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2Logi
Variables, Expressions, and StatementsTerm De�nitionset A set is a 
olle
tion of items.element The items in a set are 
alled its elements (or members).expression An expression is an arrangement of symbols whi
h represents an element of a settype The set of elements that an expression 
an represent is 
alled the type of theexpression.value The element of the domain that the expression represents is 
alled a value ofthat expression.variable A variable is an expression 
onsisting of a single symbol
onstant A 
onstant is an expression whose domain 
ontains a single element.statement A statement (or Boolean expression) is an expression whose domain is
{ true, false}.truth value The value of a statement is 
alled its truth value.solve To solve a statement is to determine the set of all elements for whi
h thestatement is true.solution set The set of all solutions of a statement is 
alled the solution set.equation An equation is a statement of the form A = B where A and B are expressions.inequality An inequality is a statement of the form A ⋆ B where A and B are expressionsand ⋆ is one of ≤, ≥, >, <, or 6=.Remarks:

• An element is either in a set or it is not in a set, it 
annot be in a set more than on
e.
• It is not ne
essary that we know spe
i�
ally whi
h element of the domain an expression repre-sents, only that it represents some unspe
i�ed element in that set.
• We do not have to know if a statement is true or false, just that it is either true or false.
• If a statement 
ontains n variables, x1, . . . xn, then to solve the statement is to �nd the set ofall n-tuples (a1, . . . , an) su
h that ea
h ai is an element of the domain of xi and the statementbe
omes true when x1, . . . , xn are repla
ed by a1, . . . , an respe
tively. In this situation, ea
h su
h
n-tuple is 
alled a solution of the statement.Propositional Logi
The Five Logi
al OperatorsDe�nition: Let P ,Q be statements. Then the �ve expressions �¬P �, �P andQ�, �P orQ�, �P ⇒ Q�,and �P ⇔ Q� are also statements whose truth values are 
ompletely determined by the truth valuesof P and Q as Shown in the following table:
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P Q ¬P P andQ P orQ P ⇒ Q P ⇔ QT T F T T T TT F F F T F FF T T F T T FF F T F F T TRules of Inferen
e and ProofDe�nition: A rule of inferen
e is a rule whi
h takes zero or more statements (or other items) as inputand returns one or more statements as output (
on
lusions).Notation. A rule of inferen
e 
an be expressed in re
ipe notation asShow: P1...Show: PkCon
lude: Q1...Con
lude: QnDe�nition: A formal logi
 system 
onsists of a set of statements and a set of rules of inferen
e.De�nition: A proof in a formal logi
 system 
onsists of a �nite sequen
e of statements (and otherinputs to the rules of inferen
e) su
h that ea
h statement follows from the previous statements in thesequen
e by one or more of the rules of inferen
e.Natural Dedu
tionNotation. The symbol ← is an abbreviation for �end assumption�.Rules of Inferen
e for Propositional Logi


and+ and−Show: WShow: VCon
lude: W and V Show: W and VCon
lude: WCon
lude: V
⇒ + ⇒ − (modus ponens)Assume WShow: V

←Con
lude: W ⇒ V Show: WShow: W ⇒ VCon
lude: V
⇔ + ⇔ −Show: W ⇒ VShow: V ⇒ WCon
lude: W ⇔ V Show: W ⇔ VCon
lude: W ⇒ VCon
lude: V ⇒ W



4Rules of Inferen
e for Propositional Logi

or+ or− (proof by 
ases)Show: WCon
lude: W or VCon
lude: V orW Show: W or VShow: W ⇒ UShow: V ⇒ UCon
lude: U
¬+ (proof by 
ontradi
tion) ¬− (proof by 
ontradi
tion)Assume WShow: →←

←Con
lude: ¬W Assume ¬WShow: →←
←Con
lude: W

→← +Show: WShow: ¬WCon
lude: →←Remarks:
• The itali
ized word Assume is a
tually entered as part of the proof itself, not just instru
tionsin the re
ipe like the words 'Show:' and 'Con
lude:'
• The inputs �Assume -� and �←� are not themselves statements that you prove or are given, butrather are inputs to rules of inferen
e that may be inserted into a proof at any time. There is noreason however, to insert su
h statements unless you intend to use one of the rules of inferen
ethat requires them as inputs.
• The statement following an Assume is the same as any other statement in the proof and 
anbe used as an input to a rule of inferen
e.
• Statements in an Assume-← blo
k 
an be used as inputs to rules of inferen
e whose 
on
lusionis also inside the same blo
k only. On
e a Assume is 
losed with a mat
hing ←, only the entireblo
k 
an be used as an input to a rule of inferen
e. The individual statements within a blo
kare no longer valid outside the blo
k. We usually indent and Assume-← blo
k to keep tra
k ofwhat statements are valid under whi
h assumptions.Predi
ate Logi
Quanti�ersDe�nition: The symbols ∀ and ∃ are quanti�ers. The symbol ∀ is 
alled �for all�, �for every�, or �forea
h�. The symbol ∃ is 
alled �for some� or �there exists�.De�nition: If x is a variable, t an expression, and W (x) a statement then W (t) is the statementobtained by repla
ing every free o

uran
e of x in W (x) with t.De�nition: If W is a statement and x is any variable then ∀x,W and ∃x,W are both statements. Therules of inferen
e for these quanti�ers are given in the following table.



