1. Theorem: P and $Q \Rightarrow Q$

Proof:
(1) Assume P and Q $Q \quad$ by and $-; 1$
(3) $\quad \leftarrow$
(4) P and $Q \Rightarrow Q$
by $\Rightarrow+; 1,2,3$
You Win!!

Formal proofs give us Objectivity to know that our proof is correct. They can also be written in Expository style by deleting the formatting and numbering, and adding a few English words and punctuation to make the grammar correct. Note that instead of distinguising between " + " and " - " rules, we just refer to both as "definition of". If we do this to the above proof, here is what we might obtain as an Expository style proof.

Proof: Assume P and Q. Then Q is true by the definition of and. Therefore, P and $Q \Rightarrow Q$ by the definition of implies.
QED
2. Theorem: $(P$ or $Q)$ and $\neg P \Rightarrow Q$

Proof:

(1) \quad Assume $(P$ or $Q)$ and $\neg P$
(2) $\quad P$ or Q
(3) $\neg P$
by and-;1
by and-;1
(4) Assume P
(5)
(6) $\quad \rightarrow$
(7)
(8) \leftarrow

(7)
(8)
(9)
(10)
11)

(10) $\quad P \Rightarrow Q$
(11) Assume Q
(12)

Q
(13)
\leftarrow
(14) $\quad Q \Rightarrow Q$
(15)

Assume $\neg Q$
by $\rightarrow \leftarrow+; 4,3$

$$
\text { by } \neg-; 5,6
$$

$$
\text { by } \Rightarrow+; 4,8
$$

by copy; 11
by $\Rightarrow+; 11,12$ by or-; $2,10,14$

$$
\text { by } \Rightarrow+; 1,15
$$

You Win!
3. Theorem: $\neg \neg P \Leftrightarrow P$

Proof:

(1) Assume $\neg(\neg P)$
(2) Assume $(\neg P)$
$\begin{array}{ll}(3) & \rightarrow \\ (4) & \leftarrow\end{array}$
(5) P
(6) \leftarrow
(7) $\neg \neg P \Rightarrow P$

$$
\text { by } \rightarrow \leftarrow+; 2,1
$$

by $\neg-; 2,3$

$$
\text { by } \Rightarrow+; 1,5
$$

(8) Assume P
(9) Assume $\neg P$
(10)
(14) $P \Rightarrow \neg \neg P$
(15) $\neg \neg P \Leftrightarrow P$

$$
\text { by } \rightarrow \leftarrow+; 8,9
$$

$$
\begin{equation*}
\text { by } \neg+; 9,10 \tag{11}
\end{equation*}
$$

by $\Rightarrow+; 8,12$
by $\Leftrightarrow+; 7,14$

You Win!!!

4. Theorem: $(\exists x, P(x)) \Rightarrow(\neg \forall y, \neg P(y))$

Proof:

(1) Assume $\exists x, P(x)$
(2) $\quad P(c)$ for some c
(3) Assume $\forall y, \neg P(y)$
(4) $\quad \neg P(c)$
(5)
$\rightarrow \leftarrow$
(6)
(7) $\neg \forall y, \neg P(y)$
(8) \leftarrow
(9) $(\exists x, P(x)) \Rightarrow(\neg \forall y, \neg P(y))$

$$
\text { by } \Rightarrow+; 1,7
$$

We Are Victorious!

Theorem: P or $\neg P$

Proof:

(1) Assume $\neg(P$ or $\neg P)$
(2) Assume P
(3) $\quad P$ or $\neg P$
by or $+; 2$
(4)
(5)
(6) $\neg P$
$\rightarrow \leftarrow$
(7)
(8)
(9)
(10)
(14) P or $\neg P$
by $\rightarrow \leftarrow+; 3,1$
by $\neg+; 2,4$
Assume $\neg P$
P or $\neg P$
$\rightarrow \leftarrow$
\leftarrow
P
$\rightarrow \leftarrow$
\leftarrow

Awesome Uber Coolness!!!
Theorem: $x=y$ and $y=z \Rightarrow x=z$

Proof:

(1)
(2)

$$
\text { Assume } x=y \text { and } y=z
$$

$x=y$
(3)
$y=z$
(4)
(5)
(6) $x=y$ and $y=z \Rightarrow x=z$
by and -;1 by and $-; 1$ by substitution;3,2

$$
\text { by } \Rightarrow+; 1,4
$$

We Win!!

