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This is not a complete set of lecture notes for Math 320, Chaos and Fractals. Additional
material will be covered in class and discussed in the textbook.

Logic
In this section we give an informal overview of logic and proofs. For a more formal
introduction see any logic textbook.

Variables, Expressions, and Statements
Definition A set is a collection of items called the members (or elements) of the set.

Remark An element is either in a set or it is not in a set, it cannot be in a set more
than once.

Definition An expression is an arrangement of symbols which represents an element
of a set called the domain (or type) of the expression.

Remark It is not necessary that we know specifically which element of the domain an
expression represents, only that it represents some unspecified element in that set.

Definition The element of the domain that the expression represents is called a value
of that expression.

Definition A variable is an expression consisting of a single symbol.

Definition A constant is an expression whose domain contains a single element.

Definition A statement (or Boolean expression) is an expression whose domain is
true, false.

Remark We do not have to know if a statement is true or false, just that it is either
true or false.

Definition The value of a statement is called its truth value.

Definition To solve a statement is to determine the set of all elements for which the
statement is true.

Remark More precisely, if a statement contains n variables, x1,xn, then to solve
the statement is to find the set of all n-tuples a1, , an such that each ai is an
element of the domain of xi and the statement becomes true when x1, , xn are
replaced by a1, , an respectively. Any such n-tuple is called a solution and the set
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of all solutions is called the solution set.

Definition An equation is a statement of the form A  B where A and B are
expressions.

Definition An inequality is a statement of the form A  B where A and B are
expressions and  is one of , , , , or .

Propositional Logic
The Five Logical Operators
Definition Let P,Q be statements. Then the expressions

1.  P

2. P and Q

3. P or Q

4. P  Q

5. P  Q
are also statements whose truth values are completely determined by the truth
values of P and Q as shown in the following table

P Q  P P and Q P or Q P  Q P  Q

T T F T T T T
T F F F T F F
F T T F T T F
F F T F F T T

Rules of Inference and Proof
Definition A rule of inference is a rule which takes zero or more statements (or
other items) as input and returns one or more statements as output.

Notation An expression of the form
P1


Pk

Q1


Qn
represents a rule of inference whose inputs are P1Pk and outputs are Q1, ,Qn.

Notation The rule of inference shown above can also be expressed in recipe notation

© 2002 - Ken Monks



Page 3

as
Show P1


Show Pk
Conclude Q1


Conclude Qn
or equivalently,

To show Q1, ,Qn
Show P1


Show Pk

Definition A formal logic system consists of a set of statements and a set of rules of
inference.

Definition A proof in a formal logic system consists of a finite sequence of
statements (and other inputs to the rules of inference) such that each statement
follows from the previous statements in the sequence by one or more of the rules of
inference.

Natural Deduction
Definition The symbol  is an abbreviation for “end assumption”.

Definition The rules of inference for propositional logic are shown in Table 1.
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Table 1: Rules of inference for Propositional Logic

and 
To showW and V
1. ShowW
2. Show V

and 
To showW
1. ShowW and V

and 
To show V
1. ShowW and V

 

To showW  V
1. Assume W
2. Show V
3. 

  (modus ponens)
To show V
1. ShowW
2. ShowW  V

 

To showW  V
1. ShowW  V
2. Show V  W

 

To showW  V
1. ShowW  V

 

To show V  W
1. ShowW  V

or 
To showW or V
1. ShowW

or 
To showW or V
1. Show V

or  (proof by cases)
To show U
1. ShowW or V
2. ShowW  U
3. Show V  U

  (proof by contradiction)
To show  W
1. Assume W
2. Show 

3. 

  (proof by contradiction)
To showW
1. Assume  W
2. Show 

3. 

 

To show 

1. ShowW
2. Show  W

 

To showW
1. Show 

Remark Note that the inputs “Assume -” and “” are not themselves statements but
rather inputs to rules of inference that may be inserted into a proof at any time.
There is no reason however, to insert such statements unless you intend to use one
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of the rules of inference that requires them as inputs.

Example Prove P  P or Q and verify it with a truth table

Example Prove P or Q  ~ ~P and ~Q and verify it with a truth table

Equality
Definition The equality symbol, , is defined by two rules of inference:

Reflexive 
To show x  x

Substitution
To show W with the nth free occurrence of x replaced by y
1. Show W
2. Show x  y

Remark Note that in the Reflexive rule there are no inputs, so you can insert a
statement of the form x  x into your proof at any time.

Example Given x  y and y  z, prove x  z.

Predicate Logic
Quantifiers
Definition The symbols  and  are quantifiers. The symbol  is called “for all”,
“for every”, or “for each”. The symbol  is called “for some” or “there exists”.

Definition If W is a statement and x is any variable then x,W and x,W are both
statements. The rules of inference for these quantifiers are given in Table 2.

Notation If x is a variable, t an expression, and Wx a statement then Wt is the
statement obtained by replacing every free occurrence of x in Wx with t,

Table 2: Rules of Inference for Quantifiers

 

To show x,Wx
1. Let s be arbitrary
2. ShowWs

 

To showWt
1. Show x,Wx

 

To show x,Wx
1. ShowWt

 

To showWt for some t
1. Show x,Wx

Remark Note that there are restrictions on the rules of inference for quantifiers
which are not listed in Table 2 (see the Proof Recipes sheet for details). In most
situations they are not a concern.
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Remark Precedence: Quantifiers have a lower precedence than. Thus they
quantify the largest statement to their right possible unless specifically limited by
parentheses.

Example Prove x,Px  ~y, ~Py

Sets, Functions, Numbers
Some Definitions from Set theory
The symbol  is formally undefined, but it means “is an element of”. Many of the
definitions below are informal definitions that are sufficient for our purposes.

Set notation and operations
Finite set notation: x  x1, ,xn  x  x1 or or x  xn
Set builder notation: x  y : Py   Px
Cardinality: #S  the number of elements in a finite set S
Subset: A  B  x,x  A  x  B
Set equality: A  B  A  B and B  A
Def. of : x  A  ~x  A
Empty set: ,x,x  
Relative Complement: x  B  A  x  B and x  A
Intersection: x  A  B  x  A and x  B
Union: x  A  B  x  A or x  B
Indexed Intersection: x  

iI
Ai  i, i  I  x  Ai

Indexed Union: x  
iI
Ai  i, i  I and x  Ai

Two convenient abbreviations: x  A,Px  x,x  A  Px
x  A,Px  x,x  A and Px

Some Famous Sets
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The Natural Numbers N  0,1,2,3,4, 

The Integers Z  ,3,2,1,0,1,2,3, 

The Rational Numbers Q  a
b : a  Z, b  N, b  0, and gcda,b  1

The Real Numbers R  x : x can be expressed as a decimal number

The Complex Numbers C  x  yi : x,y  R where i2  1
The positive real numbers R  x : x  R and x  0

The negative real numbers R  x : x  R and x  0

The positive reals in a set A A  A  R

The negative reals in a set A A  A  R

The first n positive integers In  1,2, ,n
The first n  1 natural numbers On  0,1,2, ,n

Cartesian products
Ordered Pairs: x,y  u,v  x  u and y  v
Ordered n-tuple: x1, ,xn  y1, ,yn  x1  y1 and and xn  yn
Cartesian Product: A  B  x,y : x  A and y  B
Cartesian Product: A1   An  x1, ,xn : x1  A1 and and xn  An
Power of a Set An  A  A   A where there are n “A’s” in the Cartesian product

Functions and Relations
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Def of relation: R is a relation from A to B R  A  B

Def of function:
f : A  B  f  A  B and
x,y, x,y  f and
x, x,y  f and x, z  f  y  z

Alt function notation X
f
 Y  f : X  Y

Def of fx: fx  y  f : A  B and x,y  f
Domain: Domainf  A  f : A  B
Codomain: Codomainf  B  f : A  B
Image: fS  y : x,x  S and y  fx
Range: Rangef  fDomainf
Identity Map: idA : A  A and x, idAx  x
Composition: f : A  B and g : B  C  g  f : A  C and x, g  fx  gfx
Injective (one-to-one): f is injective x,y, fx  fy  x  y
Surjective (onto): f is surjective f : A  B and y,y  B  x,y  fx
Bijective: f is bijective f is injective and f is surjective
Inverse: f1 : B  A  f : A  B and f  f1  idB and f1  f  idA
Inverse Image: f : A  B and S  B  f1S  x  A : fx  S

Example Prove that if A  B then A  B  A.

Example (left cancellation for injective functions) Let X,Y,Z be sets and f : Y  Z.
Show that if f is injective then for any functions g,h : X  Y

f  g  f  h  g  h

Sequences
Definition A finite sequence is a function t : In  A where n is a natural number
and A is a set. An infinite sequence is a function t : N  A where A is a set. In
either case, tk is called the kth term of the sequence.

Remark It is often convenient to say that t is a finite (resp infinite) sequence if
t : On  A (resp. t : N  A). In this case we say that tk is the k  1st term of the
sequence.

Notation If t : In  A is a finite sequence we write
t1, t2, t3, , tn

as another notation for t, where tk  tk for all k  In. Similarly if t : N  A we
write

t1, t2, t3,
for t where tk  tk for all k  N.
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Remark Sometimes for readability we might want to enclose a sequence in
parenthesis. For example, we might write “Let t  1,2,3,4” instead of “Let
t  1,2,3,4”. In this sense there is really no distinction between n-tuples and finite
sequences.

Notation We use an overbar to indicate an infinite repeating sequence, i.e.
t0, t1, , tk1, tk, , tkn1

denotes the sequence infinite sequence t such that ti  tkikModn for all i  k  n.

Example Write the first five terms of the sequence N a
 N by an  n2  1.

Example What is the 1000th term in the sequence
9,0,8,3,2,4,1,5,7,6

Example Write the first five terms of the sequence N a
 N given by

an 
1 if n  0
n  an  1 otherwise

Some Facts from Number Theory
Theorem (Math Induction) Let Pn be any statement about a natural number
variable n. Then

P0 and k  N,Pk  Pk  1  n  N,Pn.

Theorem (Division Algorithm) Let a,b  Z,and b  0 . Then there exist unique
integers q, r  Z such that

a  qb  r and 0  r  b.

Remark In this theorem the number q is called the quotient and r is called the
remainder when a is divided by b.

Definition Let a,b  Z with b  0. Then a Mod b is the remainder when a is
divided by b. The quotient can be written as a

b where x is the greatest integer
less than or equal to a real number x.

Definition Let a,b  Z. We say a divides b if ak  b for some integer k. If a divides
b we write a  b.

Definition Let a,b  Z with a  0 or b  0. Then gcda,b is the greatest positive
integer which divides both a and b.

Example What is the quotient and remainder when 21000  1 is divided by 32?

Example What is the quotient and remainder when 100 is divided by 7?

Example True or False:
(a) 14  7 (b) 7  14 (c) 7  14 (d) 7  0
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Example What is the gcd72,60? gcd295927,304679?

