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2LogiVariables, Expressions, and StatementsTerm De�nitionset A set is a olletion of items.element The items in a set are alled its elements (or members).expression An expression is an arrangement of symbols whih represents an element of a settype The set of elements that an expression an represent is alled the type of theexpression.value The element of the domain that the expression represents is alled a value ofthat expression.variable A variable is an expression onsisting of a single symbolonstant A onstant is an expression whose domain ontains a single element.statement A statement (or Boolean expression) is an expression whose domain is
{ true, false}.truth value The value of a statement is alled its truth value.solve To solve a statement is to determine the set of all elements for whih thestatement is true.solution set The set of all solutions of a statement is alled the solution set.equation An equation is a statement of the form A = B where A and B are expressions.inequality An inequality is a statement of the form A ⋆ B where A and B are expressionsand ⋆ is one of ≤, ≥, >, <, or 6=.Remarks:

• An element is either in a set or it is not in a set, it annot be in a set more than one.
• It is not neessary that we know spei�ally whih element of the domain an expression repre-sents, only that it represents some unspei�ed element in that set.
• We do not have to know if a statement is true or false, just that it is either true or false.
• If a statement ontains n variables, x1, . . . xn, then to solve the statement is to �nd the set ofall n-tuples (a1, . . . , an) suh that eah ai is an element of the domain of xi and the statementbeomes true when x1, . . . , xn are replaed by a1, . . . , an respetively. In this situation, eah suh
n-tuple is alled a solution of the statement.Propositional LogiThe Five Logial OperatorsDe�nition: Let P ,Q be statements. Then the �ve expressions �¬P �, �P andQ�, �P orQ�, �P ⇒ Q�,and �P ⇔ Q� are also statements whose truth values are ompletely determined by the truth valuesof P and Q as Shown in the following table:
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P Q ¬P P andQ P orQ P ⇒ Q P ⇔ QT T F T T T TT F F F T F FF T T F T T FF F T F F T TRules of Inferene and ProofDe�nition: A rule of inferene is a rule whih takes zero or more statements (or other items) as inputand returns one or more statements as output (onlusions).Notation. A rule of inferene an be expressed in reipe notation asShow: P1...Show: PkConlude: Q1...Conlude: QnDe�nition: A formal logi system onsists of a set of statements and a set of rules of inferene.De�nition: A proof in a formal logi system onsists of a �nite sequene of statements (and otherinputs to the rules of inferene) suh that eah statement follows from the previous statements in thesequene by one or more of the rules of inferene.Natural DedutionNotation. The symbol ← is an abbreviation for �end assumption�.Rules of Inferene for Propositional Logi

and+ and−Show: WShow: VConlude: W and V Show: W and VConlude: WConlude: V
⇒ + ⇒ − (modus ponens)Assume WShow: V

←Conlude: W ⇒ V Show: WShow: W ⇒ VConlude: V
⇔ + ⇔ −Show: W ⇒ VShow: V ⇒ WConlude: W ⇔ V Show: W ⇔ VConlude: W ⇒ VConlude: V ⇒ W



4Rules of Inferene for Propositional Logi
or+ or− (proof by ases)Show: WConlude: W or VConlude: V orW Show: W or VShow: W ⇒ UShow: V ⇒ UConlude: U
¬+ (proof by ontradition) ¬− (proof by ontradition)Assume WShow: →←

←Conlude: ¬W Assume ¬WShow: →←
←Conlude: W

→← +Show: WShow: ¬WConlude: →←Remarks:
• The italiized word Assume is atually entered as part of the proof itself, not just instrutionsin the reipe like the words 'Show:' and 'Conlude:'
• The inputs �Assume -� and �←� are not themselves statements that you prove or are given, butrather are inputs to rules of inferene that may be inserted into a proof at any time. There is noreason however, to insert suh statements unless you intend to use one of the rules of inferenethat requires them as inputs.
• The statement following an Assume is the same as any other statement in the proof and anbe used as an input to a rule of inferene.
• Statements in an Assume-← blok an be used as inputs to rules of inferene whose onlusionis also inside the same blok only. One a Assume is losed with a mathing ←, only the entireblok an be used as an input to a rule of inferene. The individual statements within a blokare no longer valid outside the blok. We usually indent and Assume-← blok to keep trak ofwhat statements are valid under whih assumptions.Prediate LogiQuanti�ersDe�nition: The symbols ∀ and ∃ are quanti�ers. The symbol ∀ is alled �for all�, �for every�, or �foreah�. The symbol ∃ is alled �for some� or �there exists�.De�nition: If x is a variable, t an expression, and W (x) a statement then W (t) is the statementobtained by replaing every free ourane of x in W (x) with t.De�nition: If W is a statement and x is any variable then ∀x,W and ∃x,W are both statements. Therules of inferene for these quanti�ers are given in the following table.



