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This is not a complete set of lecture notes for Math 345, Geometry. Additional material will be
covered in class and discussed in the textbook.

Logic
In this section we give an informal overview of logic and proofs. For a more formal
introduction see any logic textbook.
Variables, Expressions, and Statements
Definition A set is a collection of items called the members (or elements) of the set.

Remark An element is either in a set or it is not in a set, it cannot be in a set more than
once.

Definition An expression is an arrangement of symbols which represents an element of a set
called the domain (or type) of the expression.

Remark It is not necessary that we know specifically which element of the domain an
expression represents, only that it represents some unspecified element in that set.

Definition The element of the domain that the expression represents is called a value of that
expression.

Definition A variable is an expression consisting of a single symbol.

Definition A constant is an expression whose domain contains a single element.

Definition A statement (or Boolean expression) is an expression whose domain is
true, false.

Remark We do not have to know if a statement is true or false, just that it is either true or
false.

Definition The value of a statement is called its truth value.

Definition To solve a statement is to determine the set of all elements for which the
statement is true.

Remark More precisely, if a statement contains n variables, x1,xn, then to solve the
statement is to find the set of all n-tuples a1, ,an such that each ai is an element of the
domain of xi and the statement becomes true when x1, ,xn are replaced by a1, ,an
respectively. Each such n-tuple is called a solution of the statement.



Definition The set of all solutions of a statement is called the solution set.

Definition An equation is a statement of the form A  B where A and B are expressions.

Definition An inequality is a statement of the form A  B where A and B are expressions
and  is one of , , , , or .

Propositional Logic
The Five Logical Operators
Definition Let P,Q be statements. Then the expressions

1.  P

2. P and Q

3. P or Q

4. P  Q

5. P  Q
are also statements whose truth values are completely determined by the truth values of P
and Q as shown in the following table

P Q  P P and Q P or Q P  Q P  Q

T T F T T T T
T F F F T F F
F T T F T T F
F F T F F T T

Rules of Inference and Proof
Definition A rule of inference is a rule which takes zero or more statements (or other items)
as input and returns one or more statements as output.

Notation An expression of the form
P1


Pk

Q1


Qn
represents a rule of inference whose inputs are P1Pk and outputs are Q1, ,Qn.

Notation The rule of inference shown above can also be expressed in recipe notation as
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Show P1


Show Pk
Conclude Q1


Conclude Qn
or equivalently,

To show Q1, ,Qn
Show P1


Show Pk

Definition A formal logic system consists of a set of statements and a set of rules of
inference.

Definition A proof in a formal logic system consists of a finite sequence of statements (and
other inputs to the rules of inference) such that each statement follows from the previous
statements in the sequence by one or more of the rules of inference.
Natural Deduction
Definition The symbol  is an abbreviation for “end assumption”.

Definition The rules of inference for propositional logic are shown in Table 1.

© 2004 - Ken Monks



Table 1: Rules of inference for Propositional Logic

and 
To showW and V
1. ShowW
2. Show V

and 
To showW
1. ShowW and V

and 
To show V
1. ShowW and V

 

To showW  V
1. Assume W
2. Show V
3. 

  (modus ponens)
To show V
1. ShowW
2. ShowW  V

 

To showW  V
1. ShowW  V
2. Show V  W

 

To showW  V
1. ShowW  V

 

To show V  W
1. ShowW  V

or 
To showW or V
1. ShowW

or 
To showW or V
1. Show V

or  (proof by cases)
To show U
1. ShowW or V
2. ShowW  U
3. Show V  U

  (proof by contradiction)
To show  W
1. Assume W
2. Show 

3. 

  (proof by contradiction)
To showW
1. Assume  W
2. Show 

3. 

 

To show 

1. ShowW
2. Show  W

Remark Note that the inputs “Assume -” and “” are not themselves statements but rather
inputs to rules of inference that may be inserted into a proof at any time. There is no reason
however, to insert such statements unless you intend to use one of the rules of inference that
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requires them as inputs.

Remark Precedence: In order to eliminate parentheses we give the operators the following
precedence (from highest to lowest):

other math operators ( ,, ,,,etc)
~

and , or




Example Use Natural Deduction to prove the following tautologies.
1. ~~P  P
2. ~ P and Q  ~P or ~Q [Hint: Use P or ~P, proven in the homework]

Equality
Definition The equality symbol, , is defined by the two rules of inference given in Table 2.

Table 2: Rules of Inference for Equality

Reflexive 
To show x  x

Substitution
To showW with the nth free occurrence of x replaced by y
1. ShowW
2. Show x  y

Remark Note that in the Reflexive rule there are no inputs, so you can insert a statement of
the form x  x into your proof at any time. Note that there is a technical restriction on the
Substitution rule that is not listed here (see the Proof Recipes sheet for details). In most
situations the restriction is not a concern.

Example Use natural deduction to prove that x  y  y  x.

Quantifiers
Definition The symbols  and  are quantifiers. The symbol  is called “for all”, “for
every”, or “for each”. The symbol  is called “for some” or “there exists”.

Definition If W is a statement and x is any variable then x,W and x,W are both
statements. The rules of inference for these quantifiers are given in Table 3.

Notation If x is a variable, t an expression, and Wx a statement then Wt is the statement
obtained by replacing every free occurance of x in Wx with t,
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Table 3: Rules of Inference for Quantifiers

 

To show x,Wx
1. Let s be arbitrary
2. ShowWs

 

To showWt
1. Show x,Wx

 

To show x,Wx
1. ShowWt

 

To showWt for some t
1. Show x,Wx

Remark Note that there are restrictions on the rules of inference for quantifiers which are
not listed in Table 3 (see the Proof Recipes sheet for details). In most situations they are not a
concern.

Remark Precedence: Quantifiers have a lower precedence than. Thus they quantify the
largest statement to their right possible unless specifically limited by parentheses.

Example Prove ~x,Px  x, ~Px

Example Prove x,Px  Qx and y,Py  z,Qz

Definition Let Wx be a statement and Wy the statement obtained by replacing every free
occurance of x in Wx with y. We define

!x,Wx  x, Wx and y,Wy  y  x
The statement !x,Wx is read “There exists a unique x such that Wx.”