Iteration
Discrete Dynamical Systems
Definition Let X be any set. Any function f : X  X is called a set theoretic discrete
dynamical system (or simply discrete dynamical system).

Definition Let X be a set and f : X  X. Define f 0  idX and for all k  1 define
f k  f  f k1

Example Let f : R  R by fx  2x  1. Find a nonrecursive formula for f kx for
k  0.

Theorem (Power Theorem) Let f : X  X. For any k,n  N,
f kn  f k  f n

and
f kn 

k terms

f n  f n   f n f n k

Definition Let f : X  X and x  X. The sequence
x, fx, f 2x, f 3x,

is called the f-orbit of x. The first term, x, is called the seed of the orbit. The k  1st
term is called the kth f-iterate of x (or kth iterate or kth iteration). We write Orbfx
for the f-orbit of x.

Remark Orbfx : N  X and Orbfxn  fnx for all n  N.

Example (1) Find the complete f-orbit of 5 for C 0,1 f
 C 0,1 by

fz  1
1z . What is the f-orbit of 3? How about a?

Definition Let X be a set, x  X, and f : X  X. Then the set of terms in the f-orbit of
x is denoted Ofx, i.e.

Ofx  fkx : k  N
We call Ofx the set of f-iterates of x (or simply the set of terms in the f-orbit of
x).

Example What is Of5 in Example 1? How many elements are in Of5?

Types of Orbits
Definition Let f : X  X and x  X. The f-orbit of x is cyclic if fnx  x for some
n  1. In this situation we say that x is a cyclic point (or periodic point) for f.

Example Is Orbf5 cyclic in Example 1?

Definition Let f : X  X and x  X. If fnx  x for some n  1, we say x has period
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n. If in addition fkx  x for all 1  k  n then we say x has minimum period n. If
x has period 1 we say x is a fixed point of f. If x has period n we also say that
Orbfx has period n and if x has minimum period n we also say Orbfx has
minimum period n as well.

Example What is the minimum period of 5 in Example 1?

Example Does f have any fixed points in Example 1?

Lemma Let f : X  X, x  X, and n  N.
x has minimum period n  #Ofx  n

Example Why isn’t it if and only if?

Definition Let f : X  X and x  X. The f-orbit of x is eventually cyclic if
fnx  fmx for some n,m with n  m. In this situation we also say that x is an
eventually cyclic point (or eventually periodic point) for f.

Definition Let f : X  X and x  X periodic point with period n. We say that Ofx
is an n-cycle if and only if Orbfx is cyclic with minimum period n.

Definition Let f : X  X and x  X. The f-orbit of x is acyclic if it is not eventually
cyclic.

Example Can you come up with examples of each of these?

The Digraph
Definition A directed graph (or digraph) is a pair V,E where V is a set of elements
called the nodes and E  V  V is the set of directed edges.

Definition Let X
f
 X be a discrete dynamical system. The digraph of f is the

directed graph X,S where S  a, fa : a  X , i.e. the nodes are the
elements of the domain and the directed edges connect each element a in the
domain to fa.

Examples of Iteration
The Collatz Conjecture
Definition Define T : Z  Z by x  Z

Tx 
x
2 if x is even
3x1
2 if x is odd

.

Conjecture (Collatz) For all n  N, k  0,Tkn  1, i.e. the T-orbit of any
positive integer contains one.

Remark Note that OrbT1  1,2 so that the conjecture is equivalent to saying that
the T-orbit of any positive integer is eventually periodic and enters the 2-cycle
1,2.
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Sumerian Method for Computing Square Roots
Claim Let a  R and Rootax  1

2 x 
a
x .For any x  R, the Roota-orbit of x

converges to a .

Example Find a fraction and a decimal that are a good approximation to 2 and
3 by the Sumerian Method.

Multiple Inputs: The Euclidean Algorithm
Remark If f : A  B  C and a  A,b  B, we usually abbreviate fa,b as
fa,b.

Claim Define Euc : N  N  N  N by

Eucn,m 
m,n if n  m
n, 0 if m  0
m,nMod m otherwise

.

for any n,m  N  N. Then the Euc-orbit of any n,m is eventually fixed and
contains the fixed point gcdn,m, 0.

Remark This method of computing gcdn,m is called the Euclidean algorithm.

Example Reduce the fraction 295927
304679 by hand.

Non-numeric Inputs: Post’s Tag Problem
Definition Let S be a set and let S be the set of words (finite sequences) which can
be made from the alphabet S, i.e.

S  
n0



f | f : In  S .

If x  S then #x is the number of letters in the word x. If x,y  S then x  y is the
word formed by concatenating the words x and y. If x  x1x2xn  S then
xab is the word xaxa1xa2xb1xb and xa  xa.

Example What is ? a,b?

Definition Define Tag : a,b  a,b as follows. If x  a,b and n  #x then

Tagx 
x if n  3
x4. .n  aa if x1  a
x4. .n  bbab if x1  b

In other words, if a word is less than three letters long, Tag returns it unchanged, if
it is 3 or more letters and begins with the letter a then Tag deletes the first three
letters and appends aa on the right, and if it is 3 or more letters and begins with b
then Tag deletes the first three letters and appends bbab.

Problem (TAG) (Emil Post 1921) Are there any Tag-orbits which are not eventually
cyclic?
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Example What is the Tag-orbit of a? baba? bbbaa?
Stick Figure Fractals
Definition Let A,B be any distinct points in the plane. Then AB denotes the line
segment with endpoints A and B (i.e. the set of all points in the plane which are on
the line containing A and B and are either between A and B or are equal to A and
B). The directed segment from A to B is a pair AB,A, and is denoted AB. In this
case we say AB is the segment associated with AB (and can think of a directed
segment as being a set of points in the plane in this sense).

Notation If A  a1,a2,B  b1,b2 then AB can be written dsega1,a2 , b1,b2 
and AB can be written sega1,a2 , b1,b2 .

Remark A directed line segment can be thought of as a line segment with an arrow
drawn on it in one of the two possible directions. Note that AB  BA but
AB  BA. A directed line segment can also be thought of as a set of points since
the line segment associated with it is a set of points. So if we talk about a point
being "on a directed segment" we mean that it is on the line segment associated
with the directed segment and so on.

Definition A stick is either a line segment or a directed line segment. A stick figure
is a finite set of sticks. Let Usf be the set of all stick figures.

Remark Note that we can also consider a stick figure to be a set of points in the
plane by considering the union of the points in the line segments and (line segments
associated with) directed segments.

Definition Let s  dsega,b, c,d. Define Ts : R2 R2 by
Tsx,y  c  ax  b  dy  a, d  bx  c  ay  b.

Ts is called the affine map induced by s.

Remark We will show how to derive this map later in the course. Intuitively, it is the
map that sends the directed segment from 0,0 to 1,0 to the directed segment
s  dsega,b, c,d, and the directed segment from 0,0 to 0,1 to the directed
segment obtained by rotating s by 90CCW about a,b.

Example Find the affine map induced by the directed segment from 1,1 to 2,2.

Lemma Let s be a directed segment and t a line segment. Then Tst is a line
segment.

Definition Let s, t be directed segments with t  AB. Then Tst  TsAB,TsA.

Definition If G is a stick figure and s a directed segment then TsG is the stick
figure

xG
Tsx.

Definition For each stick figure G define a dynamical system G : Usf  Usf as
follows. Let S  Usf be a stick figure. For each x  S, define
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gx 
x if x is a line segment
TxG if x is a directed segment

.

Then GS  
xS
gx. The dynamical system G is called the stick figure iterator

associated with G. The figure G is called the generator for the stick figure iterator.

Claim In many cases the G-orbit of a seed S converges to a fractal shape.

Example See my Maple worksheet LectureExamples.mws for examples.
GeeBees (Grid Based Fractals)
Algorithm Let n  Nand a1, ,ak  In2 . Define a dynamical system
GBn;a1, ,ak as follows. Let the seed be a set containing one uncolored square.
The process is:
1. Subdivide each uncolored square in the input set into an n  n grid of
congruent subsquares and number these subsquares from 1 to n2from left to right
and bottom to top, starting in the lower left corner.
2. Color the subsquares numbered a1, ,ak.
3. Output the set of colored and uncolored subsquares.

Remark The background (uncolored subsquares of the original square) of a GB
converges to a fractal shape.

Example Plot the first few iterations of GB3;2,4.
HeeBGB’s

Definition A directed square is a pair S,AB where S is a square in the plane and

AB is a directed segment whose associated line segment is a side of S.

Notation When drawing a picture of a directed square we will draw the directed
segment inside the square next to the edge instead of directly on top of the edge to
avoid confusion when two directed squares share a common edge, i.e.

instead of . Note that the arrow is not part of the square S

associated with the directed square.

Definition A labeled square is a member of the following 9 families:
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Figure 1: Labeled Squares
Each labeled square must have one of the orientations shown above, but can have
any position or size. Let ULS be the set of all labeled squares.

Remark Notice that every labeled square is a directed square except for the
members of the family labeled none. Each labeled directed square is either positive
or negative (the negative ones have the arrow on the left when viewed with the
arrow pointing upwards).

Definition Define the vertical mirror image of each labeled square a to be a as
follows:

a Up Up Dn Dn Lt Lt Rt Rt none
a Up Up Dn Dn Rt Rt Lt Lt none

i.e. the sign always changes and left and right are interchanged.

Remark Note that this is what is obtained if each of the images in Figure 1 above are
reflected about the vertical line through the center of the square.

Definition A GB figure is a finite set of labeled squares. Let UGB be the set of all GB
figures.

Definition Let n  N and a1, ,an2  Up,Dn,Lt,Rt,Up,Dn,Lt,Rt,none
(the label set). Define a dynamical system HeeBGBa1, ,an2  : UGB  UGB as
follows. First define g : ULS  UGB as follows. For each x  ULS,
If x is labeled none then gx  x.
If x is a directed square then
1. Rotate x so its arrow points upwards.
2. Subdivide x into an n  n grid of congruent subsquares.
a. if x is positive, label these subsquares from a1 to an2
from left to right and bottom to top, starting in the
lower left corner.
b. if x is negative, label these subsquares from a1 to an2
from right to left and bottom to top, starting in the lower
right corner.

3. Undo the rotation from step number 1 to return the square
(and all its new subsquares) to the original position and
orientation. gx is the set of these subsquares.

© 2002 - Ken Monks



Page 16

Now, let S  UGB. Define HeeBGBa1, ,an2 S  
xS
gx.

Algorithm To draw a HeeBGB fractal start with a seed consisting of a set containing
a single labeled square whose label is Up and a choice of labels a1, ,an2 .
Compute the HeeBGBa1, ,an2 -orbit of the seed, but color the squares labeled
none as you iterate. The uncolored portion of the HeeBGB-orbit of this seed that is
contained in the original square always converges to a fractal image (i.e. you are
coloring the background, not the fractal).

Example Draw the first few iterations of HeeBGBUp,Up,Up,none.