5Rules of Inferene for Quanti�ers∗
∀+ ∀−Let s be arbitraryShow: W (s)Conlude: ∀x,W (x) Show: ∀x,W (x)Conlude: W (t)
∃+ ∃−Show: W (t)Conlude: ∃x,W (x) Show: ∃x,W (x)Conlude: W (c) for some c
∗Restritions:
• In ∀+, s annot appear as a free variable in any assumption or premise, andW (s) annot ontainany onstants whih were produed by the ∃− rule.
• In ∀− and ∃+, no free variable in t may beome bound when t is substituted for x in W (x).
• In ∃+, t an be an expression, and W (x) an be the expression obtained by replaing one ormore of the ourrenes of t with x .
• In ∃−, c must be a new onstant in the proof.De�nition: Let W (x) be a statement and W (y) the statement obtained by replaing every freeourrene of x in W (x) with y . We de�ne

(∃!x,W (x))⇔ ∃x, (W (x) and∀y ,W (y)⇒ y = x)The statement ∃!x,W (x) is read �There exists a unique x suh that W (x).�Rules of Inferene for Unique Existene∗
∃!+ ∃!Show: W (s)Let y be arbitrary.Assume W (y)Show: y = s

←Conlude: ∃!x,W (x)
Show: ∃!x,W (x)Conlude: ∃x,W (x) and∀y ,W (y)⇒ y = x

EqualityDe�nition: The equality symbol, =, is de�ned by the two rules of inferene given as follows.Rules of Inferene for EqualityRe�exivity of = Substitution∗Conlude: x = x Show: x = yShow: WConlude: W with the nth free ourrene of xreplaed by y .
∗Restrition: No free variable in y may beome bound when y is substituted for x in W .



6Remark. Note that in the Re�exive rule there are no inputs, so you an insert a statement of the form
x = x into your proof at any time.Preedene: Quanti�ers have a lower preedene than ⇔. Thus they quantify the largest statementto their right possible unless spei�ally limited by parentheses. In order to eliminate parentheses wegive the operators the following preedene (from highest to lowest):Preedene of Logial Operatorsother math operators (+,=, ·,∪,−, et.)

¬

and,or
⇒

⇔

∀, ∃, ∃!Sets, Funtions, NumbersBasi De�nitions from Set theoryThe symbol ∈ is formally unde�ned, but it means �is an element of�. The expression x ∈ A is astatement that is true if and only if A is a set and x is an element of A. Many of the de�nitions beloware informal de�nitions that are su�ient for our purposes.Basi set notation and operationsFinite set notation: x ∈ {x1, . . . , xn} ⇔ x = x1 or · · · or x = xnSet builder notation: x ∈ { y : P (y) } ⇔ P (x)Subset: A ⊆ B ⇔ ∀x, x ∈ A⇒ x ∈ BSet equality: A = B ⇔ A ⊆ B and B ⊆ ADef. of /∈: x /∈ A⇔ ¬ (x ∈ A)Empty set: A = ∅⇔ ∀x, x /∈ APower set: P (A) = {B : B ⊆ A}Intersetion: x ∈ A ∩B ⇔ x ∈ A and x ∈ BUnion: x ∈ A ∪B ⇔ x ∈ A or x ∈ BRelative Complement: x ∈ B − A⇔ x ∈ B and x /∈ AComplement: x ∈ A⇔ x /∈ AIndexed Intersetion: x ∈
⋂

i∈I

Ai ⇔ ∀i , i ∈ I ⇒ x ∈ AiIndexed Union: x ∈
⋃

i∈I

Ai ⇔ ∃i , i ∈ I and x ∈ AiTwo onvenient abbreviations: (∀x ∈ A, P (x))⇔ ∀x, x ∈ A⇒ P (x)

(∃x ∈ A, P (x))⇔ ∃x, x ∈ A andP (x)



