Show: P (x)

Conclude: x ∈ {y : P (y)}
Show: x ∈ { y : P (y) }
Conclude: P (x)

Subset+ Subset−
Let x ∈ A
Show: x ∈ B
Conclude: A ⊆ B

Show: A ⊆ B
Show: x ∈ A
Conclude: x ∈ B

Set equality+ Set equality−
Let x ∈ A
Show: x ∈ B
Let y ∈ B
Show: y ∈ A
Conclude: A = B

(see Substitution Rule)

8

Rules of Inference for Basic Set Theory

Not an element of+ Not an element of−
Show: ¬x ∈ A
Conclude: x /∈ A

Show: x /∈ A
Conclude: ¬x ∈ A

Empty Set+ Empty Set−
Let x be arbitrary

Show: x /∈ A
Conclude: A = ∅

Show: A = ∅
Conclude: x /∈ A

Power Set+ Power Set−
Show: B ⊆ A
Conclude: B ∈ P (A)

Show: B ∈ P (A)
Conclude: B ⊆ A

Intersection+ Intersection−
Show: x ∈ A
Show: x ∈ B
Conclude: x ∈ A ∩ B

Show: x ∈ A ∩ B
Conclude: x ∈ A
Conclude: x ∈ B

Union+ Union−
Show: x ∈ A
Conclude: x ∈ A ∪ B
Conclude: x ∈ B ∪ A

Show: x ∈ A ∪ B
Conclude: x ∈ A or x ∈ B

Relative Complement+ Relative Complement−
Show: x ∈ B
Show: x /∈ A
Conclude: x ∈ B − A

Show: x ∈ B − A
Conclude: x ∈ B
Conclude: x /∈ A

Complement+ Complement−
Show: x /∈ A
Conclude: x ∈ A

Show: x ∈ A
Conclude: x /∈ A

Indexed Intersection+ Indexed Intersection−
Let k ∈ I
Show: x ∈ Ak
Conclude: x ∈

∩
i∈I
Ai

Show: x ∈
∩
i∈I
Ai

Show: k ∈ I
Conclude: x ∈ Ak

Indexed Union+ Indexed Union−
Show: k ∈ I
Show: x ∈ Ak
Conclude: x ∈

∪
i∈I
Ai

Show: x ∈
∪
i∈I
Ai

Conclude: x ∈ Ak for some k ∈ I

Remarks:

• The expression “Let x ∈ A” is an abbreviation for “Let x be arbitrary. Assume x ∈ A.”. Thus
there is a hidden assumption to keep track of when using this shortcut. See the Proof Shortcuts

Handout for details.

• Usually we just use x /∈ A and ¬x ∈ A interchangeably in our proofs without invoking the “Not
an element of” rules.

9

Cartesian products

Ordered Pairs: (x, y) = (u, v)⇔ x = u and y = v

Ordered n-tuple: (x1, . . . , xn) = (y1, . . . , yn)⇔ x1 = y1 and · · · and xn = yn
Cartesian Product: A× B = {(x, y) : x ∈ A and y ∈ B}

Cartesian Product: A1 × · · · × An = {(x1, . . . , xn) : x1 ∈ A1 and · · · and xn ∈ An}

Power of a Set An = A× A× · · · × A where there are n “A’s in the Cartesian product

Remark: Each such definition can be used as a line in a proof directly, with any of the free variables

replaced by any expression of the same type. As such, each represents a rule of inference with no

inputs and only the entire definition as a conclusion. However, in practice, it is usually quite useful to

use rules of inference that are derived from these definitions. Some of the more useful ones are listed

in the following table.

Rules of Inference for Cartesian Products

Ordered pair+ Ordered pair−
Show: x = u

Show: y = v

Conclude: (x, y) = (u, v)

Show: (x, y) = (u, v)

Conclude: x = u

Conclude: y = v

Ordered n-tuple+ Ordered n-tuple−
Let k ∈ {1, 2, . . . , n}
Show: xk = yk
Conclude: (x1, . . . , xn) = (y1, . . . , yn)

Show: (x1, . . . , xn) = (y1, . . . , yn)

Show: k ∈ {1, 2, . . . , n}
Conclude: xk = yk

Cartesian Product+ Cartesian Product−
Show: x ∈ A
Show: y ∈ B
Conclude: (x, y) ∈ A× B