Table 4: Rules of Inference for !

! 
To show !x,Wx
1. ShowWt
2. Let y be arbitrary
3. Assume Wy
4. Show y  t
5. 

! 
To show x,Wx and y,Wy  y  x
1. Show !x,Wx

Sets, Functions, Numbers
Some Definitions from Set theory
The symbol  is formally undefined, but it means “is an element of”. Many of the definitions
below are informal definitions that are sufficient for our purposes.
Set notation and operations
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Finite set notation: x  x1, ,xn  x  x1 or or x  xn
Set builder notation: x  y : Py   Px
Cardinality: #S  the number of elements in a finite set S
Subset: A  B  x,x  A  x  B
Set equality: A  B  A  B and B  A
Def. of : x  A  ~x  A
Empty set: A    x,x  A
Relative Complement: x  B  A  x  B and x  A
Intersection: x  A  B  x  A and x  B
Union: x  A  B  x  A or x  B
Indexed Intersection: x  

iI
Ai  i, i  I  x  Ai

Indexed Union: x  
iI
Ai  i, i  I and x  Ai

Two convenient abbreviations: x  A,Px  x,x  A  Px
x  A,Px  x,x  A and Px

Some Famous Sets
The Natural Numbers N  0,1,2,3,4, 

The Integers Z  ,3,2,1,0,1,2,3, 

The Rational Numbers Q  a
b : a  Z, b  N, b  0, and gcda,b  1

The Real Numbers R  x : x can be expressed as a decimal number

The Complex Numbers C  x  yi : x,y  R where i2  1
The positive real numbers R  x : x  R and x  0

The negative real numbers R  x : x  R and x  0

The positive reals in a set A A  A  R

The negative reals in a set A A  A  R

The first n positive integers In  1,2, ,n
The first n  1 natural numbers On  0,1,2, ,n
Cartesian products
Ordered Pairs: x,y  u,v  x  u and y  v
Ordered n-tuple: x1, ,xn  y1, ,yn  x1  y1 and and xn  yn
Cartesian Product: A  B  x,y : x  A and y  B
Cartesian Product: A1   An  x1, ,xn : x1  A1 and and xn  An
Power of a Set An  A  A   A where there are n “A’s” in the Cartesian product
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Functions and Relations
Def of  x  t  ~x  t
Def of relation: R is a relation from A to B R  A  B
Def of function: f : A  B  f  A  B and x,!y, x,y  f

Alt function notation X
f
 Y  f : X  Y

Def of fx: fx  y  f : A  B and x,y  f
Domain: Domainf  A  f : A  B
Codomain: Codomainf  B  f : A  B
Image (of a set): fS  y : x,x  S and y  fx
Range (or Image of f): Rangef  fDomainf
Identity Map: idA : A  A and x, idAx  x
Composition: f : A  B and g : B  C  g  f : A  C and x, g  fx  gfx
Injective (one-to-one): f is injective x,y, fx  fy  x  y
Surjective (onto): f is surjective f : A  B and y,y  B  x,y  fx
Bijective: f is bijective f is injective and f is surjective
Inverse: f1 : B  A  f : A  B and f  f1  idB and f1  f  idA
Inverse Image: f : A  B and S  B  f1S  x  A : fx  S

Example Prove A  B  A  B  A  B

Example Prove the composition of bijective functions is bijective.
Equivalence Relations
Definition Let X be a set.

R is a relation on X  R  X  X.

Definition Let X be a set and R  X  X. For any x,y  X,
xRy  x,y  R (infix notation)

and
Rx,y  x,y  R (prefix notation)

Definition Let X be a set and R  X  X.

R is an equivalence relation x,y, z  X,
(0) xRx (reflexive)
(1) xRy  yRx (symmetric)
(2) xRy and yRz  xRz (transitive)

Definition Let R  X  X be an equivalence relation and a  X.
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aR  x : xRa
This is called the equivalence class of a (with respect to R).

Notation We often abbreviate aR by a when the relation R is clear from context.

Theorem (Fundamental Theorem of Equivalence Relations) Let R  X  X be an
equivalence relation and a,b  X. Then

a  b  aRb.

Corollary (1) Let R  X  X be an equivalence relation. Then X is a disjoint union of
equivalence classes, i.e.

X  
aX
a

and
a,b  X, a  b or a  b  .

Definition If X is a set and P  Ai : i  I is a set of subsets of X such that
X  

iI
Ai

and
i, j  I, i  j  Ai  Aj  

we say that P is a partition of X.

Remark Thus, the set of equivalence classes of an equivalence relation on X is a partition of
X.
Counting
Definition Two sets have the same cardinality if and only if there is a bijection from one set
to the other.

Definition A finite set A has n elements if and only if there is a bijection from 1,2,3, ,n
to A.

Remark If two sets have the same cardinality then they are both infinite, or both finite. If
they are finite the have the same number of elements.

Toy Geometries
Incidence Structure
Definition An incidence structure is an ordered pair of sets P,L such that L is a set of
subsets of P. The elements of the set P are called points and the elements of the set L are
called lines. If A is a point and l is a line then the following phrases all mean the same thing:
“A  l”, “A is on l”, “A is contained in l”, “A is incident with l”, “l goes through A”, “l
contains A”.

Example  ,  is a trivial incidence structure.
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Example ,,,,,,, is an incidence structure. In this structure
, are collinear points (see below), but , are not.

Example R2,L where
L  l : l  x,y  R2 : ax  by  c  0 for some a,b,c  R with a  0 or b  0

is an incidence structure.

Definition A figure in an incidence structure is a subset of the set of points.

Definition Two lines in an incidence structure intersect if and only if they have a point in
common, i.e. l intersects m iff there exists A such that A is on l and A is on m. In this situation
we say that the lines l and m intersect at A. A set of lines, all of which contain a point A are
said to be concurrent.

Definition The points in a figure are collinear if there exists a line containing every point in
the figure.

Definition Two lines l,m are parallel if and only if l  m  . We write l  m as an
abbreviation for “l is parallel to m”.

Example Which pairs of lines are parallel in the previous examples?