7Remark: Eah suh de�nition an be used as a line in a proof diretly, with any of the free variablesreplaed by any expression of the same type. As suh, eah represents a rule of inferene with noinputs and only the entire de�nition as a onlusion. However, in pratie, it is usually quite useful touse rules of inferene that are derived from these de�nitions. Some of the more useful ones are listedin the following table. Rules of Inferene for Basi Set TheoryFinite set notation+ Finite set notation−Show: x = xk (where xk is one of x1, . . . , xn)Conlude: x ∈ {x1, . . . , xn} Show: x ∈ {x1, . . . , xn}Conlude: x = x1 or x = x2 or · · · or x = xnSet builder+ Set builder−Show: P (x)Conlude: x ∈ {y : P (y)} Show: x ∈ { y : P (y) }Conlude: P (x)Subset+ Subset−Let x ∈ AShow: x ∈ BConlude: A ⊆ B Show: A ⊆ BShow: x ∈ AConlude: x ∈ BSet equality+ Set equality−Let x ∈ AShow: x ∈ BLet y ∈ BShow: y ∈ AConlude: A = B (see Substitution Rule)
Not an element of+ Not an element of−Show: ¬x ∈ AConlude: x /∈ A Show: x /∈ AConlude: ¬x ∈ AEmpty Set+ Empty Set−Let x be arbitraryShow: x /∈ AConlude: A = ∅ Show: A = ∅Conlude: x /∈ APower Set+ Power Set−Show: B ⊆ AConlude: B ∈ P (A) Show: B ∈ P (A)Conlude: B ⊆ AIntersetion+ Intersetion−Show: x ∈ AShow: x ∈ BConlude: x ∈ A ∩ B Show: x ∈ A ∩ BConlude: x ∈ AConlude: x ∈ BUnion+ Union−Show: x ∈ AConlude: x ∈ A ∪ BConlude: x ∈ B ∪ A Show: x ∈ A ∪ BConlude: x ∈ A or x ∈ B



8Rules of Inferene for Basi Set TheoryRelative Complement+ Relative Complement−Show: x ∈ BShow: x /∈ AConlude: x ∈ B − A Show: x ∈ B − AConlude: x ∈ BConlude: x /∈ AComplement+ Complement−Show: x /∈ AConlude: x ∈ A Show: x ∈ AConlude: x /∈ AIndexed Intersetion+ Indexed Intersetion−Let k ∈ IShow: x ∈ AkConlude: x ∈ ⋂

i∈I

Ai

Show: x ∈ ⋂

i∈I

AiShow: k ∈ IConlude: x ∈ AkIndexed Union+ Indexed Union−Show: k ∈ IShow: x ∈ AkConlude: x ∈ ⋃

i∈I

Ai

Show: x ∈ ⋃

i∈I

AiConlude: x ∈ Ak for some k ∈ IRemarks:
• The expression �Let x ∈ A� is an abbreviation for �Let x be arbitrary. Assume x ∈ A.�. Thusthere is a hidden assumption to keep trak of when using this shortut. See the Proof ShortutsHandout for details.
• Usually we just use x /∈ A and ¬x ∈ A interhangeably in our proofs without invoking the �Notan element of� rules.Cartesian produtsOrdered Pairs: (x, y) = (u, v)⇔ x = u and y = vOrdered n-tuple: (x1, . . . , xn) = (y1, . . . , yn)⇔ x1 = y1 and · · · and xn = ynCartesian Produt: A× B = {(x, y) : x ∈ A and y ∈ B}Cartesian Produt: A1 × · · · × An = {(x1, . . . , xn) : x1 ∈ A1 and · · · and xn ∈ An}Power of a Set An = A×A× · · · ×A where there are n �A's� in the Cartesian produtRemark: Eah suh de�nition an be used as a line in a proof diretly, with any of the free variablesreplaed by any expression of the same type. As suh, eah represents a rule of inferene with noinputs and only the entire de�nition as a onlusion. However, in pratie, it is usually quite useful touse rules of inferene that are derived from these de�nitions. Some of the more useful ones are listedin the following table. Rules of Inferene for Cartesian ProdutsOrdered pair+ Ordered pair−



9Rules of Inferene for Cartesian ProdutsShow: x = uShow: y = vConlude: (x, y) = (u, v) Show: (x, y) = (u, v)Conlude: x = uConlude: y = v