5Rules of Inferen
e for Quanti�ers∗
∀+ ∀−Let s be arbitraryShow: W (s)Con
lude: ∀x,W (x) Show: ∀x,W (x)Con
lude: W (t)
∃+ ∃−Show: W (t)Con
lude: ∃x,W (x) Show: ∃x,W (x)Con
lude: W (c) for some c
∗Restri
tions:
• In ∀+, s 
annot appear as a free variable in any assumption or premise, andW (s) 
annot 
ontainany 
onstants whi
h were produ
ed by the ∃− rule.
• In ∀− and ∃+, no free variable in t may be
ome bound when t is substituted for x in W (x).
• In ∃+, t 
an be an expression, and W (x) 
an be the expression obtained by repla
ing one ormore of the o

urren
es of t with x .
• In ∃−, c must be a new 
onstant in the proof.De�nition: Let W (x) be a statement and W (y) the statement obtained by repla
ing every freeo

urren
e of x in W (x) with y . We de�ne

(∃!x,W (x))⇔ ∃x, (W (x) and∀y ,W (y)⇒ y = x)The statement ∃!x,W (x) is read �There exists a unique x su
h that W (x).�Rules of Inferen
e for Unique Existen
e∗
∃!+ ∃!Show: W (s)Let y be arbitrary.Assume W (y)Show: y = s

←Con
lude: ∃!x,W (x)
Show: ∃!x,W (x)Con
lude: ∃x,W (x) and∀y ,W (y)⇒ y = x

EqualityDe�nition: The equality symbol, =, is de�ned by the two rules of inferen
e given as follows.Rules of Inferen
e for EqualityRe�exivity of = Substitution∗Con
lude: x = x Show: x = yShow: WCon
lude: W with the nth free o

urren
e of xrepla
ed by y .
∗Restri
tion: No free variable in y may be
ome bound when y is substituted for x in W .



6Remark. Note that in the Re�exive rule there are no inputs, so you 
an insert a statement of the form
x = x into your proof at any time.Pre
eden
e: Quanti�ers have a lower pre
eden
e than ⇔. Thus they quantify the largest statementto their right possible unless spe
i�
ally limited by parentheses. In order to eliminate parentheses wegive the operators the following pre
eden
e (from highest to lowest):Pre
eden
e of Logi
al Operatorsother math operators (+,=, ·,∪,−, et
.)

¬

and,or
⇒

⇔

∀, ∃, ∃!Sets, Fun
tions, NumbersBasi
 De�nitions from Set theoryThe symbol ∈ is formally unde�ned, but it means �is an element of�. The expression x ∈ A is astatement that is true if and only if A is a set and x is an element of A. Many of the de�nitions beloware informal de�nitions that are su�
ient for our purposes.Basi
 set notation and operationsFinite set notation: x ∈ {x1, . . . , xn} ⇔ x = x1 or · · · or x = xnSet builder notation: x ∈ { y : P (y) } ⇔ P (x)Subset: A ⊆ B ⇔ ∀x, x ∈ A⇒ x ∈ BSet equality: A = B ⇔ A ⊆ B and B ⊆ ADef. of /∈: x /∈ A⇔ ¬ (x ∈ A)Empty set: A = ∅⇔ ∀x, x /∈ APower set: P (A) = {B : B ⊆ A}Interse
tion: x ∈ A ∩B ⇔ x ∈ A and x ∈ BUnion: x ∈ A ∪B ⇔ x ∈ A or x ∈ BRelative Complement: x ∈ B − A⇔ x ∈ B and x /∈ AComplement: x ∈ A⇔ x /∈ AIndexed Interse
tion: x ∈
⋂

i∈I

Ai ⇔ ∀i , i ∈ I ⇒ x ∈ AiIndexed Union: x ∈
⋃

i∈I

Ai ⇔ ∃i , i ∈ I and x ∈ AiTwo 
onvenient abbreviations: (∀x ∈ A, P (x))⇔ ∀x, x ∈ A⇒ P (x)

(∃x ∈ A, P (x))⇔ ∃x, x ∈ A andP (x)