Example Draw the first few iterations of HeeBGBUp,Dn,Lt,none.

Example Draw the first few iterations of HeeBGBDn,Dn,Rt,none.
Newton’s Method
Definition Let R  R, f : R  R, and r  R. We say r is a root of f if fr  0.

Definition Let R  R and f : R  R a differentiable function. Define Newtf : R  R
by

Newtfx  x 
fx
f x

for all x  R where R  x  R : f x  0 .

Remark Newtfa is the x coordinate of point where the tangent line to the graph of
f at a, fa meets the x-axis.

Theorem (Newton’s Method) Let R  R, f : R  R a differentiable function, and
r  R a root of f. If f r  0 then there exists and interval I  R such that r  I,
Newtf : I  I and for all x  I the Newtf-orbit of x converges to r.

Example See my Maple worksheet LectureExamples.mws for an example.
Changing Integer Base
Theorem (Base b representation) Let b,n  N, b  1. There are unique integers
d0,d1,d2, Ob1 such that

n 
i0



dibi.

Definition The sequenced2d1d0 is called the base b representation of n. If b is
not clear from context we may writed2d1d0 b to indicate the base.

Remark Since the sum is finite, there must exist k  N such that di  0 for all i  k.
Thus we often abbreviate d0d1d2by d0d1dk (i.e. drop the trailing zeros).

Definition Let b  N and b  1. Define Baseb : N  N by
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Basebx 
x  x Mod b

b .

Example If b  2 then

Base2x 
x
2 if x is even
x1
2 if x is odd

.

Example If b  3 then

Base3x 

x
3 if x Mod 3 is 0
x1
3 if x Mod 3 is 1
x2
3 if x Mod 3 is 2

.

Theorem (Base Conversion) Let n  N. If each term in the Baseb-orbit of n is
replaced by its valueMod b, the sequence produced will be the base b
representation of n (with the digits listed from left to right from least significant to
most significant.).

Example What happens if we apply this to a base ten number?

Example Convert 314 to base 2 by this method.
Conway’s Fractran
Definition A Fractran program consists of a finite sequence of positive rational
numbers

F  r1, r2, , rk 
with rk an integer. Each such sequence defines a dynamical system fF : Z  Zby

fFn  rin where i  minj : rjn  Z
i.e. fF multiplies n by the first rational number in the sequence for which the
product is an integer.

Remark To “compute” with a Fractran program we simply compute the fF-orbit of
some seed and look for certain terms in the orbit for the answers. For example, we
might look at the exponents of the powers of two that appear in the orbit for the
Fractan program’s output.

Example: (Conway) Let

PrimeGame  17
91 ,

78
85 ,

19
51 ,

23
38 ,

29
33 ,

77
29 ,

95
23 ,

77
19 ,

1
17 ,

11
13 ,

13
11 ,

15
2 ,

1
7 ,
55
1

and define f  fPrimeGame. The powers of 2 which occur in the f-orbit of 2 are
22,23, 25, 27, 211, 213, 217, 219,

in exactly that order, i.e. PrimeGame computes the prime numbers in order. See
LectureExamples.mws to try it.
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Example: (Monks) Let

CollatzGame  1
11 ,

136
15 ,

5
17 ,

4
5 ,
26
21 ,

7
13 ,

1
7 ,
33
4 ,

5
2 ,7

and define f  fCollatzGame. The powers of 2 which occur in the f-orbit of 2n are
2n, 2Tn, 2T2n, 2T3n,

in exactly that order, i.e. CollatzGame computes the Collatz orbits of natural numbers.
See LectureExamples.mws to try it.

Example: (Conway) Let

PolyGame 
583
559 ,

629
551 ,

437
527 ,

82
517 ,

615
329 ,

371
129 ,

1
115 ,

53
86 ,

43
53 ,

23
47 ,

341
46 ,

41
43 ,

47
41 ,

29
37 ,

37
31 ,

299
29 ,

47
23 ,

161
15 ,

527
19 ,

159
7 ,

1
17 ,

1
13 ,

1
3

and define f  fPolyGame. Define fcn  m if the fPolyGame-orbit of c22
nstops at 22m and

otherwise leave fcn undefined. Then every computable function appears among
f0, f1, f2, .

Cellular Automata
Definition An n-dimensional k-state cellular automaton is a discrete dynamical
system G c

 G where G is the set of all functions from Zn to Ik. Each element of Zn
is called a cell. Each element f  G is called a state and its value on a particular
cell is called the state of that cell. The set G is called the state space. To each cell
we assign a finite neighborhood of cells such that the neighborhood of the
translation of a cell is the translation of the neighborhood of the original cell. The
map c must be completely determined by a single rule that determines cfp from
the values of fq for all q in the neighborhood of p, i.e. the state of a cell after
iterating is completely determined by the states of its neighbors before iterating.

Remark A cellular automaton (CA) is usually represented by a string or grid of
squares, where each square in the grid represents a cell, and the states of each cell
are represented by colors.

Example A one dimensional CA can be represented as a row of cells.

......

The states of the cells can be represented by coloring the cells different colors
corresponding to the current state of that cell. The most common neighborhood to
consider for a cell consists of the cell itself, the cell immediately to its left, and the cell
immediately to its right (though others are possible).
Example A two dimensional CA can be represented as a grid of cells:
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......

Definition There are two commonly used neighborhoods. TheMoore neighborhood
is a square shaped neighborhood centered at the cell. The most commonly used one
consists of a cell all all of the cells that share a boundary point in common with that
cell:

The von Neumann neighborhood consists of a diamond shaped neighborhood
centered at the cell. The most commonly used one consists of the cell and its
neighbors immediately to the left, right, above, and below the cell:

Definition An outer totalistic (or simply totalistic) CA is one whose rule (map) is
completely determined by the sum of the state values of the neighbors of each cell.

Definition Binary cellular automata are those with only two states for each cell. In
this situation we say that a cell is alive if its state is 1 and dead if its state is 0.

Example The most famous CA is Conway’s Game of Life. It is a 2 dimensional
binary (2 state) CA whose rule is given as follows. A dead cell becomes alive if
exactly three of its Moore neighbors are alive, and a live cell stays alive if either two
or three of its Moore neighbors (other than itself) are alive. Otherwise the cell
becomes dead.

Example Compute the orbits of the following seed states in Conway’s Game of Life
(assuming that all cells other than the red ones shown are dead).
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Definition A fixed point of the Game of Life cellular automaton is called a Still Life.

Example See Mirek’s Cellebration or Life32 for interesting examples.

Example In 1999 Paul Rendell impelemented a Turing Machine in Life. In 2002,
Paul Chapman extended this to construct a universal Turing Machine in Life.

Introduction to Maple
Maple Basics
 Go through the New User’s Tour in Maple. From the Maple help menu select New User’s
Tour and work through topic numbers 1,2 (briefly), 3, 4, 5, 10, 11.

Maple Language
 Every Maple statement ends with either ‘;’ or ‘:’ . Statements that end with ‘;’ will display
their results, statement that end with ‘:’ do not.

 Assignment statement:
[variable]:[expression]

Examples: x:2; f:"Hello world"; a[0]:x2;

 Conditional Statement:
if [B1] then

[S1]
elif [B2]

[S2]


elif [Bn]
[Sn]

else

[Sn1]
end if;

where B1,B2, ,Bn are Boolean expressions and S1,S2, ,Sn1 are sequences of statements..
Examples:
if 0x then

print("It is positive.");

end if;

if x0 then
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print("It is zero.");

else

print("It’s not zero.");

end if;

if 0x then

print("It is positive.");

elif x0 then

print("It is zero.");

else

print("It is negative.");

end if;

 Loop statement
for [var] from [start] to [end] by [inc] while [B] do
[S] end do;

where [var] is a variable, [start], [end], [inc] are numbers, [B] a Boolean expression
and [S] a sequences of statements. Note that any of the numbered pieces:

1

for var

2

from start

3

to end

4

by inc

5

while B do

[S] end do;

are optional. The default value for [start] and [inc]is 1. The default for [end] is
infinity. The default for [B] is true.
Examples:
for i from 0 to 10 by 2 do

print(i);

end do;

for n while n^2100 do
print(n^2);

end do;

 Procedures
proc([args])

[S]

end proc;

where [args] is a sequence of zero or more variables and [S] is a sequence of statements.
To return a value from a procedure use the return [values] command in the procedure.
A procedure also returns the value of the last statements executed by default. See ?proc
for more details about procedures.
Examples:
Square:proc(n)

return n^2

end proc;

CollatzFunction:proc(n)
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if n mod 20 then

return n/2

else

return (3*x1)/2

end if;

end proc;

To call any of the procedures above, simple use it like a function, e.g.
CollatzFunction(3);

Square(7);

Maple Data types
 Expressions
Maple has all the usual mathematical expressions built in.
Examples:
(x^23*x)/(x-3);

sqrt(2);

Pi*exp(x)-ln(3)sin(x);

x mod 6;

etc.
 Functions
While you can always use a proc to define a function, for simple functions it is easier to
use the x- (think if this as “x maps to”) notation as indicated in the following example.
Ex:
Square:proc(x) RETURN(x^2) end proc;

Square:x-x^2;

These statements both define the same function.
 Sequences, Sets, and Lists

A Sequence: a0,,an;

A List: [a0,,an];

A Set: {a0,,an};

The seq() command can construct sequences. To convert a sequence to a list or set
enclose it in [] or {}. To convert a list to a sequence use op(). The nops() command tells
you how many elements are in a list or set. The operators member, union, and intersect
work with sets as you would expect.
Examples:
S:1,2,3,4; # S is a sequence

L:[1,2,3,4]; # L is a list

A:{1,2,3,4}; # A is a set

T:seq(i,i1..4); # T is the same sequence as S

M:[T]; # M is the same list as L

B:{T}; # B is the same set as A
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Z:{op(M)}; # Z is the same set as A and B

n:nops(L); # n is assigned 4

 Subscripts (indexes)
The ith element in a list L is L[i].
Example:
L:[2,4,6,8];

n:L[3]; # n is assigned 6

To access a sublist, use a range:
Example:
L:[2,4,6,8,10];

n:L[2..4]; # n is assigned [4,6,8]

Metric Spaces
Definition A metric space is a pair X,d where X is a set and d : X  X  R such
that for all x,y, z  X :

1. dx,y  0
2. dx,y  0  x  y
3. dx,y  dy,x
4. dx,y  dy, z  dx, z

In this situation, d is called a metric (or distance function) on X, and the elements of
X are called the points in the metric space.

Examples of Metric Spaces
Example (R,dEuc) is a metric space where dEucx,y  |x  y| for all x,y  R.
Notice this is just a special case of the more general theorem:
Theorem (Rn,dEuc) is a metric space where

dEucx1, ,xn, y1, ,yn  
i1

n

xi  yi2

dEuc is called the Euclidean metric on Rn.