Show: z ∈ A× B
Conclude: z = (x, y) for some x ∈ A and y ∈ B

Cartesian Product+(n sets) Cartesian Product−(n sets)
Let k ∈ {1, 2, . . . , n}
Show: xk ∈ Ak
Conclude: (x1, . . . , xn) ∈ A1 × A2 × · · · × An

Show: z ∈ A1 × A2 × · · · × An
Conclude: z = (x1, . . . , xn) for some

x1 ∈ A1,x2 ∈ A2,. . .,xn ∈ An
Power of a set+ Power of a Set−
Let k ∈ {1, 2, . . . , n}
Show: xk ∈ A
Conclude: (x1, . . . , xn) ∈ An

Show: z ∈ An
Conclude: z = (x1, . . . , xn) for some

x1, . . . , xn ∈ An

Remark: The expression “for some x ∈ A and y ∈ B” is an abbreviation for two applications of the
∃− rule, namely it is declaring two constants x, y and further declaring that they are elements of set
A and set B respectively.

10

Functions

Def of function: f : A→ B ⇔ f ⊆ A× B and (∀x, ∃!y , (x, y) ∈ f)

Alt. function notation X
f→ Y ⇔ f : X → Y

Def of f (x): f (x) = y ⇔ f : A→ B and (x, y) ∈ f

Domain: Domain (f) = A⇔ f : A→ B

Codomain: Codomain (f) = B ⇔ f : A→ B

Image (of a set): S ⊆ Domain (f)⇒ f (S) = {f (x) : x ∈ S}

Range (or Image of f): Range (f) = f (Domain (f))

Identity Map: idA : A→ A and∀x, idA (x) = x

Composition: A
f→ B andB g→ C ⇒ A g◦f−→ C and ∀x, (g ◦ f) (x) = g (f (x))

Injective (one-to-one): f is injective ⇔ ∀x, ∀y , f (x) = f (y)⇒ x = y

Surjective (onto): f is surjective ⇔ f : A→ B and (∀y , y ∈ B ⇒ ∃x, y = f (x))

Bijective: f is bijective ⇔ f is injective and f is surjective

Inverse: f −1 : B → A⇔ f : A→ B and f ◦ f −1 = idB and f −1 ◦ f = idA
Inverse Image: f : A→ B and S ⊆ B ⇒ f −1 (S) = {x ∈ A : f (x) ∈ S}

Remark: Each such definition can be used as a line in a proof directly, with any of the free variables

replaced by any expression of the same type. As such, each represents a rule of inference with no

inputs and only the entire definition as a conclusion. However, in practice, it is usually quite useful to

use rules of inference that are derived from these definitions. Some of the more useful ones are listed

in the following table.

Rules of Inference for Functions

Function + Function−
Show: f ⊆ A× B
Let x ∈ A
Show: ∃!y ∈ B,(x, y) ∈ f
Conclude: f : A→ B

Show: f : A→ B
Show x ∈ A
Conclude: f ⊆ A× B
Conclude: ∃!y ∈ B, (x, y) ∈ f

Function application+ Function application−
Show: f : A→ B
Show: (x, y) ∈ f
Conclude: f (x) = y

Show: f : A→ B
Show: y = f (x)

Conclude: (x, y) ∈ f

Domain and Codomain+ Domain and Codomain−
Show: f : A→ B
Conclude: Domain (f) = A

Conclude: Codomain (f) = B

Show: f is a function

Show: Domain (f) = A

Show: Codomain (f) = B

Conclude: f : A→ B

11

Rules of Inference for Functions

Function equality+ Function equality−
Show: Domain (f) = Domain (g)

Show: Domain (f) = Domain (g)

Let x ∈ Domain (f)
Show: f (x) = g (x)

Conclude: f = g

(see Substitution Rule)

Image+ Image−
Show: x ∈ S
Conclude: f (x) ∈ f (S)

Show: f (x) ∈ f (S)
Conclude: x ∈ S

Range+ Range−
Show: y = f (x)

Conclude: y ∈ Range (f)
Show: y ∈ Range (f)
Conclude: y = f (x) for some x ∈ Domain (f)

Identity map+ Identity map−
Show: f : A→ A
Let x ∈ A
Show: f (x) = x

Conclude: f = idA

Conclude: idA (x) = x

Composition+ Composition−
Show: f:A→B
Show: g:B→C
Conclude: g ◦ f : A→ C
Conclude: g ◦ f (x) = g (f (x))

Show: h = g ◦ f
Conclude: h (x) = g (f (x))

Conclude: Domain (h) = Domain (f)