7Remark: Ea
h su
h de�nition 
an be used as a line in a proof dire
tly, with any of the free variablesrepla
ed by any expression of the same type. As su
h, ea
h represents a rule of inferen
e with noinputs and only the entire de�nition as a 
on
lusion. However, in pra
ti
e, it is usually quite useful touse rules of inferen
e that are derived from these de�nitions. Some of the more useful ones are listedin the following table. Rules of Inferen
e for Basi
 Set TheoryFinite set notation+ Finite set notation−Show: x = xk (where xk is one of x1, . . . , xn)Con
lude: x ∈ {x1, . . . , xn} Show: x ∈ {x1, . . . , xn}Con
lude: x = x1 or x = x2 or · · · or x = xnSet builder+ Set builder−Show: P (x)Con
lude: x ∈ {y : P (y)} Show: x ∈ { y : P (y) }Con
lude: P (x)Subset+ Subset−Let x ∈ AShow: x ∈ BCon
lude: A ⊆ B Show: A ⊆ BShow: x ∈ ACon
lude: x ∈ BSet equality+ Set equality−Let x ∈ AShow: x ∈ BLet y ∈ BShow: y ∈ ACon
lude: A = B (see Substitution Rule)
Not an element of+ Not an element of−Show: ¬x ∈ ACon
lude: x /∈ A Show: x /∈ ACon
lude: ¬x ∈ AEmpty Set+ Empty Set−Let x be arbitraryShow: x /∈ ACon
lude: A = ∅ Show: A = ∅Con
lude: x /∈ APower Set+ Power Set−Show: B ⊆ ACon
lude: B ∈ P (A) Show: B ∈ P (A)Con
lude: B ⊆ AInterse
tion+ Interse
tion−Show: x ∈ AShow: x ∈ BCon
lude: x ∈ A ∩ B Show: x ∈ A ∩ BCon
lude: x ∈ ACon
lude: x ∈ BUnion+ Union−Show: x ∈ ACon
lude: x ∈ A ∪ BCon
lude: x ∈ B ∪ A Show: x ∈ A ∪ BCon
lude: x ∈ A or x ∈ B



8Rules of Inferen
e for Basi
 Set TheoryRelative Complement+ Relative Complement−Show: x ∈ BShow: x /∈ ACon
lude: x ∈ B − A Show: x ∈ B − ACon
lude: x ∈ BCon
lude: x /∈ AComplement+ Complement−Show: x /∈ ACon
lude: x ∈ A Show: x ∈ ACon
lude: x /∈ AIndexed Interse
tion+ Indexed Interse
tion−Let k ∈ IShow: x ∈ AkCon
lude: x ∈ ⋂

i∈I

Ai

Show: x ∈ ⋂

i∈I

AiShow: k ∈ ICon
lude: x ∈ AkIndexed Union+ Indexed Union−Show: k ∈ IShow: x ∈ AkCon
lude: x ∈ ⋃

i∈I

Ai

Show: x ∈ ⋃

i∈I

AiCon
lude: x ∈ Ak for some k ∈ IRemarks:
• The expression �Let x ∈ A� is an abbreviation for �Let x be arbitrary. Assume x ∈ A.�. Thusthere is a hidden assumption to keep tra
k of when using this short
ut. See the Proof Short
utsHandout for details.
• Usually we just use x /∈ A and ¬x ∈ A inter
hangeably in our proofs without invoking the �Notan element of� rules.Cartesian produ
tsOrdered Pairs: (x, y) = (u, v)⇔ x = u and y = vOrdered n-tuple: (x1, . . . , xn) = (y1, . . . , yn)⇔ x1 = y1 and · · · and xn = ynCartesian Produ
t: A× B = {(x, y) : x ∈ A and y ∈ B}Cartesian Produ
t: A1 × · · · × An = {(x1, . . . , xn) : x1 ∈ A1 and · · · and xn ∈ An}Power of a Set An = A×A× · · · ×A where there are n �A's� in the Cartesian produ
tRemark: Ea
h su
h de�nition 
an be used as a line in a proof dire
tly, with any of the free variablesrepla
ed by any expression of the same type. As su
h, ea
h represents a rule of inferen
e with noinputs and only the entire de�nition as a 
on
lusion. However, in pra
ti
e, it is usually quite useful touse rules of inferen
e that are derived from these de�nitions. Some of the more useful ones are listedin the following table. Rules of Inferen
e for Cartesian Produ
tsOrdered pair+ Ordered pair−



9Rules of Inferen
e for Cartesian Produ
tsShow: x = uShow: y = vCon
lude: (x, y) = (u, v) Show: (x, y) = (u, v)Con
lude: x = uCon
lude: y = v