Definition Let dTaxi : Rn  Rn  R by

dTaxix1, ,xn, y1, ,yn 
i1

n

|xi  yi |

The map dTaxi is called the lattice metric, theManhattan metric, or the taxicab
metric.

Definition Let dmax : Rn  Rn  R by
dmaxx1, ,xn, y1, ,yn  max|xi  yi | : i  1, ,n

The map dmax is called the maximum metric.

Definition The set of 2-adic integers, denoted Z2, is the set of all infinite sequences
of 0’s and 1’s, i.e.
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Z2  s0, s1,  : i  N, si  0,1

Definition Let d2 : Z2  Z2  R by
d2s0, s1, , t0, t1,   1

2k
where k  mini  si  ti if s0, s1,   t0, t1,  and

d2s0, s1, , t0, t1,   0
if s0, s1,   t0, t1, . The map d2 is called the 2-adic metric.

Theorem Rn, dTaxi, Rn, dmax, and Z2, d2 are metric spaces.

Remark It is a fact that Z2, d2 cannot be embedded in (Rn, dEuc) for any n. The
2-adic metric is simple to compute and work with, but the geometry of Z2, d2 is
very strange.

Properties of Metric Spaces
Definition Let X,d be a metric space,   R, and x  X. Then

Bx;  y  X  dx,y   and
Bx;  y  X  dx,y  

Bx; is called the open ball of radius  centered at x, and Bx; is called the
closed ball of radius  centered at x.

Definition Let X,d be a metric space and U  X. Then U is open if and only if
 x  U,    R such that Bx;  U

Definition Let X,d be a metric space and U  X. Then U is closed if and only if
X  U is open.

Remark There are sets which are neither open nor closed.

Definition Let X,d be a metric space and U  X. Then U is bounded if and only if
  R,x  X, such that U  Bx;.

Definition Let x0,x1,x2, X and X,d a metric space. Let x  X. Then
limn xn  x    R

, N  N such that n  N,n  N  dxn,x  

In this case we say that the sequence x0,x1,x2, converges to the limit x in X,d.

Definition Let x0,x1,x2, X and X,d a metric space. Then the sequence
x0,x1,x2, is called a Cauchy Sequence if and only if

  R,N  N such that i  N ,j  N, dxi,xj  
i.e., the terms of the sequence get arbitrarily close to each other.

Definition Let X,d be a metric space. Then X,d is a complete metric space if
and only if every Cauchy sequence in X,d converges to a limit x  X.

Example R,dEuc is complete. In fact, this is one of the axioms that define the real
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numbers.

Example Q,dEuc is not complete.

Definition Let X,d be a metric space and U  X. U is compact if and only if
every open cover has a finite subcover, i.e. whenever UiiI satisfies U  iI Ui
and i  I, Ui is open, then  i1, i2,, , ik  I for which
U  Ui1  Ui2   Uik .

Theorem (Heine-Borel) Let A  Rn,dEuc. Then A is compact if and only if A is
closed and A is bounded.

Continuity
Definition Let X,d and Y,d be metric spaces and f : X  Y. Then f is
continuous with respect to the metrics d and d if and only if

U  Y,U is open in Y,d  f1U is open in X,d.

Remark In other words a function between metric spaces is continuous if and only if
the inverse image of every open set is open.

Theorem Let X,d be a complete metric space, f : X  X a continuous map, and
x0,x1,x2, a convergent sequence in X with limn xn  x. Then
fx0, fx1, fx2, is a convergent sequence and limn fxn  flimn xn, i.e.,
limits commute with continuous maps.

The Metric Space of Shapes
Definition Let n  N. Define

Kn  A  Rn  A is compact.

Example K2 is the set of all compact subsets in the plane.

Definition Let X,d be a metric space, S  X, and   R. The open collar of
radius  about S is the set BS;  S B; and the closed collar of radius 
about S is the set BS;  S B;.

Example Sketch BMrFace; for various values of .

Definition Let S  R and t  R . Then t  supS if and only if x  S, x  t
and u  R, if x  S, x  u then u  t. supS is called the supremum of S.

Example sup01  1 but 01 has no maximum value.

Definition Let S  R and t  R . Then t  infS if and only if x  S,
x  t and u, if x  S, x  u then u  t. infS is called the infimum of S.

Remark If a set is closed and bounded, then supS  maxS and infS  minS.

Definition Let dH : Kn  Kn  R by dHS,T  inf  S  BT; and
T  BS;. dH is called the Hausdorff metric.
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Remark Pages 267-269 of your textbook has a good explanation of this metric.

Example Let S  x,x : x  01 and T  p : dEucp, 1,0  0.2 be
elements of K2. Compute dHS,T.

Theorem Kn,dH (or the metric space where fractals live) is a complete metric
space.

Chaos
Dynamical Systems - Take 2
Definition Let X,d be a metric space (or a topological space). Any function
f : X  X is called a discrete dynamical system. To indicate the metric we
sometimes write f : X,d  X,d

Definition Let f : X,d  X,d, g : Y,d   Y,d  .We say the dynamical
systems f,g are conjugate if and only if there exists h : X  Y such that
1. h is a homeomorphism (a continuous bijection with continuous inverse) and
2. h  f  g  h
In this situation h is called a topological conjugacy (or simply conjugacy) between
f and g.

Remark The study of discrete dynamical systems is the study of those properties
which are preserved by conjugacy.

Definition Let X,d be a metric space, f : X  X, and let q be a fixed point of f.
Then q is an attracting fixed point if and only if

  R,x  Bq;, limn f
nx  q

i.e. if the f-orbit of every point in some ball centered at q converges to q.

Definition Let X,d be a metric space, f : X  X, and let q be a fixed point of
f.Then q is a repelling fixed point if and only if

  R,x  Bq;  q,N  N, fNx  Bq;
i.e. if the f-orbit of every point other than q in some ball centered at q contains a
point outside the ball.

Definition Let X,d be a metric space, f : X  X, and let q be a periodic point of f
with period n. We say the n-cycle containing q is an attracting cycle (resp. repelling
cycle) if and only if q is an attracting (resp. repelling) fixed point of fn.

Example Classify the fixed points of f : R  R by fx  3x.

Example Classify the fixed points of f : R  R by fx  1
2 x.

Theorem Attracting and repelling fixed points are presevered by topological
conjugacy.

Graphical Analysis and Time Series Plots
Definition Let f : R  R, and x  X. Then the time series plot of the orbit of x is the
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graph of the points
0,x, 1, fx, 2, f2x, , k, fkx,

Remark Sometimes we connect the points with line segments to make them more
visible.

Definition Let f : R  R, and x  X. Then the graphical analysis of the orbit of x is
the graph consisting of:

(a) the graph of f
(b) the graph of y  x
(c) a line segment connecting xk,xk1 to xk1,xk1 for each k  N
(d) a line segment connecting to xk1,xk1 to xk1,xk2 for each k  N

where xk  fkx.

Remark Usually we connect these line segments in order starting from k  0,
drawing the segment in part (c) before part (d). It is often customary to add the
segment from x,0 to x,x1 as an initial segment.

Example Draw the graphical analysis for the f-orbit of seeds 0.23 and 0.230001 for
(a) fx  1x

2
(b) gx  2x
(c) hx  x2  2

Devaney’s Definition
Definition A dynamical system f : X,d  X,d is said to be transitive if and only
if

x,y  X,  R,z  Bx;,k  N, fkz  By;
i.e. for any   R and for any two points in X there is a third point whose orbit
passes within  of both points.

Remark Sometimes this property is called mixing.

Definition A dynamical system f : X,d  X,d is said to have sensitive
dependence on initial conditions if and only if

  R,x  X,  R,y  Bx;  x,k  N,dfkx, fky  

i.e. there is a positive constant so that for any x there is a point y arbitrarily close to
x such that the orbits of x and y will eventually be separated by at least the
constant.

Definition Let X,d be a metric space and A  X. Then A is dense in X if and only
if

x  X,  R,Bx;  A  
i.e. A is dense if every open ball contains a point of A.

Definition (Devaney) A discrete dynamical system is chaotic if and only if
1. it has dense periodic points,
2. it is transitive and
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3. it has sensitive dependence on initial conditions.

Remark Chaotic maps give us a model for unpredicatable deterministic systems.

Touhey’s Definition
Theorem (Touhey 1997) A discrete dynamical system (on an infinite set) is chaotic
if and only if every finite collection of open sets shares infinitely many periodic
orbits.

Chaotic Maps
The following are examples of chaotic maps:

1. Quadratic maps
For each c  C define Qcx  x2  c.

a. Q2x  x2  2 is chaotic on 22.
b. Q0z  z2 is chaotic on the unit circle.
c. Qc is chaotic on a fractal set called Jc (more later).
d. The Logistic Map Qx  4x1  x is chaotic on 01.

2. The Doubling Map

Dx 
2x if x  01/2
2x  1 if x  1/21

is chaotic on 01
3. The Tent Map

Tx  1  |2x  1|
is chaotic on 01.

4. (J. Joseph) The Extended Collatz Map

Tz 

1
2 z if z

2
 0

3z1
2 if z

2
 1

3zi
2 if z

2
 i

3z1i
2 if z

2
 1  i

is chaotic on Z2i.

The Contraction Mapping Theorem
Definition Let X,d be a metric space and f : X  X. Then f is called a
contraction mapping if and only if s  01,x,y  X,dfx, fy  sdx,y.
In this situation s is called a contraction factor of f.

Theorem Every contraction mapping is continuous.

Theorem (The Derivative Test) Let I  ab  R and f : I  I differentiable
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on I. If s  01 such that x  I, f x  s  1, then f is a contraction
mapping with contraction factor s.

Theorem (The Contraction Mapping Theorem) Let f : X  X be a contraction
mapping on a complete metric space X,d with contraction factor s.
(1) f has a unique fixed point, q.
(2) The f-orbit of every element of X converges to q

(i.e., x  X, limn fnx  q).
(3) If x0,x1,x2, is the f-orbit of x0  X then

dxn,q  sn
1  s dx0,x1

for all n  N.

Remark Every contraction map has an attracting fixed point.

Hutchinson Operators
Definition Let w0,w1, ,wk be contraction mappings on Rn with contraction
factors c0,c1, ,ck respectively and define W : Kn  Kn by

WA  w0A  w1A   wkA.
W is called the Hutchinson operator associated with w0,w1, ,wk and we write
W  Hutchw0,w1, ,wk.

Theorem (Hutchinson) W is a contraction mapping on Kn,dH with contraction
factor c  maxc0,c1, ,ck.

Definition If W is a Hutchinson operator then the unique fixed point of W is called
the attractor of W and is denoted FW.

Remark Applying the three parts of the contraction mapping theorem toW gives us
a lot of information about producing fractals with Hutchinson operators.

Iterated Function Systems
Complex Numbers
Definition Let C  R2. For each x,y  C we formally write x,y  x  yi. This
form, x  yi, is called the standard form of the complex number x,y.