Definition Let l be a line in an incidence structure. Then the parallel class of l is the set
consisting of l and all lines parallel to l. We denote this set as ParallelClassl.

Example What is the parallel class of , in the second example above?

Example What is the parallel class of the line x,y : x  y  1  0 in the third example
above?

Definition Let A be a point in an incidence structure. Then the pencil of lines through A is
the set consisting of all lines containing the point A. We denote this set as PencilA.

Example What is the pencil of lines through  in the second example above?

Example What is the pencil of lines through the origin in the third example above?

Notation To simplify notation capital letters will represent points and lower case letters will
represent lines unless specifically stated otherwise. This applies to variables bound by
quantifiers also.

Remark From now on, whenever we discuss points and lines, we will be referring to
elements of some incidence structure unless specifically stated otherwise.

Example Prove or disprove that in any incidence structure no two distinct points can have
the same pencil of lines.

Example Let l,m,n be distinct lines in an incidence structure P,L. Prove or disprove that
if l  m and n intersects both l and m, then there exist at least two points.

Example Let R2,L be the incidence structure defined by
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L  l : l  x,y  R2 : y  mx  b for some m,b  R
Prove or disprove that two nonvertical lines are parallel if and only if they have the same
slope and different y-intercepts.

Affine Planes
Definition An affine plane is an incidence structure satisfying the following three axioms.

A1. There is a unique line through any two distinct points.
A2. Through any point not on a given line, there is a unique line parallel to the given line
A3. There are three points which are not collinear.

Remark More formally an affine plane is an incidence structure P,L satisfying the
following three axioms:

A1. A,B,A  B  !l,A  l and B  l
A2. Al, A  l  !m,A  m and m  l
A3. A,B,C,A  B and B  C and A  C and l, ~ A  l and B  l and C  l

Definition Let A,B be distinct points in any incidence structure satisfying axiom A1. Then
the unique line through A and B is denoted AB.

Example The Cartesian plane R2,L example given above is an affine plane.
Example Let P  A,B,C,D and L  A,B,A,C,A,D,B,C,B,D,C,D.
Then P,L is an affine plane.
Theorem Two distinct lines in an affine plane can intersect in at most one point.
Proof:
1. Let l and m be lines in an affine plane with l  m Given
2. Assume l,m intersect at more than one point -
3. l,m intersect at points A,B for some A,B with A  B def of "more than one";2
4. A is on l and A is on m and B is on l and B is on m def of "intersect at";3
5. l  AB and m  AB A1 (or def of AB);4
6. l  m subst;5,5
7.   ; 1, 6
8.  -
9. l,m do not intersect at more than one point ~ ; 2, 7,8
QED
Definition An affine plane P,L where P is a finite set of points is called a finite affine
plane.

Theorem In any finite affine plane, if one line consists of exactly n points, then every line
consists of exactly n points.
Proof: Homework.
Definition An affine plane in which every line has n points is called an affine plane of order
n.
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Projective Planes
Definition A projective plane is an incidence structure satisfying the following three
axioms.

P1. There is a unique line through any two distinct points.
P2. There is a unique point on any two distinct lines.
P3. There are four distinct points, no three of which are collinear.

Remark More formally a projective plane is an incidence structure P,L satisfying the
following three axioms:

P1. A,B,A  B  !l,A  l and B  l
P2. l,m, l  m  !A,A  l and A  m
P3. A,B,C,D,A  B and A  C and A  D and B  C and B  D and C  D and

~l, A  l and B  l and C  l or A  l and B  l and D  l or
A  l and C  l and D  l or B  l and C  l and D  l

Remark Since a projective plane satisfies P1 the unique line through A and B is still denoted
AB.

Remark The formal version of P3 shows why we don’t use strictly formal proofs for
everything! Yuk!

Example Let P  A,B,C,D,E,F,G and
L  A,B,C,C,D,E,A,E,F,A,D,G,B,E,G,C,F,G,B,D,F

Then P,L is a projective plane.
Example Let P be the set of (Euclidean) lines through the origin in R3 and L be the set of
planes through the origin in R3. Then P,L is a projective plane.
Proof: [Note: In the following proof we assume all elementary facts about the Euclidean
geometry of R3 are given.]
1. Let P be the set of (Euclidean) lines through the origin in R3

and L be the set of planes through the origin in R3
2. Let A,B be distinct points in P,L
3. A,B are Euclidean lines through the origin in R3
4. There exists a unique plane in R3containing A and B
5. There exists a unique line in P,L containing A and B
6. P,L satisfies axiom P1

7. Let l,m be distinct lines in P,L
8. l,m are planes in R3 passing through the origin
9. The intersection of l,m is a Euclidean line
10. The origin is on l and the origin is on m
11. The origin is on the intersection of l,m
12. The intersection of l,m is a unique Euclidean line through the origin
13. l,m intersect at a unique point in P,L
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14. P,L satisfies axiom P2

15. Let A,B,C,D be the x-axis, y-axis, z-axis, and the line through 1,1,1 and the origin in
R3 respectively

16. A,B,C,D are distinct lines through the origin in R3
17. A,B,C,D are distinct points in P,L
18. The planes in R3 determined by any two of A,B,C,D are distinct
19. The lines in P,L determined by any two of A,B,C,D are distinct
20. No three of the points A,B,C,D are collinear in P,L
21. There exist four distinct points in P,L, no three of which are collinear
22. P,L satisfies axiom P3

23. P,L is a projective plane
QED
Example Let P,L be an affine plane. Construct a new incidence structure P ,L  as
follows. For each parallel class C in P,L let PC be a new point distinct from those already
in P and each other. Define P   P  PC : C a parallel class of L and

L   l  PC : l  C  P   P
i.e. P  consists of all of the points in P plus one new point for each parallel class, and L  is
obtained from L by adding to each line the new point in its parallel class and one additional
line consisting of all of the new points. Then P ,L  is a projective plane. (proof:
homework). The projective plane P ,L  is called the projective completion of the affine
plane P,L.
Example Similarly if we start with a projective plane and remove a single line and all of the
points on that line, while maintaining the collinearity of the points that remain, we obtain an
affine plane.

Definition A projective plane P,L where P is a finite set of points is called a finite
projective plane.