10Rules of Inferen
e for Cartesian Produ
tsOrdered n-tuple+ Ordered n-tuple−Let k ∈ {1, 2, . . . , n}Show: xk = ykCon
lude: (x1, . . . , xn) = (y1, . . . , yn) Show: (x1, . . . , xn) = (y1, . . . , yn)Show: k ∈ {1, 2, . . . , n}Con
lude: xk = ykCartesian Produ
t+ Cartesian Produ
t−Show: x ∈ AShow: y ∈ BCon
lude: (x, y) ∈ A× B Show: z ∈ A× BCon
lude: z = (x, y) for some x ∈ A and y ∈ BCartesian Produ
t+(n sets) Cartesian Produ
t−(n sets)Let k ∈ {1, 2, . . . , n}Show: xk ∈ AkCon
lude: (x1, . . . , xn) ∈ A1 × A2 × · · · × An Show: z ∈ A1 × A2 × · · · × AnCon
lude: z = (x1, . . . , xn) for some
x1 ∈ A1,x2 ∈ A2,. . .,xn ∈ AnPower of a set+ Power of a Set−Let k ∈ {1, 2, . . . , n}Show: xk ∈ ACon
lude: (x1, . . . , xn) ∈ An Show: z ∈ AnCon
lude: z = (x1, . . . , xn) for some
x1, . . . , xn ∈ AnRemark: The expression �for some x ∈ A and y ∈ B� is an abbreviation for two appli
ations of the

∃− rule, namely it is de
laring two 
onstants x, y and further de
laring that they are elements of set
A and set B respe
tively.Fun
tionsDef of fun
tion: f : A→ B ⇔ f ⊆ A× B and (∀x, ∃!y , (x, y) ∈ f )Alt. fun
tion notation X

f
→ Y ⇔ f : X → YDef of f (x): f (x) = y ⇔ f : A→ B and (x, y) ∈ fDomain: Domain (f ) = A⇔ f : A→ BCodomain: Codomain (f ) = B ⇔ f : A→ BImage (of a set): f (S) = {y : ∃x, x ∈ S and y = f (x)}Range (or Image of f ): Range (f ) = f (Domain (f ))Identity Map: idA : A→ A and∀x, idA (x) = xComposition: A
f
→ B andB

g
→ C ⇒ A

g◦f
−→ C and∀x, (g ◦ f ) (x) = g (f (x))Inje
tive (one-to-one): f is inje
tive ⇔ ∀x, ∀y , f (x) = f (y)⇒ x = ySurje
tive (onto): f is surje
tive ⇔ f : A→ B and (∀y , y ∈ B ⇒ ∃x, y = f (x))Bije
tive: f is bije
tive ⇔ f is inje
tive and f is surje
tiveInverse: f −1 : B → A⇔ f : A→ B and f ◦ f −1 = idB and f

−1 ◦ f = idAInverse Image: f : A→ B and S ⊆ B ⇒ f −1 (S) = {x ∈ A : f (x) ∈ S}Remark: Ea
h su
h de�nition 
an be used as a line in a proof dire
tly, with any of the free variablesrepla
ed by any expression of the same type. As su
h, ea
h represents a rule of inferen
e with no



11inputs and only the entire de�nition as a 
on
lusion. However, in pra
ti
e, it is usually quite useful touse rules of inferen
e that are derived from these de�nitions. Some of the more useful ones are listedin the following table. Rules of Inferen
e for Fun
tionsFun
tion + Fun
tion−Show: f ⊆ A×BLet x ∈ AShow: ∃!y ∈ B,(x, y) ∈ fCon
lude: f : A→ B Show: f : A→ BShow x ∈ ACon
lude: f ⊆ A× BCon
lude: ∃!y ∈ B, (x, y) ∈ fFun
tion appli
ation+ Fun
tion appli
ation−Show: f : A→ BShow: (x, y) ∈ fCon
lude: f (x) = y Show: f : A→ BShow: y = f (x)Con
lude: (x, y) ∈ fDomain and Codomain+ Domain and Codomain−Show: f : A→ BCon
lude: Domain (f ) = ACon
lude: Codomain (f ) = B Show: f is a fun
tionShow: Domain (f ) = AShow: Codomain (f ) = BCon
lude: f : A→ BFun
tion equality+ Fun
tion equality−Show: Domain (f ) = Domain (g)Show: Domain (f ) = Domain (g)Let x ∈ Domain (f )Show: f (x) = g (x)Con
lude: f = g (see Substitution Rule)
Image+ Image−Show: x ∈ SCon
lude: f (x) ∈ f (S) Show: f (x) ∈ f (S)Con
lude: x ∈ SRange+ Range−Show: y = f (x)Con
lude: y ∈ Range (f ) Show: y ∈ Range (f )Con
lude: y = f (x) for some x ∈ Domain (f )Identity map+ Identity map−Show: f : A→ ALet x ∈ AShow: f (x) = xCon
lude: f = idA Con
lude: idA (x) = xComposition+ Composition−Show: f:A→BShow: g:B→CCon
lude: g ◦ f : A→ CCon
lude: g ◦ f (x) = g (f (x)) Show: h = g ◦ fCon
lude: h (x) = g (f (x))Con
lude: Domain (h) = Domain (f )Con
lude: Codomain (h) = Codomain (g)