Definition Let x  yi,a  bi  C, then:
1. x  yi  x  yi. (This is called the complex conjugate.)
2. |x  yi|  x2  y2 . (This is called the complex norm.)
3. Argx  yi  the angle in 02 of x,y in polar form (not defined for
x  y  0) . (This is called the Argument of x  yi. )
4. Rex  yi  x. (This is called the real part of x  yi. )
5. Imx  yi  y. (This is called the imaginary part of x  yi. )
6. x  yi  a  bi  x  a  y  bi. (This is the definition of addition in C. )
7. x  yia  bi  xa  yb  ya  xbi. (This is the definition of multiplication
in C. )
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Notation We can abbreviate 0  yi as yi, x  0i as x, x  1i as x  i, and x  1i as
x  i with no ambiguity in the above definitions. With this notation i  0,1 and
i2  1. It is easy to verify that the usual laws of addition and multiplication
(associative, commutative, distributive, identity, etc.) hold for the complex numbers
as well.

Definition Let   R. Then ei  cos  i sin

Definition Let x  yi  C  0. The standard polar form of x  yi is rei where
r  |x  yi| and   Argx  yi.

Theorem ei  1  0 (The most beautiful theorem in mathematics?)

Theorem Let ,  R
1. eiei  ei.
2. |ei |  1.
3. ei  ei.

Theorem Let z, z1, z2  C. Then:
1. |z1z2 |  |z1 ||z2 |
2. dEucz1, z2  |z2  z1 |
3. z1z2  z1 z2 i.e. the conjugate of a product is the product of conjugates.
4. z1  z2  z1  z2 i.e. the conjugate of a sum is the sum of the conjugates.
5. z z  |z|2
6. |z|  |z|
7. If z  rei in polar form, then z  rei

Affine Maps
Definition Define Mm,nR to be the set of all m  n matrices with real number
entries. Let A  Mm,nR and i  Im, j  In. Then Ai, j is the entry in the ith row
and jth column of A. If c  R then cA  Mm,nR and

cAi, j  cAi, j
If B  Mm,nR then A  B  Mm,nR and

A  Bi, j  Ai, j  Bi, j.
If B  MnpR then AB  Mm,pR and for all i  Im, j  Ip

ABi, j 
k1

n

Ai,kBk, j.

Remark We often identify elements of Rn with elements inM1,nR andMn,1R
when appropriate.

Definition T : Rn  Rn is called an affine map or affine transformation if and only
if Tx  Mx  B for some n  n matrix M and B  Rn.

Remark We will mostly restrict our attention to affine maps on R2 in this course.

Theorem An affine transformation on R2 is completely determined by where it maps
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3 non-collinear points.
Representations of Affine Maps on R2
Let T : R2  R2 be an affine map, and let p  R2. Let x,y  R such that p  x,y
and let z  x  yi. Then there exist a 2  2 real matrixM, B  R2, ,,  C, and
a,b,c,d,e, f, r, s,,  R such that:

Form Name Math Notation
Matrix Tp  Mp  B
Standard Tx,y  ax  by  e, cx  dy  f
Geometric Tx,y  rcosx  s siny  e, r sinx  scosy  f
Complex Tz  z  z  

These are expressed in the chaosMaple package in the following notation:

Form Name Maple Notation
Matrix affineMM,B
Standard affinea,b,c,d,e, f
Geometric Affiner, s,,,e, f
Complex affineC,,

An IFS (see below) in Maple, is a Maple list of one or more of these affine maps. Note
that in the Geometric Form, the Maple program assumes that , are in degrees, not
radians.

Each form has its own advantages. We can convert from any form to any other form.
It suffices to give the formulas for converting between any form and standard form.
Thus, if you are given Matrix form and want to convert to Complex form, first convert
to standard and then to Complex.
Theorem In the above notation:
Converting Standard form to Matrix form and vice-versa:
affinea,b,c,d,e, f  affineMM,B

M 
a b
c d

and B 
e
f

Converting Standard form to Complex form and vice-versa:
affinea,b,c,d,e, f  affineCA  Bi, C  Di, E  Fi 
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a  A  C and A  1
2 a  d

b  D  B B  1
2 c  b

c  B  D C  1
2 a  d

d  A  C D  1
2 c  b

e  E E  e
f  F F  f

Converting Standard form to Geometric form and vice-versa:
affinea,b,c,d,e, f  Affiner, s,,,E,F 

a  rcos and r  a2  c2

b  s sin s  b2  d2

c  r sin   arctan ca 
d  scos   arctan db   90



e  E E  e
f  F F  f

Remark The effect of the affine map Affiner, s,,,E,F on a geometric figure is as
follows:

r scales the figure horizontally by a factor of |r|
(if r is negative, it also reflects the figure across the y-axis)

s scales the figure vertically by a factor of |s|
(if s is negative, it also reflects the figure across the x-axis)

 rotates horizontal lines by  degrees CCW about the point where they intersect the y-axis
 rotates vertical lines by  degrees CCW about the point where they intersect the x-axis
e translates the figure horizontally by an amount e
f translates the figure vertically by an amount f

Note that if   , then the effect of both numbers combined is to rotate the entire
figure about the origin by an angle  counterclockwise (CCW). Negative angles
rotate clockwise (CW) instead of counterclockwise. Also note that
Affiner, s,,, e, f always sends the origin, 0,0, to the point e, f.

Contraction Factor for Affine Maps
Theorem Let ,,  C and c  ||  ||. Then the map T  affineC,, is a
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contraction mapping if and only if c  1. Further if T is a contraction mapping then
c is a contraction factor for T.

IFS’s
Definition A Hutchinson operator W  Hutchw0,w1, ,wk such that
w0,w1, ,wk are all affine maps is called an iterated function system or IFS. We
write W  w0,w1, ,wk  in this case.

Remark contraction affine mappings  affine mappings. But there are many
contraction mappings that aren’t affine. For example, fx  1

2 cosx on R, or
fx  x on 1.

Remark A stick figure generator that contains finitely many directed segments whose
associated affine maps are contraction maps (and no ordinary segments) is an
example of a IFS. The attractor of the IFS can be obtained by iterating the stick
figure dynamical system starting with a single directed segment as the seed.

Remark Both HeeBGB’s and GB’s are IFS’s which map the original square onto the
appropriate subsquares in the given manner. Coloring a HeeBGB is just producing
the attractor of the IFS by the Deterministic Method (see below) where we color the
background, not the image itself.

The Deterministic Method
Algorithm To draw the attractor of an IFS, W, simply compute the terms in the
W-orbit of any seed in Kn until the image is as close to the attractor as you desire.

Remark By the contraction mapping theorem, the IFSW has an attractor, no matter
what shape we start with for a seed, its orbit will converge to the attractor, and we
can compute the number of iterations required to obtain an image that is within any
desired accuracy of the attractor.

Guess My IFS
Remark LetW  w0,w1, ,wk  be an IFS. By the contraction mapping theorem,
FW is the unique fixed point ofW, i.e. FW is the only element of Kn such that

WFW  FW.
By the definition ofW this means that FW is the unique solution A in Kn to the
equation:

A  w0A  w1A   wkA.
In particular,

Fw  w0Fw  w1Fw   wkFw
so that the attractor is a union of finitely many affine images of itself (each of which
must therefore be a finite union of strictly smaller affine images of itself, and so on
ad infinitum).

Thus, given the attractor of an IFS, we can determine an IFS that produces it (not
unique!) by identifying a finite number of strictly smaller affine images if the
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attractor whose union is the entire shape.

Address My IFS
Definition Let n  2. Define n to be the set of all infinite sequences whose terms
are in 0,1,2, ,n  1, i.e.


n
 s0, s1,s2, |si  0,1,2, ,n  1

nis called the sequence space on n letters.

Example 2 is the set of 2-adic integers Z2.

Definition Let W  w0,w1, ,wn1 be an IFS and let Fw be the attractor of W.
Define the address map  : n  Fw by

s0s1s2   
i0



ws0  ws1   wsiFw

Theorem Let W  w0,w1, ,wn1 be an IFS.
1. s is a single point in Fw for any s  s0s1s2 n.
2.  is onto.
3. limiws0  ws1   wsiFw  s in Kn,dH
4. limiws0  ws1   wsix  s for any x  Rm in Rm,dEuc

Definition s is called an address of the point s in the attractor.

Definition Let W be an IFS and Fw its attractor. Then W is said to be totally
disconnected every point in Fw has a unique address, i.e.  is bijective.

How big is the Attractor?
Definition Let S  K2 be a compact set. Then the diameter of S is the real number

diamS  supdEucx,y |x,y  S.

Example The diameter of a circle is a special case of this definition.

Remark You will prove the following for homework: LetW  w0, ,wn1  be an
IFS and c0, , cn1 the contraction factors of w0, ,wn1 respectively. Let a,
b  Rk and c  maxc0, , cn1. Let a  t1, , tm, tm1,  and
b  t1, , tm, tm1 ,  then

dEuca,b  cm diamFW.
i.e. if two points have addresses that agree in the first m digits, then they will be no
further than cm diamFW apart.

Theorem (Monks) Let W  w0, ,wn  be an IFS, c0, ,cn the contraction
factors of w0, ,wn respectively, and q0, ,qn the fixed points of w0, ,wn
respectively. Define c  maxc0, ,cn and r  max dqi,qj : i, j  On . Then
for any a  FW and any i  On,

dEuca,qi  1
1  c r.
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Corollary FW  
i0

n
B qi; r

1c

The Shift Map
Definition Let W  w0, ,wn1  be a totally disconnected IFS. Define
 : FW  FW by s0s1s2   s1s2s3 . Then  is called the shift map
on FW.

Theorem A shift map is chaotic!

The Address Method
Algorithm To draw the attractor of an IFS, W  w0, ,wn , start with a fixed
point, q, of one of the maps w0, ,wn. Use the preceeding theorem and remark to
determine m such that any two points with addresses that agree on the first m digits
will be less than a pixel width apart. For each finite sequence t1, , tm in Onm plot
the point

wt1  wt2   wtmq.

Remark There are n  1m sequences in Onm so that sometimes this method may be
limited by the number of points you can compute and plot.

The Random Iteration Method
Remark If we choose t1, t2, t3, at random from On, then it is very likely that every
finite sequence of any given length will eventually occur as a subsequence of our
choices.

Algorithm To draw the attractor of an IFS, W  w0, ,wn . Start with a fixed
point, q, of one of the maps w0, ,wn. This is your current point.
1. Choose a random number i from On and plot wi of the current point. This
becomes the new current point.
2. Iterate!

Remark You can actually start with any point you like, not necessarily a fixed point,
but starting with the fixed point guarentees that all points you plot will be in the
attractor, not just near to it after a sufficient number of iterations.

Applications
Fractal Randomness Testing
Algorithm Given a sequence of values s whose terms are in O3, draw the attractor
of HeeBGBUp,Up,Up,Up by the random iteration method, using s as the source
of the "random" numbers.

