Ken Monks Math 299 Classroom Example Extravaganza!

1. Theorem: P and $Q \Rightarrow Q$ **Proof:**

(1)	Assume P and Q	
(2)	Q	by and $-;1$
(3)	\leftarrow	
(4) $P \text{ and } Q \Rightarrow Q$		by $\Rightarrow +;1,2,3$
You Win!!		

Formal proofs give us *Objectivity* to know that our proof is correct. They can also be written in *Expository* style by deleting the formatting and numbering, and adding a few English words and punctuation to make the grammar correct. Note that instead of distinguising between "+" and "-" rules, we just refer to both as "definition of". If we do this to the above proof, here is what we might obtain as an *Expository* style proof.

Proof: Assume *P* and *Q*. Then *Q* is true by the definition of and. Therefore, *P* and $Q \Rightarrow Q$ by the definition of implies.

QED

2. Theoren	n: (<i>P</i> or <i>Q</i>)) and $\neg P \Rightarrow Q$	
Proof:			
(1)	Assume	$(P \text{ or } Q)$ and $\neg P$	
(2)	P or Q		by and-;1
(3)	$\neg P$		by and-;1
(4)	Assume <i>P</i>		
(5)		Assume $\neg Q$	
(6)		$\rightarrow \leftarrow$	by $\rightarrow \leftarrow +;4,3$
(7)		\leftarrow	
(8)	Q		by ¬-;5,6
(9)	\leftarrow		
(10)	$P \Rightarrow Q$		by $\Rightarrow +;4,8$
(11)	Ass	ume <i>Q</i>	
(12)	Q		by copy;11
(13)	\leftarrow		
(14)	$Q \Rightarrow Q$		by $\Rightarrow +;11,12$
(15)	Q		by or-;2,10,14
(16)	\leftarrow		
(17) $(P \text{ or } Q)$ and $\neg P \Rightarrow Q$		$P \Rightarrow Q$	by $\Rightarrow +;1,15$
You Win!			

3. Theorem: $\neg \neg P \Leftrightarrow P$

Proof:

	Assume $\neg (\neg P)$	(1)
P)	Assume $(\neg P)$	(2)
by $\rightarrow \leftarrow +;2,1$	$\rightarrow \leftarrow$	(3)
	\leftarrow	(4)
by ¬-;2,3	Р	(5)
	\leftarrow	(6)
by $\Rightarrow +;1,5$	$\neg \neg P \Rightarrow P$	(7)
	Assume P	(8)
	Assume ¬P	(9)
by $\rightarrow \leftarrow +;8,9$	$\rightarrow \leftarrow$	(10)
	\leftarrow	(11)
by ¬+;9,10	$\neg \neg P$	(12)
	\leftarrow	(13)
by $\Rightarrow +;8,12$	$P \Rightarrow \neg \neg P$	(14)
by $\Leftrightarrow +;7,14$	$\neg \neg P \Leftrightarrow P$	(15)

You Win!!!

4. Theorem: $(\exists x, P(x)) \Rightarrow (\neg \forall y, \neg P(y))$

Proof:

(1) Assume $\exists x, P(x)$	
(2) $P(c)$ for some c	by ∃-;1
(3) Assume $\forall y, \neg P(y)$	
$(4) \qquad \neg P(c)$	by ∀–;3
$(5) \longrightarrow \leftarrow$	by $\rightarrow \leftarrow +;2,4$
(6) ←	
(7) $\neg \forall y, \neg P(y)$	by ¬+;3,5
$(8) \qquad \leftarrow \qquad $	
$(9) \ (\exists x, P(x)) \Rightarrow (\neg \forall y, \neg P(y))$	by $\Rightarrow +;1,7$

We Are Victorious!

Proof: Assume $\neg (P \text{ or } \neg P)$ (1)Assume P (2) $P \text{ or } \neg P$ (3) by or +;2 (4) by $\rightarrow \leftarrow +;3,1$ $\rightarrow \leftarrow$ (5) \leftarrow by ¬+;2,4 (6) $\neg P$ (7)Assume $\neg P$ $P \text{ or } \neg P$ (8) by or +;7 (9) by $\rightarrow \leftarrow +;8,1$ $\rightarrow \leftarrow$ (10) \leftarrow (11)Ρ by ¬−;7,9 (12)by $\rightarrow \leftarrow +;11,6$ $\rightarrow \leftarrow$ (13) \leftarrow (14) $P \text{ or } \neg P$ by ¬−;1,12

Awesome Uber Coolness!!!

Theorem: $P \text{ or } \neg P$

Theorem: x = y and $y = z \Rightarrow x = z$ **Proof:**

Assume $x = y$ and $y = z$	
x = y by and	-;1
y = z by and	-;1
x = z by substitution	;3,2
\leftarrow	
and $y = z \Rightarrow x = z$ by $\Rightarrow + z$;1,4

We Win!!