Theorem: $(\exists!x, x \leq a) \Rightarrow \neg \forall y, \neg(y \leq a)$

Proof:

(1) Assume \exists ! $x, x \leq a$
(2) $\exists x, x \leq a$ and $\forall z, z \leq a \Rightarrow z=x$
(3) $c \leq a$ and $\forall z, z \leq a \Rightarrow z=c$ for some c
(4) $\quad c \leq a$
by $\exists!-; 1$
by $\exists-; 2$
by and $-; 3$
(5) Assume $\forall y, \neg(y \leq a)$
(6) $\quad \neg(c \leq a)$
(7) $\quad \rightarrow \leftarrow$
(8) $\quad \leftarrow$
(9) $\neg \forall y, \neg(y \leq a)$
(10) \leftarrow
(11) $(\exists!x, x \leq a) \Rightarrow \neg \forall y, \neg(y \leq a)$
by $\Rightarrow+; 1,9$
QED!

Theorem: $A \subseteq A$
Proof:
(1) Let $x \in A$
(2) $x \in A$
(3) $A \subseteq A$
by copy; 1
by $\subseteq+; 1,2$
QED

Theorem $A-B \subseteq A$
Proof:
(1) Let $x \in A-B$
(2) $x \in A$
(3) $A-B \subseteq A$
by $--; 1$
by $\subseteq+; 1,2$

QED!

Theorem: $\bar{B} \subseteq \bar{A} \Rightarrow A \subseteq B$
Proof:
(1) Assume $\bar{B} \subseteq \bar{A}$
(2) Let $x \in A$
(3) \quad Assume $\neg x \in B$
(4) $x \notin B$
(5) $x \in \bar{B}$
(6) $x \in \bar{A}$
(7) $\quad x \notin A$
(8) $\quad \neg x \in A$
(9) $\quad \rightarrow \leftarrow$
(10) $\quad x \in B$
(12) $A \subseteq B$
(13)
(14) $\bar{B} \subseteq \bar{A} \Rightarrow A \subseteq B$
by $\notin+; 3$
by complement $+; 4$
by $\subseteq-; 5,1$
by complement $-; 6$
by $\notin-; 7$
by $\rightarrow \leftarrow+$;2,8
by $\neg-; 3,9$
by $\subseteq+; 2,11$
by $\Rightarrow+; 1,12$
QED!!
Theorem: $(A \cap B) \times B \subseteq A \times B$
Proof:
(1) Let $x \in(A \cap B) \times B$
(2) $x=(s, t)$ for some $s \in A \cap B$ and $t \in B$
(3) $s \in A$ and $s \in B$
(4) $s \in A$
(5) $(s, t) \in A \times B$
(6) $x \in A \times B$
(7) $(A \cap B) \times B \subseteq A \times B$

QED!

Theorem: $A \cap \bigcup_{i \in I} B_{i} \subseteq \bigcup_{i \in I}\left(A \cap B_{i}\right)$
Proof:
(1) Let $x \in A \cap \bigcup_{i \in I} B_{i}$
(2) $x \in A$
by $\cap-; 1$
(3) $x \in \bigcup_{i \in 1} B_{i}$
(4) $x \in B_{k}$ for some $k \in I$
(5) $x \in A \cap B_{k}$
(6) $x \in \bigcup_{i \in I}\left(A \cap B_{i}\right)$
by $\cap-; 1$
by indexed union -;3
by $\cap+; 2,4$
(7) $A \cap \bigcup_{i \in I} B_{i} \subseteq \bigcup_{i \in I}\left(A \cap B_{i}\right)$ by indexed union $+; 4,5$

QED!
Here is an example of induction.
Theorem: For all positive integers n we have

$$
1+2+3+\cdots+n=\frac{n(n+1)}{2}
$$

Proof:
(1) $1=\frac{1(1+1)}{2}$ by arithmetic.
(2) Let $k \in \mathbb{N}$ and $1 \leq k$.
(3) Assume $1+2+3+\cdots+k=\frac{k(k+1)}{2}$
(4) So by substitution and arithmetic,

$$
\begin{aligned}
1+2+\cdots+k+(k+1) & =(1+2+\cdots+k)+(k+1) \\
& =\frac{k(k+1)}{2}+(k+1) \\
& =\frac{k(k+1)}{2}+\frac{2(k+1)}{2} \\
& =\frac{k(k+1)+2(k+1)}{2} \\
& =\frac{(k+1)(k+2)}{2} \\
& =\frac{(k+1)((k+1)+1)}{2}
\end{aligned}
$$

(5) \leftarrow
(6) $\forall n \geq 1,1+2+3+\cdots+n=\frac{n(n+1)}{2}$