10Rules of Inferene for Cartesian ProdutsOrdered n-tuple+ Ordered n-tuple−Let k ∈ {1, 2, . . . , n}Show: xk = ykConlude: (x1, . . . , xn) = (y1, . . . , yn) Show: (x1, . . . , xn) = (y1, . . . , yn)Show: k ∈ {1, 2, . . . , n}Conlude: xk = ykCartesian Produt+ Cartesian Produt−Show: x ∈ AShow: y ∈ BConlude: (x, y) ∈ A× B Show: z ∈ A× BConlude: z = (x, y) for some x ∈ A and y ∈ BCartesian Produt+(n sets) Cartesian Produt−(n sets)Let k ∈ {1, 2, . . . , n}Show: xk ∈ AkConlude: (x1, . . . , xn) ∈ A1 × A2 × · · · × An Show: z ∈ A1 × A2 × · · · × AnConlude: z = (x1, . . . , xn) for some
x1 ∈ A1,x2 ∈ A2,. . .,xn ∈ AnPower of a set+ Power of a Set−Let k ∈ {1, 2, . . . , n}Show: xk ∈ AConlude: (x1, . . . , xn) ∈ An Show: z ∈ AnConlude: z = (x1, . . . , xn) for some
x1, . . . , xn ∈ AnRemark: The expression �for some x ∈ A and y ∈ B� is an abbreviation for two appliations of the

∃− rule, namely it is delaring two onstants x, y and further delaring that they are elements of set
A and set B respetively.FuntionsDef of funtion: f : A→ B ⇔ f ⊆ A× B and (∀x, ∃!y , (x, y) ∈ f )Alt. funtion notation X

f
→ Y ⇔ f : X → YDef of f (x): f (x) = y ⇔ f : A→ B and (x, y) ∈ fDomain: Domain (f ) = A⇔ f : A→ BCodomain: Codomain (f ) = B ⇔ f : A→ BImage (of a set): f (S) = {y : ∃x, x ∈ S and y = f (x)}Range (or Image of f ): Range (f ) = f (Domain (f ))Identity Map: idA : A→ A and∀x, idA (x) = xComposition: A
f
→ B andB

g
→ C ⇒ A

g◦f
−→ C and∀x, (g ◦ f ) (x) = g (f (x))Injetive (one-to-one): f is injetive ⇔ ∀x, ∀y , f (x) = f (y)⇒ x = ySurjetive (onto): f is surjetive ⇔ f : A→ B and (∀y , y ∈ B ⇒ ∃x, y = f (x))Bijetive: f is bijetive ⇔ f is injetive and f is surjetiveInverse: f −1 : B → A⇔ f : A→ B and f ◦ f −1 = idB and f

−1 ◦ f = idAInverse Image: f : A→ B and S ⊆ B ⇒ f −1 (S) = {x ∈ A : f (x) ∈ S}Remark: Eah suh de�nition an be used as a line in a proof diretly, with any of the free variablesreplaed by any expression of the same type. As suh, eah represents a rule of inferene with no



11inputs and only the entire de�nition as a onlusion. However, in pratie, it is usually quite useful touse rules of inferene that are derived from these de�nitions. Some of the more useful ones are listedin the following table. Rules of Inferene for FuntionsFuntion + Funtion−Show: f ⊆ A×BLet x ∈ AShow: ∃!y ∈ B,(x, y) ∈ fConlude: f : A→ B Show: f : A→ BShow x ∈ AConlude: f ⊆ A× BConlude: ∃!y ∈ B, (x, y) ∈ fFuntion appliation+ Funtion appliation−Show: f : A→ BShow: (x, y) ∈ fConlude: f (x) = y Show: f : A→ BShow: y = f (x)Conlude: (x, y) ∈ fDomain and Codomain+ Domain and Codomain−Show: f : A→ BConlude: Domain (f ) = AConlude: Codomain (f ) = B Show: f is a funtionShow: Domain (f ) = AShow: Codomain (f ) = BConlude: f : A→ BFuntion equality+ Funtion equality−Show: Domain (f ) = Domain (g)Show: Domain (f ) = Domain (g)Let x ∈ Domain (f )Show: f (x) = g (x)Conlude: f = g (see Substitution Rule)
Image+ Image−Show: x ∈ SConlude: f (x) ∈ f (S) Show: f (x) ∈ f (S)Conlude: x ∈ SRange+ Range−Show: y = f (x)Conlude: y ∈ Range (f ) Show: y ∈ Range (f )Conlude: y = f (x) for some x ∈ Domain (f )Identity map+ Identity map−Show: f : A→ ALet x ∈ AShow: f (x) = xConlude: f = idA Conlude: idA (x) = xComposition+ Composition−Show: f:A→BShow: g:B→CConlude: g ◦ f : A→ CConlude: g ◦ f (x) = g (f (x)) Show: h = g ◦ fConlude: h (x) = g (f (x))Conlude: Domain (h) = Domain (f )Conlude: Codomain (h) = Codomain (g)