Theorem In any finite projective plane, if one line consists of exactly n points, then every
line consists of exactly n points.
Proof: Homework.
Definition A projective plane in which every line has n  1 elements is called a projective
plane of order n. (It is the projective completion of an affine plane of order n.)

Axioms for Euclidean Geometry
There are many different axiom systems for Euclidean geometry, and in particular Euclidean
plane geometry. Here are a few notable ones.
 Euclid’s Axioms - (300 BC) Euclid’s Elements is perhaps one of the most famous works
of all time. This 13 book treatise basically defined geometry for 2000 years until modern
mathematicians created alternative geometries over the past two centuries. (5 axioms and
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5 common notions)
 Hilbert’s Axioms - (1899) this set of Axioms was created by David Hilbert to bring
Euclid’s work up to modern standards of rigor. (20 axioms and 6 undefined terms)

 Tarski’s Axioms - (1929) developed an “minimalist” axiom system with only two
undefined terms ("between" and "congruent") and eleven axioms

 Birchoff’s Axioms - (1932) developed an axiom system using the real numbers (4 axioms
and 4 undefined terms, not counting those needed to define the real numbers)

 Bachmann’s Axioms - (1959) an axiom system for several geometries defined entirely in
terms of abstract algebra, where points and lines are defined to be elements of a group. (8
axioms and two undefined terms, but more are needed to restrict to Euclidean geometry)

 SMSG Axioms - (~1960) the School Mathematics Study Group axioms were developed to
come up with an intuitive, easy to use, but not necessarily independent set of axioms that
could be used for a rigorous development of geometry that is appropriate for high school
students. Like Birchoff it also uses the real numbers. (3 undefined terms, 22 axioms, not
counting those needed to define the real numbers, but covers three dimensional Euclidean
geometry as well as the Euclidean geometry of the plane)

The Role of Diagrams
Diagrams are very useful in Euclidean geometry to illustrate the concepts and build intuition.
However much care must be taken to not rely too heavily on what seems apparent from a
diagram, as it can lead to disaster as illustrated in the following "theorem".

"Theorem": All triangles are isosceles.

F

E

B

A

CD

O

"Proof": Let ABC be an arbitrary triangle and let O be the intersection of the angle bisector
ofA with the perpendicular bisector of BC as shown in the diagram. Constuct the feet of the
perpediculars from O to the other sides and verify that OBD  OCD, OAE  OAF, and
OBE  OCF. Hence the triangle is isosceles.
~QED

SMSG Axioms for Euclidean Plane Geometry

Out of nothing I have created a strange new universe. -János Bolyai

© 2004 - Ken Monks



The following axioms, definitions, and theorems are based on those developed by the original
School Mathematics Study Group. I have modified them slightly to be consistent with other
things we are doing in the course.
Definition The Euclidean plane, E, is an incidence structure P,L satisfying the following
axioms and definitions. The axioms are labeled S1, S2, S3, etc.

Remark Unless otherwise stated, upper case letters like A,B,C represent points and lower
case letters such as l,m,n represent lines.

(two points determine a line)
S1: For any two distinct points there is exactly one line which contains them both.

(distance axiom)
S2: To any two distinct points there corresponds a unique positive number.
Definition The unique positive number corresponding to a pair of distinct points is called
the distance between the points. The distance between a point and itself is defined to be 0.
The distance between any two points A and B is denoted dA,B or |AB|.

Remark Note that the order of the points doesn’t matter so that dA,B  dB,A for all
points A,B.

(coordinate axiom)
S3: The points on a line can be placed into a bijective correspondence with the real numbers
such that the distance between two points is the absolute value of the difference between their
corresponding numbers.
Definition For each line l and correspondence with the real numbers given by S3, define
A to be the real number corresponding to the point A on l. By axiom S3,  : l  R is a
bijection satisfying dA,B  |B  A| for all points A and B on l. The function  is
called a coordinate system for the line l and A is called the coordinate of point A.

(ruler placement axiom)
S4: For any line l and any points A and B on l, there exists a coordinate system for l such
that A  0 and B  0.

(noncollinear points exist)
S5: There exist three noncollinear points.

Definition Point B is between points A and C if and only if
(i) A,B,C are distinct collinear points and
(ii) |AC|  |AB|  |BC|

If B is between A and C we write A.B.C..

Definition For any two distinct points A,B the segment AB is the set consisting of the points
A,B and all points C with A.C.B, i.e.

AB  C : A.C.B or C  A or C  B
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The points A and B are called the endpoints of segment AB.

Definition The distance |AB| is called the length of the segment AB.

Definition For any two distinct points A,B then ray AB is the set consisting of the points
A,B and all points C with A.C.B or A.B.C, i.e.

AB  C : A.C.B or A.B.C or C  A or C  B

The point A is called the endpoint or vertex of ray AB.

Definition If B.A.C then AB and AC are called opposite rays.

Definition A point M is called a midpoint of segment AB if and only if
A.M.B and |AM|  |MB|.

Definition Any figure whose intersection with a line segment is a midpoint of the segment is
said to bisect the segment.

Definition A figure F is convex if and only if for any two distinct points A,B  F, AB  F.

(separation axiom)
S6: Every line l divides the set of points not on l into two disjoint convex sets L and R such
that for any P  L and Q  R the segment PQ contains a point on l.

Definition The sets L and R in axiom S6 are called half-planes and the line l is called an
edge of each of them. We say that l separates the Euclidean plane into two half-planes. If two
points A and B are contained in the same half-plane we say that they are on the same side of
l. If A is in one half-plane and B in the other we say that they are on opposite sides of l.

Definition An angle is the union of two rays having a common end point which are not
contained in a single line. The rays are called the sides of the angle and the common
endpoint is called the vertex of the angle. If the two sides of an angle are AB and AC we
denote this angle asBAC.

(angle measure)
S7: To each angle there corresponds a unique real number strictly between 0 and 180.

Definition The number corresponding to a given angle described in axiom S7 is called the
measure of the angle. The measure ofBAC is denoted |BAC| or mBAC. (It is also
often denotedBAC when the distinction between the angle and its measure is clear from
context.)