Remark Since the attractor of HeeBGBUp,Up,Up,Up is the filled-in unit square,
if the sequence is missing any addresses there will be holes in the attractor where
the points having those addresses would be.
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Fractal Curves
Definition Let b be an integer greater than 1. Then the Base b Ruler IFS is
W  w0,w1, ,wb1  where wi : R  R by

wix  1
b x 

i
b

for i  Ob1.

Theorem The attractor of any Base b Ruler IFS is 01. For each t  01,
t  0. t1t2t3b if and only if t  t1t2t3, i.e. the digits in the base b
representation of t and an address of t are the same sequence.

Example Determine the points in the Middle Thirds Cantor Set.

Example Determine the coordinates of all points in the right Sierpinski triangle.

Theorem Let W  w0, ,wn1 be an IFS and define
f0. t1t2t3n  t1t2t3

Then f will be a function from 0. . 1  Fw if and only if s1s2  t1t2
whenever 0. s1s2s3n  0. t1t2t3n.

Theorem If f is a function, then it is continuous.

Theorem (Barnsley): Let W  w0, ,wn1 be an IFS and Fw its attractor. If there
exist distinct points si, ti  Fw | i  0n such that for i  On1
1. wis0, t0  si, ti

and
2. wisn, tn  si1, ti1

then the map f is a continuous map from f : 0. . 1  Fw.

Example See Lecture Examples Maple worksheet.

Fractal Interpolation
Definition A set of data is a collection xi,yi  R2 | i  0,1, ,n and
x0  x1    xn. An interpolation function for a given set of data is a
continuous map f : x0xn  R such that fxi  yi for all i  0,1,n, i.e its
graph passes through all of the data points.

Example Linear interpolation, cubic spline, polynomial, etc.

Definition Let x0,y0, , xn,yn be a set of data with n  2. Then a Barnsley
Interpolation Function is an IFS W  w0,w2, ,wn1 such that for all i  On1,

1. wi
x
y


ai 0
ci di

x
y


ei
fi

2. wi
x0
y0


xi
yi

and wi
xn
yn


xi1
yi1

Remark Simply put, we connect the data points with the chins of Mr Face, keeping
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the sides of his head vertical. The seed is the cousin of Mr Face whose chin
connects the first and last data points. We choose the di’s with |di |  1 to vary the
fractal dimension (ruggedness) of the interpolation graph. Choosing |di |  1
guarentees that our function is a contraction mapping.

Theorem Let W be the IFS in the previous definition. Then for each i  On1,
wi  affine xi1  xixn  x0 , 0,

yi1  yi
xn  x0  di

yn  y0
xn  x0 ,di,

xnxi  x0xi1
xn  x0 , xnyi  x0yi1xn  x0  di

xny0  x0yn
xn  x0 

Furthermore, FW is the graph of an interpolation function.

Dimension
Topological Dimension
Topological Background
Definition Let X,d and Y,d be metric spaces. Then X,d is said to be
homeomorphic to Y,d if  : f : X  Y such that f is bijective, continuous, and its
inverse is continuous. In this case, f is said to be a homeomorphism.

Definition Any property of a metric space which is preserved by homeomorphisms is
called a topological invariant, i.e. if P is a topological invariant, and if X,d and
Y,d are homeomorphic, then PX,d  PY,d.

Definition Let X,d be a metric space and U  X. Then the interior of U is
U    x  U |   0,Bx;  U . Also, the boundary of U is
U  X  U   X  U, i.e. we take away the interior of the set and the interior of
the complement to get the boundary.

Theorem U  is open for any set.

Theorem A set S is open S  S.
Topological Dimension
Definition Let U  Rm. Define the topological dimension of U, denoted dimTU,
to be the integer given by
1. dimT  1 and  is the only subset A of Rm for which dimTA  1.
2. dimTU  n if and only if for any x  U and any open set W  U containing x,
there exists an open set V with x  V  W such that the topological dimension
dimT V  n  1. [Note: V,W must be open in U as a metric subspace of Rm, but
not necessarily open as a subset of Rm. Similary, V refers to the boundary of V in
U, not in Rm.]
Then dimTU  n if and only if dimTU  n but dimTU  n  1.

Remark dimTU is always an integer by definition.

Hausdorff Dimension
Example Consider the following
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Figure: a point unit segment Sierpinski triangle unit square unit cube
# of pts: 1    

Length: 0 1   

Area: 0 0 0 1 

Volume: 0 0 0 0 1

Notice that none of these standard measures give a nontrivial value for the Sierpinski
triangle.

Definition Let   R, 0  p  ,and A  R2 a bounded subset of the plane. Then

MpA;  inf 
i1



diamAip : A  i1 Ai and i,diamAi  

and
MpA  supMpA; :   R.

MpA is called the Hausdorff p-measure of A.

Remark MpA can equal .MpA; is obviously a nonincreasing function of , so
MpA is the same as lim

0
MpA;.

Theorem For each A, d  R such that MpA   for p  d and MpA  0 for
p  d.

Definition The number d in the previous theorem is called the Hausdorff dimension
of A, and written d  dimHA.

Similarity and Congruence
Definition Let X,d be a metric space. A similitude (or similarity map) is a
surjective map f : X  X such that

c  R,x,y  X,dfx, fy  cdx,y.
In this case c is called the similarity factor (or scaling factor or ratio of similarity).

Definition Let X,d be a metric space and A,B  X. Then A is similar to B if
B  fA for some similitude f.

Theorem f : R2  R2 is a similitude with scaling factor c if and only if
f  Affiner, s,,,e, f with |r|  |s|  c and     k for some k  Z.

Theorem If f is a similitude with scaling factor c, then f is bijective and f1 is a
similitude with scaling factor 1/c.

Definition Let X,d be a metric space. Then f : X  X is called an isometry if and
only if f is a similitude with scaling factor equal to 1.

Remark In other words f is an isometry if
1. f is surjective and
2. x,y  X, dfx, fy  dx,y, i.e. f preserves all distances.
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Definition Let X,d be a metric space and A,B  X. Then A is congruent to B if
B  fA for some isometry f.

Corollary If f is an isometry, then f is bijective and f1 is an isometry.

Theorem f : R2  R2 is an isometry iff f  Affiner, s,,,e, f with |r| |s| 1 and
    k for some k  Z.

Self-similarity and Dimension
Definition Let W  w0,w1, ,wn1 be an IFS and Fw its attractor. Then W is said
to be just touching it is not totally disconnected and there exists and open set
U  R2 such that
1. WU  U and
2. wiU  wjU   for all i, j  0,1, ,n  1 for i  j.

Definition Let W be an IFS. Then W is said to be overlapping it is not totally
disconnected and not just touching.

Example The middle thirds Cantor set is totally disconnected.

Example The Sierpinski triangle is just touching.

Example A trivial example of an overlapping IFS is an IFS containing the same map
twice.

Definition Let W  w0,w1, ,wn1 be an IFS. Fw is said to be self-similar Fw
is not overlapping and each wi is a similarity. Fw is strictly self-similar if and only
if the similarity factors are all equal.

Definition If Fw is a strictly self-similar attractor of a non-overlapping IFS
W  w0,w1, ,wN, then the similarity dimension of Fw is defined to be the
unique number d such that N   1r d where r is the similarity factor ( contraction
factor for the affine maps). We write dimSFw  d in this case.

Remark If we solve the defining equation for d we obtain
dimSFw  lnN

ln 1r 

Theorem For attractors of non-overlapping IFS’s, dimSFw  dimHFw.

Theorem (Moran) Let Fw be the attractor of a non-overlapping IFS,
W  w0,w1, ,wn1 such that each wi is a similitude with similarity factor ci
respectively. Then dimHFw is the unique number d such that

c0d  c1d   cnd  1.
If W is overlapping then dimHFw  d.

Theorem Let W be the Barnsley interpolation function IFS given in the definition. If
k0

n1|dk |  1 and the interpolation points do not lie on a straight line, then the
fractal dimension of FW is the unique real number D such that
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k0

n1

|dk |akD1  1.

Approximating the Hausdorff Dimension
Grid Dimension
Algorithm To estimate the Grid dimension of a shape:
1. Cover the shape with grids of size l1, l2, , lk
2. For each grid, count the number Ni of grid boxes whose interior intersects the
shape
3. Plot lnNi vs. ln 1li  and compute the least squares linear regression line
through the points ln 1l1 , lnN1, , ln

1
lk
, lnNk

4. The slope is an estimate of the Grid dimension (and is also an estimate of the
Hausdorff dimension).

Remark The slope is independent of the units used.

Complex Fractals
Julia Sets
Definition If z  C and z  rei where r  | z | and   02 then z  z 12 is
rei 12  r 12 e i

2 . z is the principal square root of a complex number.

Example Let c  C. Let w0z  z  c , w1z   z  c , and W  w0,w1.
Since w0,w1 are not affine, W is not an IFS.
IsW a Hutchinson operator? Not quite. But it behaves like a Hutchinson Operator in the
sense that   R2 such that for any A  K2, WnA  R2   converges to a unique
set Fw such thatWFw  Fw.
Definition That unique set Fw is called the Julia Set associated with c and is
denoted Jc.

Definition Let c  C. Let Qcz  z2  c. The filled in Julia Set, Kc, is
Kc  z : the Qc orbit of z is bounded

Facts about Julia Sets:
1. Jc  Kc
2. Jc  Kc if Jc is totally disconnected
3. All Julia Sets fit into a closed ball of radius two centered at the origin, i.e. if
|Qcnz|  2 for any n then z  Kc.
Remark For each c  C, there is a Julia Set Jc.

Theorem Jc is connected if and only if the Qc orbit of 0 is bounded, i.e. if and only if
0 is in the filled in Julia Set Kc.

The Mandelbrot Set
Definition TheMandelbrot Set, M, is the set of all c  C such that Jc is connected.
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Because of the previous theorem, we write
M  c  C : the Qc-orbit of 0 is bounded 

Remark While there are infinitely many Julia Sets, there is only one Mandelbrot Set.
Facts about the Mandelbrot Set:
1. It is symmetric with respect to the x-axis
2. It is connected
3. Every open set containing any point on the boundary of M contains infinitely many
“babyM’s”. Note: The babies are not similiar toM.
4. Kc “looks like” M near c.
5. Every bulb, B, has the property that n  N such that c  B, the Qc orbit of 0
converges to an n-cycle. The integer n is called the period of the bulb.

The Escape Time Algorithm
Algorithm Assign to each screen pixel a representative complex number and color
the pixel based on the number of iterations it required for a term in the Qc-orbit to
have absolute value greater than 2 (or some particular color if no such term is
obtained after a predetermined number of iterations).

Proofs
The Power Theorem
Theorem Let f : X  X. For any k,n  N,

fkn  fk  fn.
and

fkn 

k terms

fn  fn   fn .

(where “0 terms” means the identity map).
Pf.