12Rules of Inferene for FuntionsInjetive+ Injetive−Show: f : A→ BLet x, y ∈ AAssume f (x) = f (y)Show: x = y
←Conlude: f is injetive

Show: f is injetiveShow: f (x) = f (y)Conlude: x = ySurjetive+ Surjetive−Show: f : A→ BLet y ∈ BShow: y = f (x) for some x ∈ AConlude: f is surjetive Show: f : A→ B is surjetiveShow: y ∈ BConlude: y = f (x) for some x ∈ ABijetive+ Bijetive−Show: f is injetiveShow: f is surjetiveConlude: f is bijetive Show: f is bijetiveConlude: f is injetiveConlude: f is surjetiveInverse funtion+ Inverse funtion−Show: f : A→ BShow: g : B → AShow: g ◦ f = idAShow: f ◦ g = idBConlude: g = f −1 Show: f : A→ BShow: f −1 existsConlude: f −1 : B → AConlude: f −1 (f (x)) = xConlude: f (f −1 (y)) = yInverse image+ Inverse image−Show: f (x) ∈ TConlude: x ∈ f inv (T ) Show: x ∈ f inv (T )Conlude: f (x) ∈ TRemarks: The alternate funtion notation A f
→ B and standard funtion notation f : A→ B an beused interhangeably without a rule of inferene as a shortut.Theorem. A funtion has an inverse funtion if and only if it is bijetive.



13Famous Sets of NumbersThe Natural Numbers N = {0, 1, 2, 3, 4, . . .}The Integers Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}The Rational Numbers Q =
{

a
b
: a ∈ Z, b ∈ N, b > 0, and gcd (a, b) = 1}The Real Numbers R = {x : x an be expressed as a deimal number}The Complex Numbers C = {x + y i : x, y ∈ R} where i2 = −1The positive real numbers R+ = {x : x ∈ R and x > 0}The negative real numbers R− = {x : x ∈ R and x < 0}The positive reals in a set A A+ = A ∩R+The negative reals in a set A A− = A ∩R−The �rst n positive integers In = {1, 2, . . . , n}The �rst n + 1 natural numbers On = {0, 1, 2, . . . , n}



14RelationsDef of 6= x 6= t ⇔ ¬ (x = t)Def of relation: R is a relation from A to B ⇔ R ⊆ A× BRelation on a set: R is a relation on A⇔ R ⊆ A× AIn�x notation: xRy ⇔ (x, y) ∈ RPre�x notation: R (x, y)⇔ (x, y) ∈ RRelation on a set: R is a relation on A⇔ R ⊆ A× ARe�exive relation: R ⊆ A× A is re�exive⇔ ∀x ∈ A, xRxSymmetri relation: R ⊆ A× A is symmetri⇔ ∀x ∈ A, ∀y ∈ A, xRy ⇒ yRxTransitive relation: R ⊆ A× A istransitive⇔ ∀x ∈ A, ∀y ∈ A, ∀z ∈ A, xRy and yRz ⇒ xRzNonre�exive relation: R ⊆ A× A is nonre�exive⇔ ∀x ∈ A,¬xRxAntisymmetri relation: R ⊆ A×A is antisymmetri ⇔ ∀x ∈ A, ∀y ∈ A, xRy and yRx ⇒ x = yTotal relation: R ⊆ A× A is total⇔ ∀x ∈ A, ∀y ∈ A, xRy or yRxPartial order: R ⊆ A× A is a partial order ⇔ R is re�exive, antisymmetri, andtransitive.Strit Partial order: R ⊆ A× A is a strit partial order ⇔ R is nonre�exive, antisymmetri,and transitive.Total Order R ⊆ A× A is total order ⇔ R is antisymmetri, transitive, and total.Equivalene Relation: R ⊆ A× A is an equivalene relation⇔ R is re�exive, symmetri, andtransitive.Equivalene Class: R ⊆ A× A is an equivalene relation and
a ∈ A⇒ [a]R = {x ∈ A : xRa}Partition of a set: P is a partition of A⇔(∀S ∈ P, S 6= ∅ andS ⊆ A) and A = ⋃