Definition If A,B,C are non-collinear points then the union of the segments AB,BC,CA is
called a triangle and denoted ABC, i.e. ABC  AB  BC  CA. The segments AB,BC,CA
are called the sides of the triangle. The angles of the triangle ABC areBAC,ABC, and
ACB. When it is clear from context these angles are often abbreviated byA, B, and
C respectively, and the lengths of sides AB,BC, and CA are often denoted as c,a, and b
respectively. The side AB is called the side opposite angleC in the triangle and similarly
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for the other two pairs of sides and angles.

Definition The interior ofBAC is the set of points P such that B and P are on the same
side of AC and C and P are on the same side of AB. The exterior of an angle is the set of all
points not in the interior or on the angle itself.

(angle construction)
S8: Let AB be a ray on the edge of the half plane H. For every real number r between 0 and
180 there exists exactly one ray AP with P in H such that |BAP|  r.

Remark Note that by axiom S8 every half-plane is nonempty, because it contains the point
P.

(angle addition)
S9: If D is a point on the interior ofBAC then |BAC|  |BAD|  |CAD|.

Definition If AB and AC are opposite rays and AD is another ray thenBAD andCAD
are called a linear pair of angles. If AC and AB are opposite rays, we will sometimes find it
convenient to sayCAB is a straight angle even though it technically is not an angle.

Definition Two angles are supplementary if the sum of their measures is 180. If two angles
are supplementary each angle is called a supplement of the other.

Definition Two angles are complementary if the sum of their measures is 90. If two angles
are supplementary each angle is called a complement of the other.

(supplement axiom)
S10: If two angles form a linear pair, then they are supplementary.
Definition If two angles in a linear pair have the same measure then each is called a right
angle.

Definition Two intersecting figures, each of which is either a line, ray, or segment, are
perpendicular if the lines containing them determine a right angle.

Definition The perpendicular bisector of a segment is the line containing the midpoint that
is perpendicular to the segment.

Definition Angles are congruent angles if and only if they have the same measure.
Segments are congruent segments if and only if they have the same length. If AB is congruent
to CD we write AB  CD and similarly ifABC is congruent toDEF we write
ABC  DEF.

Definition In triangles ABC and A B C if AB  A B , BC  B C, CA  CA ,
A  A ,B  B , andC  C then we say that triangle ABC and A B C are
congruent triangles and write ABC  A B C. The three pairs of segments and three
pairs of angles are called corresponding parts of the two (not necessarily distinct) triangles.
Conversely, if ABC  A B C then there exists a bijective correspondence
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 : A,B,C  A ,B ,C such that if D  A, E  B, and F  C and AB  DE,
BC  EF, CA  FD,A  D,B  E, andC  F. In this situation we say AB
and DE, BC and EF, AC and DF,A andD,B andE, andC andF, are
corresponding parts, and each pair of corresponding parts are congruent.

Remark Note: that for convenience, whenever possible, we indicate the function  by listing
the points in the name of the triangles involved in a congruence relation in the order that they
correspond to each other, e.g. if ABC  A B C we can and should assume that
A  A , B  B , and C  C whenever it is convenient and causes no logical
problems.

(SAS)
S11: If AB  A B ,BC  B C, andB  B  then ABC  A B C.

(parallel axiom)
S12: Through any point not on a given line there is exactly one line that is parallel to the given
line.

Definition A polygon is any figure consisting entirely of segments A1A2,
A2A3,An1An,AnA1 having the property that no two of these segments intersect except at
their endpoints as specified, and no two segments that intersect are collinear. The segments
AiAj are called the sides of the polygon and the points A1,A2,An are called its vertices.

Definition A triangular region is the union of a triangle and its interior. A polygonal region
is a union of finitely many triangular regions such that if any two of them intersect, they
intersect only in a segment or a point.

(area axiom)
S13: To every polygonal region corresponds a unique positive real number.

Definition The positive real number associated with a polygonal region given by axiom S13
is called the area of the polygonal region (or simply the area of the polygon).

(congruence preserves area)
S14: If two triangles are congruent then they have the same area.

(area addition)
S15: If two regions intersect in at most a finite number of segments and points, then the area of
their union is the sum of their areas.

(area of a rectangle axiom)
S16: The area of a rectangle is the product of the length of two of its sides that share a vertex.
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Euclidean Plane Geometry Axioms - Quick Reference
S1: (two points determine a line) For any two distinct points there is exactly one line which
contains them both.

S2: (distance axiom) For each pair of distinct points there corresponds a unique positive
number.

S3: (coordinate axiom) The points on a line can be placed into a bijective correspondence with
the real numbers such that the distance between two points is the absolute value of the
difference between their corresponding numbers

S4: (ruler placement axiom) For any line l and any points A and B on l, there exists a
coordinate system l such that lA  0 and lB  0.

S5: (noncollinear points exist) There exist three noncollinear points.

S6: (separation axiom) Every line l divides the set of points not on l into two disjoint convex
sets L and R such that for any P  L and Q  R the segment PQ contains a point on l.

S7: (angle measure) To each angle there corresponds a unique real number between 0 and 180
inclusive.

S8: (angle construction) Let AB be a ray on the edge of the half plane H. For every real
number r between 0 and 180 there exists exactly one ray AP with P in H such that
|BAP|  r.

S9: (angle addition) If D is a point on the interior ofBAC then
|BAC|  |BAD|  |CAD|.

S10: (supplement axiom) If two angles form a linear pair, then they are supplementary.

S11: (SAS) If AB  A B ,BC  B C, andB  B  then ABC  A B C.

S12: (parallel axiom) Through any point not on a given line there is exactly one line that is
parallel to the given line.

S13: (area axiom) To every polygon corresponds a unique positive real number.

S14: (congruence preserves area) If two triangles are congruent they have the same area.

S15: (areas addition) If two regions intersect in at most a finite number of segments and
points, then the area of their union is the sum of their areas.