Conclude: Codomain (h) = Codomain (g)

Injective+ Injective−
Show: f : A→ B
Let x, y ∈ A

Assume f (x) = f (y)

Show: x = y

←
Conclude: f is injective

Show: f is injective

Show: f (x) = f (y)

Conclude: x = y

Surjective+ Surjective−
Show: f : A→ B
Let y ∈ B
Show: x ∈ A
Show: y = f (x)

Conclude: f is surjective

Show: f : A→ B is surjective
Show: y ∈ B
Conclude: y = f (x) for some x ∈ A

Bijective+ Bijective−
Show: f is injective

Show: f is surjective

Conclude: f is bijective

Show: f is bijective

Conclude: f is injective

Conclude: f is surjective

12

Rules of Inference for Functions

Inverse function+ Inverse function−
Show: f : A→ B
Show: g : B → A
Show: g ◦ f = idA
Show: f ◦ g = idB
Conclude: g = f −1

Show: f : A→ B
Show: f −1 exists
Conclude: f −1 : B → A
Conclude: f −1 (f (x)) = x
Conclude: f

(
f −1 (y)

)
= y

Inverse image+ Inverse image−
Show: f (x) ∈ T
Conclude: x ∈ f inv (T)

Show: x ∈ f inv (T)
Conclude: f (x) ∈ T

Remarks: The alternate function notation A
f→ B and standard function notation f : A→ B can be

used interchangeably without a rule of inference as a shortcut.

Theorem. A function has an inverse function if and only if it is bijective.

Famous Sets of Numbers

The Natural Numbers N = {0, 1, 2, 3, 4, . . .}
The Integers Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}
The Rational Numbers Q =

{
a
b : a ∈ Z, b ∈ N, b > 0, and gcd (a, b) = 1

}
The Real Numbers R = {x : x can be expressed as a decimal number}
The Complex Numbers C = {x + y i : x, y ∈ R} where i2 = −1
The positive real numbers R+ = {x : x ∈ R and x > 0}
The negative real numbers R− = {x : x ∈ R and x < 0}
The positive reals in a set A A+ = A ∩ R+

The negative reals in a set A A− = A ∩ R−

The first n positive integers In = {1, 2, . . . , n}
The first n + 1 natural numbers On = {0, 1, 2, . . . , n}

13

Relations

Def of 6= x 6= y ⇔ ¬ (x = y)

Def of relation: R is a relation from A to B ⇔ R ⊆ A× B

Relation on a set: R is a relation on A⇔ R ⊆ A× A

Infix notation: xRy ⇔ (x, y) ∈ R

Prefix notation: R (x, y)⇔ (x, y) ∈ R

Relation on a set: R is a relation on A⇔ R ⊆ A× A

Reflexive relation: R ⊆ A× A is reflexive⇔ ∀x ∈ A, xRx

Symmetric relation: R ⊆ A× A is symmetric⇔ ∀x ∈ A, ∀y ∈ A, xRy ⇒ yRx

Transitive relation:
R ⊆ A× A is
transitive⇔ ∀x ∈ A,∀y ∈ A,∀z ∈ A, xRy and yRz ⇒ xRz

Nonreflexive relation: R ⊆ A× A is nonreflexive⇔ ∀x ∈ A,¬xRx

Antisymmetric relation: R ⊆ A×A is antisymmetric ⇔ ∀x ∈ A, ∀y ∈ A, xRy and yRx ⇒ x = y

Total relation: R ⊆ A× A is total⇔ ∀x ∈ A,∀y ∈ A, xRy or yRx

Partial order:
R ⊆ A× A is a partial order ⇔ R is reflexive, antisymmetric, and
transitive.

Strict Partial order:
R ⊆ A× A is a strict partial order ⇔ R is nonreflexive, antisymmetric,
and transitive.

Total Order R ⊆ A× A is total order ⇔ R is antisymmetric, transitive, and total.

Equivalence Relation:
R ⊆ A× A is an equivalence relation⇔ R is reflexive, symmetric, and
transitive.

Equivalence Class:
R ⊆ A× A is an equivalence relation and
a ∈ A⇒ [a]R = {x ∈ A : xRa}

Partition of a set:
P is a partition of A⇔(∀S ∈ P, S 6= ∅ andS ⊆ A) and A =

∪
S∈P
S and

∀S ∈ P, ∀T ∈ P, S = T orS ∩ T = ∅
Remark: Each such definition can be used as a line in a proof directly, with any of the free variables

replaced by any expression of the same type. As such, each represents a rule of inference with no

inputs and only the entire definition as a conclusion. However, in practice, it is usually quite useful to

use rules of inference that are derived from these definitions. Some of the more useful ones are listed

in the following table.