1. We proceed by induction on k 
2. Let f : X  X
3. Let n  N

Basis step 
4. f 0n  f n arithmetic
5.  idX  fn (homework)
6.  f 0  f n def f0

7. n  N, f0n  f0  fn  
 inductive hypothesis 

8. Let k  N
9. Assume f kn  f k  f n

10. f k1n  f 1kn arithmetic
11.  f  f kn def fk
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12.  f  f k  f n substitution
13.  f  f k  f n  is associative (homework)
14.  f 1k  f n def fk

15. 
16. fkn  fk  fn  fk1n  fk1  fn  
17. k  N,n  N, fkn  fk  fn  fk1n  fk1  fn   (twice)
18. k  N,n  N, fkn  fk  fn induction

 the proof of the second equation is similar 
QED
Lemma Let f : X  X, x  X, and n  N.

x has minimum period n  #Ofx  n

Pf:
1. Let f : X  X, x  X, and n  N.


2. Assume x has minimum period n
3. fnx  x and k  In1, fkx  x def min period
4. Define S  x, fx, , fn1x

Let’s first show that Ofx  S 
 First we show OFx  S 

5. Let y  Ofx
6. y  fjx for some j  N def O
7. j  nq  r and 0  r  n for some q, r  N division algorithm
8. y  fjx line 6
9.  fnqrx substitution
10.  frfnqx Power Thm
11.  frfnfnfnx (with q fn’s) Power Thm
12.  frx substitution (q times)
13.  S def S
14. Ofx  S def subset

 Now we show S  OFx 
15. Let z  S
16. z  fix for some i  On1 def S
17.  Ofx def O
18. S  Ofx def subset
19. Ofx  S def set 

 Now let’s show that the n elements of S are distinct. Assume two powers are equal and
show that only happens if they are the same power 

20. Let a,b  On1 and a  b
21. Assume fax  fbx

© 2002 - Ken Monks



Page 43

22. fabx  fabfnx subst
23.  fnabx Power Thm
24.  fnbfax Power Thm
25.  fnbfbx subst
26.  fnx Power Thm
27.  x subst
28. a  b  In1 by lines 3,22,27
29. a  b  On1 since a,b  On1
30. a  b  On1  In1 def set 
31.  0 def On1 and In1
32. a  b  0 def set notation
33. a  b arithmetic
34. 
35. the elements of S are distinct def distinct
36. #S  n def #
37. #Ofx  n subst
38. 
39. x has minimum period n  #Ofx  n  
QED

Change of Basis
Theorem Let n  N. If each term in the Baseb-orbit of n is replaced by its value
Mod b, the sequence produced will be the base b representation of n (with the least
significant digit on the left).

Pf:
1. We proceed by induction on n 
2. Let b  N, b  1.
3. Define Orb  OrbBaseb

 basis step 
4. Baseb1 

1 1 Mod b
b  11

b  0 by def of Baseb

5. Baseb1 
0 0 Mod b

b  00
b  0 by def of Baseb

6. Orb1  1,0,0,0, by definition of orbit
7. For any sequence s, define sModb to be the sequence whose ith term is siModb.
8. 1  100000 b  Orb1Modb

 inductive step
9. Let n  N

10. Assume OrbmModb  m0m1m2 b  m for all m  n
11. n  n0n1nkb for some ni  Ob1and some k  N by the representation
theorem

 Let’s calculate Basebn
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12. Basebn 
n n Mod b

b

13. 
n0n1nk bn0

b

14. 
n0n1nk bn0

b

15. 
0n1n2nk b

b

16.  n1n2nkb
17.  n

 Since its less than n the assumption holds for Basebn 
18. OrbBasebnModb  n1n2nk0
19. Orbn  n,OrbBasebn by definition of orbit
20. OrbnModb  nModb,OrbBasebnModb
21.  n0,n1n2nk0
22.  n0,n1n2nk0b
23.  n
24. 
25. n  N,OrbnModb  n0n1n2 b  n
QED

Triangle Inequality and the Euclidean Metric
Lemma (Euclidean Triangle Inequality) Let x,y, z  Rn. Then

dEucx, z  dEucx,y  dEucy, z.

Pf:
1. Let x,y, z  Rn.
2. x  x1, ,xn,y  y1, ,yn, z  z1, , zn for some
x1, ,xn,y1, ,yn, z1, , zn  R by def of Rn

3. Define a  dEucx, z,b  dEucx,y,c  dEucy, z
 in this notation we are trying to show that a  b  c
 we will prove the case where b  0 and c  0. The other cases are for homework.

4. For i  In define ai  xi  zi,bi  xi  yi,ci  yi  zi
5. i  In,ai  bi  ci
6. a,b,c  0
7. a2  dEucx, z2

8.   i1
n xi  zi2

2

9.   i1
n xi  zi2

10.   i1
n ai2

( Note that a similar argument shows b2   i1
n bi2 and c2   i1

n ci2)
11.   i1

n bi  ci2

12.   i1
n bi2  2bici  ci2

13.   i1
n bi2  i1

n 2bici  i1
n ci2
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14.  b2  c2  i1
n 2bici

15.  b2  2bc  c2  i1
n 2bici  2bc

16.  b  c2  i1
n 2bici  2bc

17.  b  c2  i1
n 2bici  1  1bc

18.  b  c2  i1
n 2bici  b2

b2
 c2

c2
bc

19.  b  c2  bc
bc  i1

n 2bici  1
b2
 i1

n bi2  1
c2
 i1

n ci2 bc

20.  b  c2   i1
n 2bici

bc   i1
n bi2

b2
  i1

n ci2

c2
bc

21.  b  c2   i1
n 2bici

bc  i1
n bi2

b2
 i1

n ci2

c2
bc

22.  b  c2   i1
n bi2

b2
 2bici

bc  ci2

c2
bc

23.  b  c2   i1
n bi

b 
ci
c

2 bc

24.  b  c2

25. a2  b  c2

26. a  b  c
QED

Theorem (Rn,dEuc) is a metric space.
Pf:

1. dEuc : Rn  Rn  R
2. Let x,y, z  Rn
3. x  x1, ,xn,y  y1, ,yn, z  z1, , zn for some
x1, ,xn,y1, ,yn, z1, , zn  R

4. dEucx,y   i1
n xi  yi2

5.  0
6. dEucx,y   i1

n xi  yi2

7.   i1
n yi  xi2

8.  dEucy,x
9. dEucx, z  dEucx,y  dEucy, z
10. dEucx,x   i1

n xi  xi2

11.   i1
n 02

12.  0
13. Assume dEucx,y  0

14.  i1
n xi  yi2   i1

n xi  yi2
2

15.  dEucx,y2

16.  02

17.  0

© 2002 - Ken Monks



Page 46

18. xi  yi2  0 for all i  In
19. xi  yi  0 for all i  In
20. xi  yi for all i  In
21. x  x1, ,xn
22.  y1, ,yn
23.  y
24. Rn,dEuc is a metric space
QED

Contraction Mappings are Continuous
Theorem Every contraction mapping is continuous.
Pf:

1. Let X,d be a metric space and f : X  X a contraction mapping.
2. f has contraction factor s for some s  01
3. Let U  X be an open set
4. Let x  f1U
5. fx  U
6. Bfx;  U for some   R

7. Let y  Bx;
8. dx,y  
9. dfx, fy  sdx,y
10.  s
11.  
12. fy  Bfx;
13. fy  U
14. y  f 1U
15. y  Bx;, y  f1U
16. Bx;  f1U
17. x  f1U,  R,Bx;  f1U
18. f1U is open
19. f is continuous
QED

The Derivative and Contraction Maps of R
Theorem Let I  ab  R and f : I  I differentiable on I. If s  01 such
that x  I, |f x|  s  1, then f is a contraction mapping with contraction factor
s.

Pf:
1. Let I  ab  R and f : I  I differentiable on I, and d  dEuc.
2. Assume s  01,x  I, f x  s  1
3. Let x,y  I
4. x  y or x  y
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 Case 1 
5. Assume x  y
6. dfx, fy  dfx, fx
7.  0
8.  s  0
9.  s  dx,x
10.  s  dx,y
11. 

 Case 2 
12. Assume x  y
13. f c  fxfy

xy for some c between x and y
14. f c  s
15. dfx, fy  |fx  fy|
16.  |fx  fy| |xy||xy|

17.  fxfy
xy |x  y|

18.  f c |x  y|
19.  s|x  y|
20.  s  dx,y
21. 
22. s  01,x,y  I,dfx, fy  s  dx,y
23. f is a contraction map with contraction factor s
24. 
25. If s  01,x  I, |f x|  s  1, then f is a contraction mapping with contraction
factor s.
QED

Contraction Mapping Theorem
Theorem (The Contraction Mapping Theorem) Let f : X  X be a contraction
mapping on a complete metric space X,d with contraction factor s.
(1) f has a unique fixed point, q.
(2) The f-orbit of every element of X converges to q

(i.e., x  X, limn fnx  q).
(3) If x0,x1,x2, is the f-orbit of x0  X then

dxn,q  sn
1  s dx0,x1

for all n  N.
Pf:

1. Let f : X  X be a contraction mapping on a complete metric space X,d with contraction
factor s  01.

2. Let x0  X
3. Define xi  fix0 for i  N, i.e. x0,x1,x2, is the f-orbit of x0
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 Goal: We want to prove x0,x1,x2, is a Cauchy sequence 
4. Define   dx0,x1

 Let’s first prove that dxi,xi1  si for all i by induction on i 
 Base case 

5. dx0,x1    s0
 inductive step 

6. Let i  N

7. Assume dxi,xi1  si
8. dxi1,xi2  dfxi, fxi1
9.  s  dxi,xi1
10.  s  si
11.  si1
12. 
13. i  N,dxi,xi1  si
14. Let m,n  N with m  n
15. m  n or m  n

 Case 1 
16. Assume m  n
17. dxm,xn  dxm,xm
18.  0
19.  sm

1s 
20. 