12Rules of Inferen
e for Fun
tionsInje
tive+ Inje
tive−Show: f : A→ BLet x, y ∈ AAssume f (x) = f (y)Show: x = y
←Con
lude: f is inje
tive

Show: f is inje
tiveShow: f (x) = f (y)Con
lude: x = ySurje
tive+ Surje
tive−Show: f : A→ BLet y ∈ BShow: y = f (x) for some x ∈ ACon
lude: f is surje
tive Show: f : A→ B is surje
tiveShow: y ∈ BCon
lude: y = f (x) for some x ∈ ABije
tive+ Bije
tive−Show: f is inje
tiveShow: f is surje
tiveCon
lude: f is bije
tive Show: f is bije
tiveCon
lude: f is inje
tiveCon
lude: f is surje
tiveInverse fun
tion+ Inverse fun
tion−Show: f : A→ BShow: g : B → AShow: g ◦ f = idAShow: f ◦ g = idBCon
lude: g = f −1 Show: f : A→ BShow: f −1 existsCon
lude: f −1 : B → ACon
lude: f −1 (f (x)) = xCon
lude: f (f −1 (y)) = yInverse image+ Inverse image−Show: f (x) ∈ TCon
lude: x ∈ f inv (T ) Show: x ∈ f inv (T )Con
lude: f (x) ∈ TRemarks: The alternate fun
tion notation A f
→ B and standard fun
tion notation f : A→ B 
an beused inter
hangeably without a rule of inferen
e as a short
ut.Theorem. A fun
tion has an inverse fun
tion if and only if it is bije
tive.



13Famous Sets of NumbersThe Natural Numbers N = {0, 1, 2, 3, 4, . . .}The Integers Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}The Rational Numbers Q =
{

a
b
: a ∈ Z, b ∈ N, b > 0, and gcd (a, b) = 1}The Real Numbers R = {x : x 
an be expressed as a de
imal number}The Complex Numbers C = {x + y i : x, y ∈ R} where i2 = −1The positive real numbers R+ = {x : x ∈ R and x > 0}The negative real numbers R− = {x : x ∈ R and x < 0}The positive reals in a set A A+ = A ∩R+The negative reals in a set A A− = A ∩R−The �rst n positive integers In = {1, 2, . . . , n}The �rst n + 1 natural numbers On = {0, 1, 2, . . . , n}



14RelationsDef of 6= x 6= t ⇔ ¬ (x = t)Def of relation: R is a relation from A to B ⇔ R ⊆ A× BRelation on a set: R is a relation on A⇔ R ⊆ A× AIn�x notation: xRy ⇔ (x, y) ∈ RPre�x notation: R (x, y)⇔ (x, y) ∈ RRelation on a set: R is a relation on A⇔ R ⊆ A× ARe�exive relation: R ⊆ A× A is re�exive⇔ ∀x ∈ A, xRxSymmetri
 relation: R ⊆ A× A is symmetri
⇔ ∀x ∈ A, ∀y ∈ A, xRy ⇒ yRxTransitive relation: R ⊆ A× A istransitive⇔ ∀x ∈ A, ∀y ∈ A, ∀z ∈ A, xRy and yRz ⇒ xRzNonre�exive relation: R ⊆ A× A is nonre�exive⇔ ∀x ∈ A,¬xRxAntisymmetri
 relation: R ⊆ A×A is antisymmetri
 ⇔ ∀x ∈ A, ∀y ∈ A, xRy and yRx ⇒ x = yTotal relation: R ⊆ A× A is total⇔ ∀x ∈ A, ∀y ∈ A, xRy or yRxPartial order: R ⊆ A× A is a partial order ⇔ R is re�exive, antisymmetri
, andtransitive.Stri
t Partial order: R ⊆ A× A is a stri
t partial order ⇔ R is nonre�exive, antisymmetri
,and transitive.Total Order R ⊆ A× A is total order ⇔ R is antisymmetri
, transitive, and total.Equivalen
e Relation: R ⊆ A× A is an equivalen
e relation⇔ R is re�exive, symmetri
, andtransitive.Equivalen
e Class: R ⊆ A× A is an equivalen
e relation and
a ∈ A⇒ [a]R = {x ∈ A : xRa}Partition of a set: P is a partition of A⇔(∀S ∈ P, S 6= ∅ andS ⊆ A) and A = ⋃