S16: (area of a rectangle axiom) The area of a rectangle is the product of the length of two of
its sides that share a vertex.
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Euclidean Plane Geometry Definitions - Quick Reference

© 2004 - Ken Monks



Definition is equivalent to
P,L is an incidence structure L is a set of subsets of P
A is a point A  P where P,L is an incidence structure
l is a line l  L where P,L is an incidence structure
F is a figure F  P where P,L is an incidence structure
figure F is collinear F  l for some line l
lines l,m are parallel l  m  

l  m l is parallel to m
C is the parallel class of l C  m : m  l or m  l

P is the pencil of lines through point A P  m : A  m
E is a Euclidean Plane E is an incidence structure satisfying axioms S1-S16

|AB| is the distance from A to B |AB| is the unique positive number assigned
to the distinct pair of points A,B in axiom S2

|AA| is the distance from A to A |AA|  0
l is a coordinate system l : l  R is a bijection and l is a line
x is the coordinate of point A x  lA
B is between A and C points A,B,C are collinear and |AB|  |BC|  |AC|
A.B.C B is between A and C
AB is a segment AB  P : A.P.B  A,B

AB is a ray AB  P : A.B.P  AB
x is an endpoint or vertex of AB x  A or x  B

x is an endpoint or vertex of AB x  A

AB and AC are opposite rays C.A.B
M is the midpoint of AB A.M.B and |AM|  |MB|
F is a convex figure for all A,B in F, AB  F

L,R are half planes with edge l L,R are the disjoint sets of points not
the line l given by axiom S6

A,B are on the same side of l A,B are in the same half plane formed by l
A,B are on the opposite side of l A,B are different half planes formed by l

ABC is an angle ABC  BA  BC
x is the vertex ofABC x  B

© 2004 - Ken Monks



© 2004 - Ken Monks



Euclidean Plane Geometry Definition - Quick Reference (cont)
Definition is equivalent to

ABC is a triangle A,B,C are distinct, not collinear, and ABC  AB  BC  CA
ABC is a degenerate triangle A,B,C are collinear

P is in the interior ofBAC P is on the same side of AB as C and

P is on the same side of AC as B

P is in the exterior ofBAC P is not on the interior of or onBAC

BAD andCAD are a linear pair AB and AC are opposite rays and D is not on BC
A,B are supplementary |A|  |B|  180
A,B are complementary |A|  |B|  90
A andB are right angles A,B are a linear pair and |A|  |B|
2 collinear figures are perpendicular the lines containing the figures determine a right angle
l is a perpendicular bisector of AB l contains the midpoint of AB and is perpendicular to AB
A is congruent toB |A|  |B|
AB is congruent to CD |AB|  |CD|

ABC is congruent to A B C
 : A,B,C  A ,B ,C a bijection such that
AB  AB,BC  BC,AC  AC,
A  A,B  B, and C  C

A1A2A3An is a polygon
A1A2A3An  i1n1 AiAi1  A1An and

these segments intersect only at their endpoints
and no intersecting segments are collinear

A1A2A3An  is the area A1A2A3An  is the real number given by axiom S12
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Review of Elementary Plane Euclidean Geometry
Some common definitions
Angles
 obtuse angle: an angle whose measure is greater than 90
 acute angle: an angle whose measure is less than 90
 adjacent angles: two angles that share a common ray
 transversal: a line k that intersects two other lines l,m at one point. The various pairs of
the eight angles formed by k with l and m are:

8

65

43

21

7

k

m

l

Figure 1
 alternate interior angles: 4,5,3,6
 alternate exterior angles: 2,7,1,8
 same side interior angles: 3,5,4,6
 same side exterior angles: 1,7,2,8
 corresponding angles: 1,5,3,7,2,6,4,8
 vertical angles: 1,4,2,3,5,8,7,6
 adjacent angles: 1,3,3,4,4,2,1,2,5,7,7,8,8,6,5,6
Triangles
 isosceles triangle: a triangle with two congruent angles
 equilateral triangle: a triangle with three congruent sides
 scalene triangle: a triangle in which no two sides are congruent
 obtuse triangle: a triangle containing an obtuse angle
 acute triangle: a triangle containing an acute angle
 right triangle: a triangle containing a right angle
 legs: the sides forming the right angle in a right triangle
 hypotenuse: side opposite the right angle in a right triangle
 exterior angle: the angle formed by the opposite ray of the ray containing one side of a
triangle (or polygon) and the side of the triangle (or polygon) that shares the same vertex

 degenerate triangle: AB  BC  AC when A,B,C are collinear (note that a degenerate
triangle is not actually a triangle, but rather is thought of as what you would get if the
three vertices of a triangle were moved continuously to become collinear).
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Cevians and Related Segments
 cevian: any line segment joining a vertex of a triangle to a point on the opposite side other
than the vertices

 altitude: the perpendicular segment from a vertex of a triangle to the line containing the
opposite side. Also any segment connecting the line containing one side of a parallelogram
or trapezoid to the line containing the opposite side that is perpendicular to both lines

 base: given an altitude or cevian of a triangle, the base of the triangle is the side opposite
to the vertex containing the altitude or cevian. We say that the base and altitude/cevian
correspond to each other. Similarly the vertex contained by the cevian or altitude is called
its vertex. Also the parallel sides in a trapezoid are called its bases.

 distance between parallel lines: is the length of any segment that is connects a point on
one line to a point on a line parallel to it and is perpendicular to both sides (see SMSG
Thm 53 below).

 median: a cevian connecting a vertex to the midpoint of the opposite side
 angle bisector: a ray containing a point in the interior of an angle that bisects the angle
(i.e. an angle bisector ofABC is a ray AD such that D is in the interior ofABC and
ABD  DBC). Also the cevian contained in the angle bisector of the angle of a
triangle, or the line containing the angle bisector of an angle.

 foot: the foot of a cevian or altitude is the point where it meets the line containing the side
opposite its vertex. Given a point P not on a line l the foot of the perpendicular line from P
to l is the point where that line intersects l. If P is on l, the foot of the perpendicular
through P to l is P itself.

 parallel collinear figures: two figures, each of which is a subset of a line, are parallel if
the two lines containing the figures are parallel