Rules of Inference for Relations

Not equal+ Not an element of−
Show: ¬x = y
Conclude: x 6= y

Show: x 6= y
Conclude: ¬x = y

Relation+ Relation−
Show: R ⊆ A× B
Conclude: R is a relation from A to B

Show: R is a relation from A to B

Conclude: R ⊆ A× B

14

Rules of Inference for Relations

Relation on a set+ Relation on a set−
Show: R ⊆ A× A
Conclude: R is a relation on A

Show: R is a relation on A

Conclude: R ⊆ A× A

Reflexive+ Reflexive−
Let x ∈ A
Show: xRx

Conclude: R is reflexive

Show: R is reflexive

Conclude: xRx

Symmetric+ Symmetric−
Let x, y ∈ A

Assume xRy

Show: yRx

←
Conclude: R is symmetric

Show: R is symmetric

Show: xRy

Conclude: yRx

Transitive+ Transitive−
Let x, y , z ∈ A

Assume xRy and yRz

Show: xRz

←
Conclude: R is transitive

Show: R is transitive

Show: xRy

Show: yRz

Conclude: xRz

Nonreflexive+ Nonreflexive−
Let x ∈ A
Show: ¬xRx
Conclude: R is nonreflexive

Show: R is nonreflexive

Conclude: ¬xRx

Antisymmetric+ Antisymmetric−
Let x, y ∈ A

Assume xRy and yRx

Show: x = y

←
Conclude: R is antisymmetric

Show: R is antisymmetric

Show: xRy

Show: x 6= y
Conclude: ¬yRx

OR

Show: R is antisymmetric

Show: xRy

Conclude: x = y or¬yRx

Total relation+ Total relation−
Let x, y ∈ A
Show: xRy or yRx

Conclude: R is total

Show: R is total

Conclude: xRy or yRx

Partial order+ Partial order−
Show: R is reflexive

Show: R is antisymmetric

Show: R is transitive

Conclude: R is a partial order

Show: R is a partial order

Conclude: R is reflexive

Conclude: R is antisymmetric

Conclude: R is transitive

15

Rules of Inference for Relations

Strict partial order+ Strict partial order−
Show: R is nonreflexive

Show: R is antisymmetric

Show: R is transitive

Conclude: R is a strict partial order

Show: R is a strict partial order

Conclude: R is nonreflexive

Conclude: R is antisymmetric

Conclude: R is transitive

Total order+ Total order−
Show: R is antisymmetric

Show: R is transitive

Show: R is total

Conclude: R is a total order

Show: R is a total order

Conclude: R is antisymmetric

Conclude: R is transitive

Conclude: R is total

Equivalence relation+ Equivalence relation−
Show: R is reflexive

Show: R is symmetric

Show: R is transitive

Conclude: R is an equivalence relation

Show: R is an equivalence relation

Conclude: R is reflexive

Conclude: R is symmetric

Conclude: R is transitive

Equivalence class+ Equivalence class−
Show: xRa

Conclude: x ∈ [a]R
Show: x ∈ [a]R
Conclude: xRa

Partition+ Partition−
Let S, T ∈ P
Show: S 6= ∅
Show: S ⊆ A
Let x ∈ A
Show: x ∈ U for some U ∈ P

Assume x ∈ S and x ∈ T
Show: S = T

←
Conclude: P is a partition of A

Show: P is a partition of A

Show: S, T ∈ P
Conclude: S 6= ∅
Conclude: S ⊆ A
Conclude: S ∩ T = ∅ orS = T

OR

Show: P is a partition of A

Show: x ∈ A
Conclude: x ∈ S for some S ∈ P

Notation. We often abbreviate [a]R by [a] when the relation R is clear from context.

Theorem. Let R ⊆ A× A be an equivalence relation and a, b ∈ A. Then

[a] = [b]⇔ aRb.

Corollary. Let R ⊆ A×A be an equivalence relation. Then A is a disjoint union of equivalence classes,
i.e.

A =
∪
a∈A
[a]

and

∀a, b ∈ A, [a] = [b] or [a] ∩ [b] = ∅.

Remark. Thus, the set of equivalence classes of an equivalence relation on A is a partition of A.