S∈P

S and
∀S ∈ P, ∀T ∈ P, S = T orS ∩ T = ∅Remark: Ea
h su
h de�nition 
an be used as a line in a proof dire
tly, with any of the free variablesrepla
ed by any expression of the same type. As su
h, ea
h represents a rule of inferen
e with noinputs and only the entire de�nition as a 
on
lusion. However, in pra
ti
e, it is usually quite useful touse rules of inferen
e that are derived from these de�nitions. Some of the more useful ones are listedin the following table. Rules of Inferen
e for RelationsNot equal+ Not an element of−Show: ¬x = yCon
lude: x 6= y Show: x 6= yCon
lude: ¬x = yRelation+ Relation−Show: R ⊆ A× BCon
lude: R is a relation from A to B Show: R is a relation from A to BCon
lude: R ⊆ A× B



15Rules of Inferen
e for RelationsRelation on a set+ Relation on a set−Show: R ⊆ A× ACon
lude: R is a relation on A Show: R is a relation on ACon
lude: R ⊆ A× ARe�exive relation+ Re�exive relation−Let x ∈ AShow: xRxCon
lude: R is re�exive Show: R is re�exiveCon
lude: xRxSymmetri
+ Symmetri
−Let x, y ∈ AAssume xRyShow: yRx
←Con
lude: R is symmetri
 Show: R is symmetri
Show: xRyCon
lude: yRxTransitive+ Transitive−Let x, y , z ∈ AAssume xRy and yRzShow: xRz
←Con
lude: R is transitive Show: R is transitiveShow: xRyShow: yRzCon
lude: xRzNonre�exive+ Nonre�exive−Let x ∈ AShow: ¬xRxCon
lude: R is nonre�exive Show: R is nonre�exiveCon
lude: ¬xRxAntisymmetri
+ Antisymmetri
−Let x, y ∈ AAssume xRyShow: ¬yRx
←Con
lude: R is antisymmetri
 Show: R is antisymmetri
Show: xRyCon
lude: ¬yRxTotal relation+ Total relation−Let x, y ∈ AShow: xRy or yRxCon
lude: R is total Show: R is totalCon
lude: xRy or yRxPartial order+ Partial order−Show: R is re�exiveShow: R is antisymmetri
Show: R is transitiveCon
lude: R is a partial order Show: R is a partial orderCon
lude: R is re�exiveCon
lude: R is antisymmetri
Con
lude: R is transitive



16Rules of Inferen
e for RelationsStri
t partial order+ Stri
t partial order−Show: R is nonre�exiveShow: R is antisymmetri
Show: R is transitiveCon
lude: R is a stri
t partial order Show: R is a stri
t partial orderCon
lude: R is nonre�exiveCon
lude: R is antisymmetri
Con
lude: R is transitiveTotal order+ Total order−Show: R is antisymmetri
Show: R is transitiveShow: R is totalCon
lude: R is a partial order Show: R is a total orderCon
lude: R is antisymmetri
Con
lude: R is transitiveCon
lude: R is totalEquivalen
e relation+ Equivalen
e relation−Show: R is re�exiveShow: R is symmetri
Show: R is transitiveCon
lude: R is an equivalen
e relation Show: R is an equivalen
e relationCon
lude: R is re�exiveCon
lude: R is symmetri
Con
lude: R is transitiveEquivalen
e 
lass+ Equivalen
e 
lass−Show: xRaCon
lude: x ∈ [a]R Show: x ∈ [a]RCon
lude: xRaPartition+ Partition−Let S, T ∈ PShow: S 6= ∅Show: S ⊆ ALet x ∈ AShow: x ∈ U for some U ∈ PAssume x ∈ S and x ∈ TShow: S = T
←Con
lude: P is a partition of A

Show: P is a partition of AShow: S, T ∈ PCon
lude: S 6= ∅Con
lude: S ⊆ ACon
lude: S ∩ T = ∅ orS = TORShow: P is a partition of AShow: x ∈ ACon
lude: x ∈ S for some S ∈ PNotation. We often abbreviate [a]R by [a] when the relation R is 
lear from 
ontext.Theorem. Let R ⊆ A× A be an equivalen
e relation and a, b ∈ A. Then
[a] = [b]⇔ aRb.Corollary. Let R ⊆ A×A be an equivalen
e relation. Then A is a disjoint union of equivalen
e 
lasses,i.e.
A =

⋃

a∈A

[a]and
∀a, b ∈ A, [a] = [b] or [a] ∩ [b] = ∅.Remark. Thus, the set of equivalen
e 
lasses of an equivalen
e relation on A is a partition of A.Furthermore, every partition P of A is the set of equivalen
e 
lasses for the equivalen
e relation R on

A de�ned by ∀x, y ∈ A, xRy ⇔ ∃S ∈ P, x ∈ S and y ∈ S.