Polygons
 quadrilateral: a polygon with exactly four sides
 trapezoid: a quadrilateral with exactly one pair of parallel sides
 isosceles trapezoid: a trapezoid having two angles that share one of the sides in the
parallel pair

 parallelogram: a quadrilateral with two pairs of parallel sides
 rectangle: a quadrilateral with four congruent angles
 rhombus: a quadrilateral with four congruent sides
 square: a quadrilateral that is both a rectangle and a rhombus
 pentagon: a polygon with five sides
 hexagon: a polygon with six sides
 heptagon: a polygon with seven sides
 octagon: a polygon with eight sides
 nonagon: a polygon with nine sides
 decagon: a polygon with ten sides
 regular polygon: a polygon with n sides having all sides and all angles congruent
Circles
 circle: a figure consisting of all points that are a fixed positive distance r from a given
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point O. We if A is a point on the circle with center O and radius r we designate this circle
as OA and write |OA|  r.

 center: the point O in the definition of a circle
 radius: any segment having the center and a point on the circle as endpoints. The length
of any radius is also referred to as the radius of the circle

 circle congruence: two circles are congruent if and only if their radii are the same length.
Every circle is congruent to itself.

 chord: a segment connecting two distinct points on a circle
 diameter: a chord that contains the center. The length of any diameter is also called the
diameter of the circle.

 tangent: a line that intersects a circle at exactly one point
 tangent circles: two circles that intersect at exactly one point
 central angle: an angle whose vertex is the center of a given circle
 arc: the set of points on a circle that are in the interior of or on a central angle or the set of
points on a circle that are in the exterior of or on a central angle

 measure of an arc: the measure of the corresponding central angle if the arc is in the
interior of the central angle and 360 minus the measure of the central angle otherwise

Similarity
 similar triangles: Two triangles are similar if and only if there is a correspondence
between them such that the corresponding angles are congruent and lengths of the
corresponding sides are proportional. If ABC is similar to DEF we write
ABC  DEF.

Remark Sometimes we will refer to a segment and its length interchangeably when there
can be no possiblility of confusion from context. For example we might say that the area of a
triangle is half the product of an altitude and the corresponding base instead of saying that it
is half the product of the length of an altitude and the length of the corresponding base.
However we must take care when using this in situations where it might be ambiguous, for
example, saying that two triangles have altitudes of equal length is not the same as saying
that two triangles have equal altitudes (i.e. equal as sets of points).

Review of Some Elementary Theorems
The following list of theorems are numbered so we can reference them by number as we need
them in the course. If the number is followed by a phrase in parentheses, that denotes the name
of the theorem. We should refer to a theorem by name whenever a name is available and use
the number when no name is available. When referencing these theorems in your proofs refer
to them as, e.g. SMSG Thm 4 to distinguish them from other proofs we prove in this course.

* proven for homework
Thm
1. * Every line contains infinitely many points.
2. * The Euclidean plane is an affine plane.
3. * ( is an equivalence relation) Congruence of segments (respectively angles) is an
equivalence relation on the set of all segments (respectively angles).

4. * If l,m are distinct lines and F  l and G  m then F and G intersect in at most one
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point. (so for example, if F and G are segments or rays they can intersect in at most one
point).

5. If A.B.C then C.B.A.
6. (order thm) Let A,B,C be three distinct collinear points and  a coordinate system for the
line containing them. Then

A  B  C or C  B  A  A.B.C

7. * If A.B.C and B.C.D then A.B.D and A.C.D.
8. * If A,B,C are distinct collinear points then exactly one of the three statements A.B.C,
B.A.C, A.C.B is true.

9. * (point plotting thm) For any ray AB and positive real number r, there exists exactly one
point P on AB such that |AP|  r. In particular, we can extend any segment to any length
in either direction.
(corollary) If CD is a segment and AB a ray there is a unique point P on AB such that
AP  CD.

10. Midpoints exist and are unique.
11. * If AB and AC are opposite rays then AB  AC  BC and AB  AC  A.
12. * Every point A on l divides the points other than A on l into two disjoint convex sets L
and R such that for any P  L and Q  R the segment QP contains A.
(point plotting thm) If l,m are distinct lines that meet at A and r is a positive real number
then m has points on both sides of l that are distance r from A (and similarly if CD is a
given segment there are points P,P  on m on opposite sides of l such that
AP  AP   CD).

13. * If a line l intersects two sides of a triangle at points between the vertices, then l does
not intersect the third side of the triangle.

14. * (ray-half plane) If l is any line containing A, and B is not on l, then all points on the ray
AB except A are on the same side of l as B.

15. (Pasch) If l meets side AC in ABC at exactly one point between A and C then l
intersects AB or BC.

16. (crossbar) If D is in the interior ofA in ABC then AD intersects BC.
17. * In any triangle ABC every point between B and C is in the interior ofA.
18. (SOCAC) Supplements of the same or congruent angles are congruent.
19. * (COCAC) Complements of the same or congruent angles are congruent.
20. * Vertical angles are congruent.
21. * (right angles are 90) All right angles are congruent. An angle is a right angle if and
only if it has measure 90.

22. * If l,m intersect at one point and one of the four angles formed is a right angle then all
four angles are right angles.

23. (ASA) IfA  D, AB  DE,B  E then ABC  DEF.
24. (isosceles ) Two sides in a triangle are congruent if and only if the angles opposite
those sides are congruent.

25. * A triangle is equilateral if and only if it is equilangular.
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26. Angle bisectors exist and are unique.
27. (SSS) If AB  DE, BC  EF,AC  DF then ABC  DEF.
28. (uniqueness of perpendiculars) Through a given point there exists exactly one line
perpendicular to a given line.

29. * (right triangle) At most one angle of a triangle can be a right angle.
30. * (perpendicular bisector) A point P is equidistant from two distinct points A,B if and
only if P is on the perpedicular bisector of AB.

31. (exterior angle) The measure of an exterior angle of a triangle is greater than the measure
of either of the two opposite angles.

32. (AAS) IfA  D, B  E, and BC  EF then ABC  DEF.
33. * (HL) If the hypotenuse and leg of one right triangle are congruent, respectively, to the
hypotenuse and leg of another, then the right triangles are congruent.

34. (big angle, big side) In ABC, |A|  |B| if and only if a  b (i.e. |BC|  |AC|).
35. * (point to line distance) The shortest segment joining a point to a line is the
perpendicular segment.