Theorem: $(\exists ! x, x \leq a) \Rightarrow \neg \forall y, \neg (y \leq a)$ **Proof:** (1)Assume $\exists ! x, x \leq a$ (2) $\exists x, x \leq a \text{ and } \forall z, z \leq a \Rightarrow z = x$ by ∃!-;1 $c \leq a$ and $\forall z, z \leq a \Rightarrow z = c$ for some cby ∃–;2 (3) by and -;3(4) $c \leq a$ Assume $\forall y, \neg (y \leq a)$ (5) $\neg (c \leq a)$ (6)by ∀-;5 (7) $\rightarrow \leftarrow$ by $\rightarrow \leftarrow +;4,6$ (8) \leftarrow (9) $\neg \forall y, \neg (y \leq a)$ by ¬+;5,7 (10) \leftarrow (11) $(\exists ! x, x \leq a) \Rightarrow \neg \forall y, \neg (y \leq a)$ by $\Rightarrow +;1,9$ QED! Theorem: $A \subseteq A$ Proof: (1) Let $x \in A$ (2) $x \in A$ by copy;1 (3) $A \subseteq A$ by $\subseteq +;1,2$ QED Theorem $A - B \subseteq A$ Proof: (1) Let $x \in A - B$ (2) $x \in A$ by --;1 (3) $A - B \subseteq A$ by $\subseteq +;1,2$ QED!

5

Theorem: $\overline{B} \subseteq \overline{A} \Rightarrow A \subseteq B$ Proof: Assume $\overline{B} \subseteq \overline{A}$ (1)(2)Let $x \in A$ Assume $\neg x \in B$ (3) x∉B (4) by ∉ +;3 $x \in \overline{B}$ (5) by complement +;4 $x \in \overline{A}$ by $\subseteq -;5,1$ (6)(7)x ∉ A by complement -;6by ∉ -;7 $\neg x \in A$ (8)(9) by $\rightarrow \leftarrow +;2,8$ $\rightarrow \leftarrow$ (10) \leftarrow (11) $x \in B$ by ¬-;3,9 (12) $A \subseteq B$ by $\subseteq +;2,11$ (13) \leftarrow (14) $\overline{B} \subseteq \overline{A} \Rightarrow A \subseteq B$ by $\Rightarrow +:1.12$ QED!! Theorem: $(A \cap B) \times B \subseteq A \times B$ Proof: (1) Let $x \in (A \cap B) \times B$ by $\times -;1$ (2) x = (s, t) for some $s \in A \cap B$ and $t \in B$ (3) $s \in A$ and $s \in B$ by ∩–;2 (4) $s \in A$ by and -;3(5) $(s, t) \in A \times B$ by $\times +;4,2$ (6) $x \in A \times B$ by substitution;2,5 (7) $(A \cap B) \times B \subseteq A \times B$ by $\subseteq +;1,6$

6

QED!

boof:
(1) Let
$$x \in A \cap \bigcup_{i \in I} B_i$$

(2) $x \in A$
(3) $x \in \bigcup_{i \in I} B_i$
(4) $x \in B_k$ for some $k \in I$
(5) $x \in A \cap B_k$
(6) $x \in \bigcup_{i \in I} (A \cap B_i)$
(7) $A \cap \bigcup_{i \in I} B_i \subseteq \bigcup_{i \in I} (A \cap B_i)$
(9) $by \subseteq +;1,6$

by
$$\subseteq +;1,6$$

Proof:

(1)

(2) (3)

(4) (5) (6)

Here is an example of induction.

Theorem: $A \cap \bigcup_{i \in I} B_i \subseteq \bigcup_{i \in I} (A \cap B_i)$

Theorem: For all positive integers *n* we have

$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

Proof:

(1)
$$1 = \frac{1(1+1)}{2}$$
 by arithmetic.
(2) Let $k \in \mathbb{N}$ and $1 \le k$.
(3) Assume $1 + 2 + 3 + \dots + k = \frac{k(k+1)}{2}$
(4) So by substitution and arithmetic

(4) So by substitution and arithmetic,

$$1+2+\dots+k+(k+1) = (1+2+\dots+k)+(k+1)$$
$$= \frac{k(k+1)}{2}+(k+1)$$
$$= \frac{k(k+1)}{2}+\frac{2(k+1)}{2}$$
$$= \frac{k(k+1)+2(k+1)}{2}$$
$$= \frac{(k+1)(k+2)}{2}$$
$$= \frac{(k+1)((k+1)+1)}{2}$$

(5)
$$\leftarrow$$

(6) $\forall n \ge 1, 1+2+3+\dots+n = \frac{n(n+1)}{2}$

by induction;1,2,3,4,5