17Number Theory and Indu
tionArithmeti
 and AlgebraWhile it is possible to give an axiomati
 des
ription of the natural numbers and the arithmeti
 oper-ations of addition, subtra
tion, multipli
ation, division, and exponentiation, su
h a detailed study ismore appropriate in a full 
ourse on Number Theory.By Arithmeti
. For our purposes we will assume that the basi
 fa
ts about the arithmeti
 of real orinteger 
onstants that we know from elementary s
hool are valid and may be used in a proof. Thus we
an make statements in our proof like �2+2 = 4” or �−3 < 2� and for the reason use �by arithmeti
�with no inputs.By Algebra. Well will also assume the basi
 fa
ts about the algebra of real numbers su
h as asso
ia-tivity, 
ommutativity, distributivity, identity, inverse laws, and properties of signs and exponents. Thuswe 
an use statements about real numbers or integers like �x2 − 1 = (x + 1) (x − 1)� and for thereason use �by algebra�.Indu
tionOne of the de�ning axioms of the natural numbers is mathemati
al indu
tion. In the following, let
P (n) be a statement about a natural number variable n.Types of Indu
tionIndu
tion P (0) and (∀k ∈ N, P (k)⇒ P (k + 1))⇒ ∀n ∈ N, P (n)Indu
tion from a P (a) and (∀k ≥ a, P (k)⇒ P (k + 1))⇒ ∀n ≥ a, P (n)Strong Indu
tion P (0) and (∀k ∈ N, (∀j ≤ k, P (j))⇒ P (k + 1))⇒ ∀n ∈ N, P (n)Strong Indu
tion from a P (0) and (∀k ≥ a, (∀j ≤ k, P (j))⇒ P (k + 1))⇒ ∀n ≥ a, P (n)Remark: As usual, ea
h su
h de�nition 
an be used as a line in a proof dire
tly, with any of the freevariables repla
ed by any expression of the same type. As su
h, ea
h represents a rule of inferen
ewith no inputs and only the entire de�nition as a 
on
lusion. However, in pra
ti
e, it is usually quiteuseful to use rules of inferen
e that are derived from these de�nitions. Some of the more useful onesare listed in the following table.Rules of Inferen
e for Proof by Indu
tionIndu
tion Indu
tion from aShow: P (0)Let k ∈ NAssume P (k)Show: P (k + 1)

←Con
lude: ∀n ∈ N, P (n)
Show: P (a)Let k ∈ N and a≤kAssume P (k)Show: P (k + 1)

←Con
lude: ∀n ≥ a, P (n)



18Rules of Inferen
e for Proof by Indu
tionStrong Indu
tion Strong Indu
tion from aShow: P (0)Let k ∈ NAssume ∀j ≤ k, P (j)Show: P (k + 1)
←Con
lude: ∀n ∈ N, P (n)

Show: P (a)Let k ∈ N and a ≤ kAssume ∀j ≤ k, P (j)Show: P (k + 1)
←Con
lude: ∀n ≥ a, P (n)Remark: It 
an be shown that any theorem you 
an prove with Strong Indu
tion 
an be proved usingordinary Indu
tion and vi
e-versa. Also note that in strong indu
tion the assumption should really be

∀j, a ≤ j ≤ k ⇒ P (j), i.e. it only holds for values of j that are greater than or equal to a.Quotient, Remainder, Divisibility, and ModHere are some useful theorems and de�nitions about integers. In the following all single letter variableshave type integer.Division Algorithm: ∀a, ∀b 6= 0, ∃!q, ∃!r, a = qb + r and 0 ≤ r < |b|Quotient : ∀a, ∀b 6= 0, ∀q, ∀r, a = qb + r and0 ≤ r < |b| ⇔ q = (a quo b)Remainder: ∀a, ∀b 6= 0, ∀q, ∀r, a = qb + r and0 ≤ r < |b| ⇔ r = (amod b)Divides: a | b ⇔ ∃q, b = aqDivisor (or fa
tor): a is a divisor (or fa
tor) of b⇔ a | bPrime: p is prime ⇔ p > 1 and∀a > 0, a | p ⇒ a = 1or a = pComposite: n is 
omposite ⇔ n>0and∃a, ∃b, n = ab and 1 < a, b < nCongruent mod m: a ≡
m
mb ⇔ m | (a − b)Greatest Common Divisor: d = gcd (a, b)⇔