S∈P

S and
∀S ∈ P, ∀T ∈ P, S = T orS ∩ T = ∅Remark: Eah suh de�nition an be used as a line in a proof diretly, with any of the free variablesreplaed by any expression of the same type. As suh, eah represents a rule of inferene with noinputs and only the entire de�nition as a onlusion. However, in pratie, it is usually quite useful touse rules of inferene that are derived from these de�nitions. Some of the more useful ones are listedin the following table. Rules of Inferene for RelationsNot equal+ Not an element of−Show: ¬x = yConlude: x 6= y Show: x 6= yConlude: ¬x = yRelation+ Relation−Show: R ⊆ A× BConlude: R is a relation from A to B Show: R is a relation from A to BConlude: R ⊆ A× B



15Rules of Inferene for RelationsRelation on a set+ Relation on a set−Show: R ⊆ A× AConlude: R is a relation on A Show: R is a relation on AConlude: R ⊆ A× ARe�exive relation+ Re�exive relation−Let x ∈ AShow: xRxConlude: R is re�exive Show: R is re�exiveConlude: xRxSymmetri+ Symmetri−Let x, y ∈ AAssume xRyShow: yRx
←Conlude: R is symmetri Show: R is symmetriShow: xRyConlude: yRxTransitive+ Transitive−Let x, y , z ∈ AAssume xRy and yRzShow: xRz
←Conlude: R is transitive Show: R is transitiveShow: xRyShow: yRzConlude: xRzNonre�exive+ Nonre�exive−Let x ∈ AShow: ¬xRxConlude: R is nonre�exive Show: R is nonre�exiveConlude: ¬xRxAntisymmetri+ Antisymmetri−Let x, y ∈ AAssume xRyShow: ¬yRx
←Conlude: R is antisymmetri Show: R is antisymmetriShow: xRyConlude: ¬yRxTotal relation+ Total relation−Let x, y ∈ AShow: xRy or yRxConlude: R is total Show: R is totalConlude: xRy or yRxPartial order+ Partial order−Show: R is re�exiveShow: R is antisymmetriShow: R is transitiveConlude: R is a partial order Show: R is a partial orderConlude: R is re�exiveConlude: R is antisymmetriConlude: R is transitive



16Rules of Inferene for RelationsStrit partial order+ Strit partial order−Show: R is nonre�exiveShow: R is antisymmetriShow: R is transitiveConlude: R is a strit partial order Show: R is a strit partial orderConlude: R is nonre�exiveConlude: R is antisymmetriConlude: R is transitiveTotal order+ Total order−Show: R is antisymmetriShow: R is transitiveShow: R is totalConlude: R is a partial order Show: R is a total orderConlude: R is antisymmetriConlude: R is transitiveConlude: R is totalEquivalene relation+ Equivalene relation−Show: R is re�exiveShow: R is symmetriShow: R is transitiveConlude: R is an equivalene relation Show: R is an equivalene relationConlude: R is re�exiveConlude: R is symmetriConlude: R is transitiveEquivalene lass+ Equivalene lass−Show: xRaConlude: x ∈ [a]R Show: x ∈ [a]RConlude: xRaPartition+ Partition−Let S, T ∈ PShow: S 6= ∅Show: S ⊆ ALet x ∈ AShow: x ∈ U for some U ∈ PAssume x ∈ S and x ∈ TShow: S = T
←Conlude: P is a partition of A

Show: P is a partition of AShow: S, T ∈ PConlude: S 6= ∅Conlude: S ⊆ AConlude: S ∩ T = ∅ orS = TORShow: P is a partition of AShow: x ∈ AConlude: x ∈ S for some S ∈ PNotation. We often abbreviate [a]R by [a] when the relation R is lear from ontext.Theorem. Let R ⊆ A× A be an equivalene relation and a, b ∈ A. Then
[a] = [b]⇔ aRb.Corollary. Let R ⊆ A×A be an equivalene relation. Then A is a disjoint union of equivalene lasses,i.e.
A =

⋃

a∈A

[a]and
∀a, b ∈ A, [a] = [b] or [a] ∩ [b] = ∅.Remark. Thus, the set of equivalene lasses of an equivalene relation on A is a partition of A.Furthermore, every partition P of A is the set of equivalene lasses for the equivalene relation R on

A de�ned by ∀x, y ∈ A, xRy ⇔ ∃S ∈ P, x ∈ S and y ∈ S.