Furthermore, every partition P of A is the set of equivalence classes for the equivalence relation R on

A defined by ∀x, y ∈ A, xRy ⇔ ∃S ∈ P, x ∈ S and y ∈ S.

16

Number Theory and Induction

Arithmetic and Algebra

While it is possible to give an axiomatic description of the natural numbers and the arithmetic oper-

ations of addition, subtraction, multiplication, division, and exponentiation, such a detailed study is

more appropriate in a full course on Number Theory.

By Arithmetic. For our purposes we will assume that the basic facts about the arithmetic of real or

integer constants that we know from elementary school are valid and may be used in a proof. Thus we

can make statements in our proof like “2+2 = 4” or “−3 < 2” and for the reason use “by arithmetic”
with no inputs.

By Algebra. Well will also assume the basic facts about the algebra of real numbers such as associa-

tivity, commutativity, distributivity, identity, inverse laws, and properties of signs and exponents. Thus

we can use statements about real numbers or integers like “x2 − 1 = (x + 1) (x − 1)” and for the
reason use “by algebra”.

Induction

One of the defining axioms of the natural numbers is mathematical induction. In the following, let

P (n) be a statement about a natural number variable n.

Types of Induction

Induction P (0) and (∀k ∈ N, P (k)⇒ P (k + 1))⇒ ∀n ∈ N, P (n)

Induction from a P (a) and (∀k ≥ a, P (k)⇒ P (k + 1))⇒ ∀n ≥ a, P (n)

Strong Induction P (0) and (∀k ∈ N, (∀j ≤ k, P (j))⇒ P (k + 1))⇒ ∀n ∈ N, P (n)

Strong Induction from a P (a) and (∀k ≥ a, (∀a ≤ j ≤ k, P (j))⇒ P (k + 1))⇒ ∀n ≥ a, P (n)

Remark: As usual, each such definition can be used as a line in a proof directly, with any of the free

variables replaced by any expression of the same type. As such, each represents a rule of inference

with no inputs and only the entire definition as a conclusion. However, in practice, it is usually quite

useful to use rules of inference that are derived from these definitions. Some of the more useful ones

are listed in the following table.

Rules of Inference for Proof by Induction

Induction Induction from a

Show: P (0)

Let k ∈ N
Assume P (k)

Show: P (k + 1)

←
Conclude: ∀n ∈ N, P (n)

Show: P (a)

Let k ∈ N and a≤k
Assume P (k)

Show: P (k + 1)

←
Conclude: ∀n ≥ a, P (n)

17

Rules of Inference for Proof by Induction

Strong Induction Strong Induction from a

Show: P (0)

Let k ∈ N
Assume ∀j ≤ k, P (j)
Show: P (k + 1)

←
Conclude: ∀n ∈ N, P (n)

Show: P (a)

Let k ∈ N and a ≤ k
Assume ∀a ≤ j ≤ k, P (j)
Show: P (k + 1)

←
Conclude: ∀n ≥ a, P (n)

Remark: It can be shown that any theorem you can prove with Strong Induction can be proved using

ordinary Induction and vice-versa. Also note that in strong induction the assumption should really be

∀j, a ≤ j ≤ k ⇒ P (j), i.e. it only holds for values of j that are greater than or equal to a.

Quotient, Remainder, Divisibility, and Mod

Here are some useful theorems and definitions about integers. In the following all single letter variables

have type integer.

Division Algorithm: ∀a, ∀b 6= 0,∃!q,∃!r, a = qb + r and 0 ≤ r < |b|

Quotient : ∀a, ∀b 6= 0,∀q, ∀r, a = qb + r and 0 ≤ r < |b| ⇔ q = (a quo b)

Remainder: ∀a, ∀b 6= 0,∀q, ∀r, a = qb + r and 0 ≤ r < |b| ⇔ r = (amod b)

Divides: a | b ⇔ ∃q, b = aq

Divisor (or factor): a is a divisor (or factor) of b ⇔ a | b

Prime: p is prime ⇔ p > 1 and ∀a > 0, a | p ⇒ a = 1or a = p

Composite: n is composite ⇔ n¿0and∃a, ∃b, n = ab and 1 < a, b < n

Congruent mod m: a ≡
m
b ⇔ m | (a − b)

Greatest Common Divisor:
d = gcd (a, b)⇔
d > 0 and d | a and d | b and∀c > 0, c | a and c | b ⇒ c ≤ d

Least Common Multiple:
d = lcm (a, b)⇔
d > 0 and a | d and b | d and∀c > 0, a | c and b | c ⇒ d ≤ c

GCD (alt version):
d = gcd (a, b)⇔
d > 0 and d | a and d | b and∀c > 0, c | a and c | b ⇒ c | d

LCM (alt version):
d = lcm (a, b)⇔
d > 0 and a | d and b | d and∀c > 0, a | c and b | c ⇒ d | c

Relatively Prime: a, b are relatively prime ⇔ gcd (a, b) = 1

Remarks: It is also possible to define prime and composite for negative integers by removing the

restriction that they be positive from their respective definitions.