d > 0 and d | a and d | b and∀c > 0, c | a and c | b⇒ c ≤ dLeast Common Multiple: d = lcm (a, b)⇔

d > 0 and a | d and b | d and∀c > 0, a | c andb | c ⇒ d ≤ cGCD (alt version): d = gcd (a, b)⇔

d > 0 and d | a and d | b and∀c > 0, c | a and c | b⇒ c | dLCM (alt version): d = lcm (a, b)⇔

d > 0 and a | d and b | d and∀c > 0, a | c andb | c ⇒ d | cRelatively Prime: a, b are relatively prime ⇔ gcd (a, b) = 1Remarks: It is also possible to de�ne prime and 
omposite for negative integers by removing therestri
tion that they be positive from their respe
tive de�nitions.As usual, ea
h su
h de�nition 
an be used as a line in a proof dire
tly, with any of the free variablesrepla
ed by any expression of the same type. As su
h, ea
h represents a rule of inferen
e with noinputs and only the entire de�nition as a 
on
lusion. However, in pra
ti
e, it is usually quite useful touse rules of inferen
e that are derived from these de�nitions. Some of the more useful ones are listedin the following table.



19Rules of Inferen
e for DivisibilityDivision Algorithm (existen
e) Division Algorithm (uniqueness)Show: b 6= 0Con
lude: a = qb + r for some q and some
0 ≤ r < |b|

Show: b 6= 0Show: a = qb + rShow: 0 ≤ r < |b|Con
lude: q = (a quo b)Con
lude: r = (amod b)Quotient RemainderShow: q = (a quo b)Con
lude: a = qb + r for some 0 ≤ r < |b| Show: r = (amod b)Con
lude: a = qb + r for some qDivides+ Divides−Show: b = aqShow: q ∈ ZCon
lude: a | b Show: a | bCon
lude: b = aq for some q ∈ ZDivisor+ Divisor−Show: b = aqShow: q ∈ ZCon
lude: a | b Show: a | bCon
lude: b = aq for some q ∈ ZPrime+ Prime−Show: p > 1Let a > 0Assume a | pShow: a = 1or a = p
←Con
lude: p is prime

Show: p is primeShow: a > 0Show: a | pCon
lude: a = 1or a = pComposite+ Composite−Show:n>0Show: n = abShow: 1 < a < nCon
lude: n is 
omposite Show: n is 
ompositeCon
lude:n>0Con
lude: n = ab for some 1 < a, b < nCongruent mod m+ Congruent mod m−Show: m | a − bCon
lude: a ≡
m
mb

Show: a ≡
m
mbCon
lude: m | a − b



20Rules of Inferen
e for Divisibilityg
d+ g
d−Show: d > 0Show: d | aShow: d | bLet c > 0Assume c | a and c | bShow: c ≤ d
←Con
lude: d = gcd (a, b)

Show: d = gcd (a, b)Con
lude: d > 0Con
lude: d | aCon
lude: d | bCon
lude: ∀c > 0, c | a and c | b⇒ c ≤ dg
d+(alt) g
d−(alt)Show: d > 0Show: d | aShow: d | bLet c > 0Assume c | a and c | bShow: c | d
←Con
lude: d = gcd (a, b)

Show: d = gcd (a, b)Con
lude: d > 0Con
lude: d | aCon
lude: d | bCon
lude: ∀c > 0, c | a and c | b⇒ c | dl
m+ l
m−Show: d > 0Show: a | dShow: b | dLet c > 0Assume a | c and b | cShow: d ≤ c
←Con
lude: d = lcm (a, b)

Show: d = lcm (a, b)Con
lude: d > 0Con
lude: a | dCon
lude: b | dCon
lude: ∀c > 0, a | c and b | c ⇒ d ≤ cl
m+(alt) l
m−(alt)Show: d > 0Show: a | dShow: b | dLet c > 0Assume a | c and b | cShow: d | c
←Con
lude: d = lcm (a, b)

Show: d = lcm (a, b)Con
lude: d > 0Con
lude: a | dCon
lude: b | dCon
lude: ∀c > 0, a | c and b | c ⇒ d | cRelatively prime+ Relatively prime −Show: gcd (a, b) = 1Con
lude: a, b are relatively prime Show: a, b are relatively primeCon
lude: gcd (a, b) = 1Remarks: Keep in mind that all single letter variables in these re
ipes have type integer, so you 
an'tuse these re
ipes on expressions that don't have the 
orre
t type.Pre
eden
e: Arithmeti
 relations su
h as =, 6=, <,≤,≡
m
m have a lower pre
eden
e than arithmeti
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