17Number Theory and IndutionArithmeti and AlgebraWhile it is possible to give an axiomati desription of the natural numbers and the arithmeti oper-ations of addition, subtration, multipliation, division, and exponentiation, suh a detailed study ismore appropriate in a full ourse on Number Theory.By Arithmeti. For our purposes we will assume that the basi fats about the arithmeti of real orinteger onstants that we know from elementary shool are valid and may be used in a proof. Thus wean make statements in our proof like �2+2 = 4” or �−3 < 2� and for the reason use �by arithmeti�with no inputs.By Algebra. Well will also assume the basi fats about the algebra of real numbers suh as assoia-tivity, ommutativity, distributivity, identity, inverse laws, and properties of signs and exponents. Thuswe an use statements about real numbers or integers like �x2 − 1 = (x + 1) (x − 1)� and for thereason use �by algebra�.IndutionOne of the de�ning axioms of the natural numbers is mathematial indution. In the following, let
P (n) be a statement about a natural number variable n.Types of IndutionIndution P (0) and (∀k ∈ N, P (k)⇒ P (k + 1))⇒ ∀n ∈ N, P (n)Indution from a P (a) and (∀k ≥ a, P (k)⇒ P (k + 1))⇒ ∀n ≥ a, P (n)Strong Indution P (0) and (∀k ∈ N, (∀j ≤ k, P (j))⇒ P (k + 1))⇒ ∀n ∈ N, P (n)Strong Indution from a P (0) and (∀k ≥ a, (∀j ≤ k, P (j))⇒ P (k + 1))⇒ ∀n ≥ a, P (n)Remark: As usual, eah suh de�nition an be used as a line in a proof diretly, with any of the freevariables replaed by any expression of the same type. As suh, eah represents a rule of inferenewith no inputs and only the entire de�nition as a onlusion. However, in pratie, it is usually quiteuseful to use rules of inferene that are derived from these de�nitions. Some of the more useful onesare listed in the following table.Rules of Inferene for Proof by IndutionIndution Indution from aShow: P (0)Let k ∈ NAssume P (k)Show: P (k + 1)

←Conlude: ∀n ∈ N, P (n)
Show: P (a)Let k ∈ N and a≤kAssume P (k)Show: P (k + 1)

←Conlude: ∀n ≥ a, P (n)



18Rules of Inferene for Proof by IndutionStrong Indution Strong Indution from aShow: P (0)Let k ∈ NAssume ∀j ≤ k, P (j)Show: P (k + 1)
←Conlude: ∀n ∈ N, P (n)

Show: P (a)Let k ∈ N and a ≤ kAssume ∀j ≤ k, P (j)Show: P (k + 1)
←Conlude: ∀n ≥ a, P (n)Remark: It an be shown that any theorem you an prove with Strong Indution an be proved usingordinary Indution and vie-versa. Also note that in strong indution the assumption should really be

∀j, a ≤ j ≤ k ⇒ P (j), i.e. it only holds for values of j that are greater than or equal to a.Quotient, Remainder, Divisibility, and ModHere are some useful theorems and de�nitions about integers. In the following all single letter variableshave type integer.Division Algorithm: ∀a, ∀b 6= 0, ∃!q, ∃!r, a = qb + r and 0 ≤ r < |b|Quotient : ∀a, ∀b 6= 0, ∀q, ∀r, a = qb + r and0 ≤ r < |b| ⇔ q = (a quo b)Remainder: ∀a, ∀b 6= 0, ∀q, ∀r, a = qb + r and0 ≤ r < |b| ⇔ r = (amod b)Divides: a | b ⇔ ∃q, b = aqDivisor (or fator): a is a divisor (or fator) of b⇔ a | bPrime: p is prime ⇔ p > 1 and∀a > 0, a | p ⇒ a = 1or a = pComposite: n is omposite ⇔ n>0and∃a, ∃b, n = ab and 1 < a, b < nCongruent mod m: a ≡
m
mb ⇔ m | (a − b)Greatest Common Divisor: d = gcd (a, b)⇔