 Case 2 
21. Assume m  n
22. dxm,xn  dxm,xm1  dxm1,xm2   dxn1,xn
23.  sm  sm1   sn1
24.  sm1  s  s2  s3   sn1m
25.  sm1  s  s2  s3 
26.  sm 1

1s

27.  sm
1s 

28. 
29. m,n  N,dxm,xn  sm

1s 
30. Let   R

31. limm
sm
1s   0

32. N  N,m  N, sm1s   
33. Assume m,n  N
34. dxm,xn  sm

1s 
35.  
36. 
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37. N  N,m,n  N,dxm,xn  
38.   0,N  N,m,n  N,dxm,xn  
39. x0,x1,x2, is a Cauchy sequence

 we use completeness to get q 
40. lim

i
xi  q for some q  X (since X,d is complete)

 Now let’s show that q is a fixed point 
41. f is continuous
42. fq  f lim

i
xi

43.  lim
i
fxi

44.  lim
i
ffix0

45.  lim
i
f i1x0

46.  lim
i
xi1

47.  lim
i
xi

48.  q
49. q is a fixed point of f
50. the f-orbit of every element of X converges to a fixed point

 Let’s show it is unique 
51. Let p  X
52. Assume p is a fixed point of f
53. fp  p
54. dp,q  dfp, fq
55.  s  dp,q
56. Assume dp,q  0
57. 1  s
58. 
59. 
60. dp,q  0
61. p  q
62. 
63. q is a unique fixed point of f

 Part (2) now follows immediatly from lines 49 and 63 
64. x  X, lim

i
fix  q

 Now for the final part, part (3), we will prove it by contradiction 
65. Assume dxn,q  sn

1s dx0,x1 for some x0  X and some n  N
66. dxn,q  sn

1s dx0,x1  0
67. Define 1  dxn,q  sn

1s dx0,x1
68. 1  0
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69. N1  N,m  N1,dxm,q  1
70. m  N,dxn,xm  sn

1s dx0,x1
71. Let m  N1
72. dxm,q  1 and dxn,xm  sn

1s dx0,x1
73. dxn,q  dxn,xm  dxm,q
74.  sn

1s dx0,x1  1
75.  sn

1s dx0,x1  dxn,q 
sn
1s dx0,x1

76.  dxn,q
77. 
78. 
79. x0  X,n  N,dxn,q  sn

1s dx0,x1
QED

Hutchinson Operators are Contraction Maps
Theorem (Hutchinson) Let w0,w1, ,wk be contraction mappings on Rn with
contraction factors c0,c1, ,ck respectively and define W : Kn  Kn by

WA  w0A  w1A   wkA.
W is a contraction mapping on Kn,dH with contraction factor
c  maxc0,c1, ,ck.

Pf:
1. Let w0,w1, ,wk be contraction mappings on Rn with contraction factors c0,c1, ,ck
respectively and W : Kn  Kn by

WA  w0A  w1A   wkA.

2. Define c  maxc0,c1, ,ck.
3. Let X,Y  Kn
4. Define d  dH
5. Define r  dX,Y
6. X  BY; r and Y  BX; r

we want to show that dWx,WY  cdX,Y, so let’s compute dWX,WY 
7. Let x  WX

8. x  
i0

k
wiX

9. x  wjX for some j  Ok
10. x  wja for some a  X
11. a  BY; r
12. a  

zY
Bz; r

13. a  Bz; r for some z  Y
14. dEuca, z  r
15. dEucx,wjz  dEucwja,wjz
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16.  cjdEuca, z
17.  cjr
18.  cr
19. wjz  wjY

20.  
i0

k
wiY

21.  WY
22. x  Bwjz;cr
23.  

WY
B;cr

24.  BWY;cr
25. WX  BWY;cr
26. WY  BWX;cr (by a similar argument)
27. dWX,WY  cr
28.  cdX,Y
29. W is a contraction mapping on Kn,dHwith contraction factor c.
QED
Planar Affine Maps are Determined by 3 Points
Theorem An affine transformation on R2 is completely determined by where it maps
3 non-collinear points.

Pf:
1. Let T : R2  R2 be an affine map
2. Let p1,p2,p3  R2 be noncollinear
3. p1  x1,y1,p2  x2,y2,p3  x3,y3 for some x1,x2,x3,y1,y2,y3  R
4. x  R2,Tx  Mx  B for some M  M2,2R and some B  R2

5. Define u  p2  p1 and v  p3  p1
6. u  x2  x1,y2  y1 and v  x3  x1,y3  y1
7. Define u1  x2  x1, u2  y2  y1, v1  x3  x1, v2  y3  y1
8. Assume u1v2  u2v1  0
9. u1v2  u2v1
10. Assume v1  v2  0
11. x3  x1  0 and y3  y1  0
12. x3  x1  0 and y3  y1
13. x1,y1  x3,y3
14. p1  p3
15. p1,p2,p3 are collinear
16. 
17. 
18. v1  0 or v2  0

 So we have two cases. We will prove the case where v1  0 since the other case is
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similar 
19. Assume v1  0
20. Define c  u1

v1
21. u1  u1

v1 v1
22.  cv1
23. u2  u2 v1v1
24.  u2v1

v1
25.  u1v2

v1
26.  u1

v1 v2
27.  cv2
28. u  u1,u2
29.  cv1,cv2
30.  cv1,v2
31.  cv
32. p1,p2,p3 are collinear
33. 
34. 
35. v1  0
36. v2  0 by a similar argument
37. 
38. 
39. u1v2  u2v1  0
40. Let z  R2
41. z  z1, z2 for some z1, z2  R

Note we should write az and bz below but omit where possible to avoid clutter 
42. Define a  z1v2z2v1

u1v2u2v1 ,b 
u1z2u2z1
u1v2u2v1

43. z  z1, z2
44.   z1v2z2v1u1v2u2v1 u1 

u1z2u2z1
u1v2u2v1 v1,

z1v2z2v1
u1v2u2v1 u2 

u1z2u2z1
u1v2u2v1 v2

45.  au1  bv1,au2  bv2
46.  au1  bv1,au2  bv2
47.  au  bv
48. Mz  Mau  bv
49.  aMu  bMv
50.  aMp2  p1  bMp3  p1
51.  aMp2  Mp1  bMp3  Mp1
52.  aMp2  B  Mp1  B  bMp3  B  Mp1  B
53.  aMp2  B  Mp1  B  bMp3  B  Mp1  B
54.  aTp2  Tp1  bTp3  Tp1
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55. z  R2,Mz  azTp2  Tp1  bzTp3  Tp1
56. M 1

0  v2
u1v2u2v1 Tp2  Tp1 

u2
u1v2u2v1 Tp3  Tp1

57. M 0
1   v1

u1v2u2v1 Tp2  Tp1 
u1

u1v2u2v1 Tp3  Tp1
58. M 1

0 is the first column of M andM 0
1  is the second column of M

59. M is completely determined by p1,p2,p3,Tp1,Tp2,Tp3
60. Tp1  Mp1  B
61. B  Tp1  Mp1
62. B is completely determined by p1,p2,p3,Tp1,Tp2,Tp3
63. T is completely determined by p1,p2,p3,Tp1,Tp2,Tp3
64. T is completely determined by where it sends any three noncollinear points
QED

Contraction Factor for Affine Maps
Theorem Let ,,  C and c  ||  ||. Then the map T  affineC,, is a
contraction mapping if and only if c  1. Further, if T is a contraction mapping
then c is a contraction factor for T.

Pf:
1. Let ,,  C, c  ||  ||, and T  affineC,,
2. Define d  dEuc.
3. Let z,w  C
4. Define q  z  w.
5. |q|  |z  w| substitution
6.  dz,w def of dEuc
7. Define r  |q|, r1  ||, r2  ||,  Argq,1  Arg,2  Arg
8. q  rei,   r1ei1 , and   r2ei2 def polar form
9. dTz,Tw  dz  z  ,w  w   def of affineC
10.  |z  z    w  w  | definition of dEuc
11.  |z  w  z  w| arithmetic
12.  |z  w  z  w| property of conjugates
13.  |q  Bq| definition of q
14.  |q|  |Bq| by the triangle inequality
15.  |||q|  |B||q| property of absolute value
16.  |||q|  |B||q| property of conjugates
17.  |q|||  || arithmetic
18.  cdz,w definitions of c,q
19. dTz,Tw  cdz,w transitivity


20. Assume c  1
21. c  0 def of c and property of | |
22. 0  c  1 by the two last two lines
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23. T is a contraction mapping definition of contraction mapping
24. 
25. c  1  T is a contraction mapping


26. Assume T is a contraction mapping
27. T has contraction factor s for some s  01 def of contraction mapping
28. Define u  0, v  ei

21
2 

29. dTv,Tu  |v  v    u  u  | complex notation
30.  |v  v| subst w  0 and arithmetic
31.  ei

21
2   ei

21
2  substitution

32.  r1ei1ei
21
2   r2ei2ei

21
2  substitution

33.  r1ei 1
21
2  r2ei 2

21
2 property of exponentials

34.  r1ei
12
2  r2ei

12
2 arithmetic

35.  r1  r2ei
12
2 distributive law

36.  |r1  r2 | ei
12
2 property of | |

37.  |r1  r2 | property of exponentials
38.  r1  r2 def of | | (since r1, r2  0)
39.  ||  || substitution
40.  c substitution
41. dTv,Tu  c transitivity
42. c  dTv,Tu substitution
43.  sdz,w def of contraction map
44.  sd ei

21
2 , 0 substitution

45.  s ei
21
2   0 def of dEuc

46.  s ei
21
2  arithmetic

47.  s property of exponentials
48. c is a contraction factor for T substitution
49. c  1 def of contraction factor
50. 
51. T is a contraction mapping  c  1 and c is a contraction factor for T
QED

Attractor Size Theorem
Theorem Let W  w0, ,wn  be an IFS, c0, ,cn the contraction factors of
w0, ,wn respectively, and q0, ,qn the fixed points of w0, ,wn respectively.
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Define c  maxc0, ,cn and r  max dqi,qj : i, j  On . Then for any
a  FW and any i  On,

dEuca,qi  1
1  c r.

Pf:
1. Let W  w0, ,wn  be an IFS on Rk, c0, ,cn the contraction factors of w0, ,wn
respectively, and q0, ,qn the fixed points of w0, ,wn respectively.

2. Define c  maxc0, ,cn, r  max dqi,qj : i, j  On , and d  dEuc.
3. Let i, j  On.
4. Let z  Rk.
5. dwjz,qi  dwjz,wjqj  dwjqj,qi
6.  cjdz,qj  dqj,qi
7.  cdz,qj  r
8. i, j  On,z  Rk,dwjz,qi  cdz,qj  r
9. Let a  Fw.
10. a  t1t2  for some t1t2 n1
11.  limnwt1wt2wtnqi
12. Let n  N.
13. dwtnqi,qi  cdqi,qtn   r  cr  r  1  cr
14. dwtn1wtnqi,qi  cdwtnqi,qtn1   r  c1  cr  r  1  c  c2r
15. 
16. dwt1wt2   wtn1wtnqi,qi  1  c  c2   cnr
17.  1  c  c2 r
18.  1

1c r
19. Let   0
20. N  0,n  N,da,wt1   wtnqi  
21. Let n  N.
22. da,qi  da,wt1   wtnqi  dwt1   wtnqi,qi
23.  da,wt1   wtnqi  1

1c r
24.    1

1c r
25.   0,da,qi  1

1c r  
26. da,qi  1

1c r
QED

Corollary FW  
i0

n
B qi; r

1c

Pf:
1. Let W  w0, ,wn  be an IFS on Rk, c0, ,cn the contraction factors of w0, ,wn
respectively, and q0, ,qn the fixed points of w0, ,wn respectively.

2. Let a  FW, i  On.
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3. da,qi  1
1c r

4. a  B qi; r
1c

5. i  On,a  B qi; r
1c

6. a  
i0

n
B qi; r

1c

7. FW  
i0

n
B qi; r

1c

QED

* Special thanks to Paul Oldakowski, a student from the
Math 320 - Spring 2000 course who typed some of these
lecture notes.
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