As usual, each such definition can be used as a line in a proof directly, with any of the free variables

replaced by any expression of the same type. As such, each represents a rule of inference with no

inputs and only the entire definition as a conclusion. However, in practice, it is usually quite useful to

use rules of inference that are derived from these definitions. Some of the more useful ones are listed

in the following table.

18

Rules of Inference for Divisibility

Division Algorithm (existence) Division Algorithm (uniqueness)

Show: b 6= 0
Conclude: a = qb+ r for some q ∈ Z and some
0 ≤ r < |b|

Show: b 6= 0
Show: a = qb + r

Show: 0 ≤ r < |b|
Conclude: q = (a quo b)

Conclude: r = (amod b)

Quotient Remainder

Show: q = (a quo b)

Conclude: a = qb + r for some 0 ≤ r < |b|
Show: r = (amod b)

Conclude: a = qb + r for some q

Divides+ Divides−
Show: b = aq

Show: q ∈ Z
Conclude: a | b

Show: a | b
Conclude: b = aq for some q ∈ Z

Divisor+ Divisor−
Show: b = aq

Show: q ∈ Z
Conclude: a is a divisor of b

Show: a is a divisor of b

Conclude: b = aq for some q ∈ Z

Prime+ Prime−
Show: p > 1

Let a > 0

Assume a | p
Show: a = 1or a = p

←
Conclude: p is prime

Show: p is prime

Show: a > 0

Show: a | p
Conclude: a = 1or a = p

Composite+ Composite−
Show:n¿0

Show: n = ab

Show: 1 < a < n

Conclude: n is composite

Show: n is composite

Conclude:n¿0

Conclude: n = ab for some 1 < a, b < n

Congruent mod m+ Congruent mod m−
Show: m | a − b
Conclude: a ≡

m
b

Show: a ≡
m
b

Conclude: m | a − b

19

Rules of Inference for Divisibility

gcd+ gcd−
Show: d > 0

Show: d | a
Show: d | b
Let c > 0

Assume c | a and c | b
Show: c ≤ d
←

Conclude: d = gcd (a, b)

Show: d = gcd (a, b)

Conclude: d > 0

Conclude: d | a
Conclude: d | b
Conclude: ∀c > 0, c | a and c | b ⇒ c ≤ d

gcd+(alt) gcd−(alt)
Show: d > 0

Show: d | a
Show: d | b
Let c > 0

Assume c | a and c | b
Show: c | d
←

Conclude: d = gcd (a, b)

Show: d = gcd (a, b)

Conclude: d > 0

Conclude: d | a
Conclude: d | b
Conclude: ∀c > 0, c | a and c | b ⇒ c | d

lcm+ lcm−
Show: d > 0

Show: a | d
Show: b | d
Let c > 0

Assume a | c and b | c
Show: d ≤ c
←

Conclude: d = lcm (a, b)

Show: d = lcm (a, b)

Conclude: d > 0

Conclude: a | d
Conclude: b | d
Conclude: ∀c > 0, a | c and b | c ⇒ d ≤ c

lcm+(alt) lcm−(alt)
Show: d > 0

Show: a | d
Show: b | d
Let c > 0

Assume a | c and b | c
Show: d | c
←

Conclude: d = lcm (a, b)

Show: d = lcm (a, b)

Conclude: d > 0

Conclude: a | d
Conclude: b | d
Conclude: ∀c > 0, a | c and b | c ⇒ d | c

Relatively prime+ Relatively prime −
Show: gcd (a, b) = 1

Conclude: a, b are relatively prime

Show: a, b are relatively prime

Conclude: gcd (a, b) = 1

Remarks: Keep in mind that all single letter variables in these recipes have type integer, so you can’t

use these recipes on expressions that don’t have the correct type.

Precedence: Arithmetic relations such as =, 6=, <,≤,≡
m
have a lower precedence than arithmetic

20

operations such as +,−, ·, /, ˆ.