d > 0 and d | a and d | b and∀c > 0, c | a and c | b⇒ c ≤ dLeast Common Multiple: d = lcm (a, b)⇔

d > 0 and a | d and b | d and∀c > 0, a | c andb | c ⇒ d ≤ cGCD (alt version): d = gcd (a, b)⇔

d > 0 and d | a and d | b and∀c > 0, c | a and c | b⇒ c | dLCM (alt version): d = lcm (a, b)⇔

d > 0 and a | d and b | d and∀c > 0, a | c andb | c ⇒ d | cRelatively Prime: a, b are relatively prime ⇔ gcd (a, b) = 1Remarks: It is also possible to de�ne prime and omposite for negative integers by removing therestrition that they be positive from their respetive de�nitions.As usual, eah suh de�nition an be used as a line in a proof diretly, with any of the free variablesreplaed by any expression of the same type. As suh, eah represents a rule of inferene with noinputs and only the entire de�nition as a onlusion. However, in pratie, it is usually quite useful touse rules of inferene that are derived from these de�nitions. Some of the more useful ones are listedin the following table.



19Rules of Inferene for DivisibilityDivision Algorithm (existene) Division Algorithm (uniqueness)Show: b 6= 0Conlude: a = qb + r for some q and some
0 ≤ r < |b|

Show: b 6= 0Show: a = qb + rShow: 0 ≤ r < |b|Conlude: q = (a quo b)Conlude: r = (amod b)Quotient RemainderShow: q = (a quo b)Conlude: a = qb + r for some 0 ≤ r < |b| Show: r = (amod b)Conlude: a = qb + r for some qDivides+ Divides−Show: b = aqShow: q ∈ ZConlude: a | b Show: a | bConlude: b = aq for some q ∈ ZDivisor+ Divisor−Show: b = aqShow: q ∈ ZConlude: a | b Show: a | bConlude: b = aq for some q ∈ ZPrime+ Prime−Show: p > 1Let a > 0Assume a | pShow: a = 1or a = p
←Conlude: p is prime

Show: p is primeShow: a > 0Show: a | pConlude: a = 1or a = pComposite+ Composite−Show:n>0Show: n = abShow: 1 < a < nConlude: n is omposite Show: n is ompositeConlude:n>0Conlude: n = ab for some 1 < a, b < nCongruent mod m+ Congruent mod m−Show: m | a − bConlude: a ≡
m
mb

Show: a ≡
m
mbConlude: m | a − b



20Rules of Inferene for Divisibilitygd+ gd−Show: d > 0Show: d | aShow: d | bLet c > 0Assume c | a and c | bShow: c ≤ d
←Conlude: d = gcd (a, b)

Show: d = gcd (a, b)Conlude: d > 0Conlude: d | aConlude: d | bConlude: ∀c > 0, c | a and c | b⇒ c ≤ dgd+(alt) gd−(alt)Show: d > 0Show: d | aShow: d | bLet c > 0Assume c | a and c | bShow: c | d
←Conlude: d = gcd (a, b)

Show: d = gcd (a, b)Conlude: d > 0Conlude: d | aConlude: d | bConlude: ∀c > 0, c | a and c | b⇒ c | dlm+ lm−Show: d > 0Show: a | dShow: b | dLet c > 0Assume a | c and b | cShow: d ≤ c
←Conlude: d = lcm (a, b)

Show: d = lcm (a, b)Conlude: d > 0Conlude: a | dConlude: b | dConlude: ∀c > 0, a | c and b | c ⇒ d ≤ clm+(alt) lm−(alt)Show: d > 0Show: a | dShow: b | dLet c > 0Assume a | c and b | cShow: d | c
←Conlude: d = lcm (a, b)

Show: d = lcm (a, b)Conlude: d > 0Conlude: a | dConlude: b | dConlude: ∀c > 0, a | c and b | c ⇒ d | cRelatively prime+ Relatively prime −Show: gcd (a, b) = 1Conlude: a, b are relatively prime Show: a, b are relatively primeConlude: gcd (a, b) = 1Remarks: Keep in mind that all single letter variables in these reipes have type integer, so you an'tuse these reipes on expressions that don't have the orret type.Preedene: Arithmeti relations suh as =, 6=, <,≤,≡
m
m have a lower preedene than arithmeti



21operations suh as +,−, ·, /, �.