36. (triangle inequality) The sum of the lengths of two sides of a triangle is greater than the
length of the third side.

37. * (bigger angle, bigger side) If two sides of one triangle are congruent respectively to
two sides of a second triangle, then the included angle of the first is larger than the
included angle of the second if and only if the remaining side of the first is longer than the
remaining side of the second.

38. * (common perpendicular) Two distinct lines that are perpendicular to the same line are
parallel.

39. (alternate interior angle) If two lines are cut by a transversal then the two lines are
parallel if and only if the alternate interior angles formed are congruent.

40. * (corresponding angles) If two lines are cut by a transversal then the two lines are
parallel if and only if any pair of corresponding angles formed are congruent. In this
situation all pairs of corresponding angles are congruent.

41. * (same side interior angles) If two lines are cut by a transversal then the two lines are
parallel if and only if any pair of same side interior angles formed are supplementary. In
this situation both pairs of same side interior angles formed are supplementary.

42. * Two distinct lines parallel to the same line are parallel to each other.
43. * (parallel class) The set of all parallel classes is a partition of the set of all lines.
44. * (common perpendicular) If line l is perpendicular to line m then l is perpendicular to all
lines in the parallel class of m.

45. ( sum) The sum of the measures of the angles in a triangle is 180.
46. * (exterior angle) The measure of an exterior angle of a triangle is equal to the sum to the
measures of the angles of the triangle that are not adjacent to it.

47. * (parallelogram) Either diagonal of a parallelogram divides it into two congruent
triangles. Any pair of parallel sides in a parallelogram are congruent. The opposite angles
are congruent and consecutive angles are supplementary. The diagonals of a parallelogram
bisect each other.

48. * (distance between parallels) If l  m and P,Q are on l then the distance from P to m

© 2004 - Ken Monks



and
the distance from Q to m are equal.

49. * (parallelogram) If both pairs of opposite sides in a quadrilateral are congruent, then the
quadrilateral is a parallelogram.

50. * (parallelogram) If two sides of a quadrilateral are parallel and congruent then the
quadrilateral is a parallelogram.

51. * (rectangle) If a parallelogram has a right angle then it is a rectangle.
52. * (rhombus) The diagonals of a parallelogram are perpendicular if and only if the
parallelogram is a rhombus.

53. * (parallel projection) Let A,B,C be distinct points on line l with A.B.C and A ,B ,C

points on m such that AA   BB   CC then A .B .C.
54. (parallel projection) Let A,B,C,D be distinct points on line l with AB  CD and
A ,B ,C,D points on m such that AA   BB   CC  DD then A B   CD.

55. * (equidistant parallels) If three parallel lines intercept congruent segments on one
transversal then they intercept congruent segments on every transversal.

56. * (midpoint connector) Let ABC be a triangle andM,N the midpoints of AB and AC
respectively. ThenMN  BC and |MN|  1

2 |BC|.
57. * (area of a right triangle) The area of a right triangle is half the product of the lengths of
its legs.

58. (area of a triangle) The area of a triangle is half of the product of an altitude and its
corresponding base.

59. * (area of a parallelogram) The area of a parallelogram is the product of one side and the
distance from that side to the side parallel to it.

60. * (area of a trapezoid) The area of a trapezoid is the product of the average of the lengths
of its bases and the distance between the bases.

61. * If two triangles have altitudes of the same length, the ratio of their areas is the same as
the ratio of the lengths of the sides opposite the vertex containing their altitudes.

62. * Two triangles having equal length altitudes and corresponding bases have equal area.
63. (Pythagorean Theorem) In any right triangle the square of the length of the hypotenuse is
equal to the sum of the squares of the lengths of the legs.

64. * (converse of the Pythagorean Theorem) In any triangle if the square of the length of the
one side is equal to the sum of the squares of the other two sides then the triangle is a right
triangle with right angle opposite the longest side.

65. * (30-60-90 triangle) A ABC has |A|  90, |B|  60 (and thus |C|  30) if and
only if |BC|  2|AB| and |AC|  3 |AB|.

66. * (isosceles right triangle) A right triangle is isosceles if and only if the ratio of the
length of the hypotenuse to the length of a leg is 2 .

67. (basic proportionality) A segment connecting points on two sides of a triangle is parallel
to the third side if and only if the segments it cuts off are proportional to the sides.

68. * (AA) If two triangles have two congruent corresponding angles then the triangles are
similar.

69. * (basic proportionality) A line parallel to a side of a triangle that intersects the two other
sides at distinct points cuts off a triangle that is similar to the original triangle.
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70. * (similarity SAS) IfA  D and |AB|
|DE| 

|AC |
|DF| then ABC  DEF.

71. (similarity SSS) If |AB|
|DE| 

|AC |
|DF| 

|BC |
|EF| then ABC  DEF.

72. * (altitude to the hypotenuse) In any right triangle the altitude to the hypotenuse separates
the triangle into two smaller triangles which are similar to each other and the original
triangle.

73. (fundamental theorem for circles) Let l be a line, OA a circle, and F the foot of the
perpendicular to l through O. Then either
(a) Every point of l is outside the circle, or
(b) F is on the circle and every other point of l is outside the circle (and thus l is a tangent
line), or
(c) F is inside the circle and l intersects the circle in two points which are equidistant
from F.

74. * (tangent line) A line l through point A is tangent to OA at A if and only if OA  l.
75. * (chord) In any circle, a radius bisects a chord if and only if the radius is perpendicular
to the chord, and the perpendicular bisector of any chord contains the center.

76. * (circle cutting) Any line that contains a point in the interior of a circle intersects the
circle in two points.

77. * (chord congruence) Two chords in the same or congruent circles are congruent if and
only if they are the same distance from the center of the circle containing them.

78. (Two Circle Theorem) If two circles having radii a and b have centers that are a distance
c apart, and if each of a,b,c is less than the sum of the other two, then the two circles
intersect at exactly two points, one on each side of the line through their centers.

79. (triangle existance) For any positive real numbers a,b,c such that the sum of any two is
greater than the third there is a triangle ABC having side lengths a,b,c.

80. * (tangent circles) If two distinct circles having radii a and b have centers that are a
distance c apart, then the two circles intersect at exactly one point if and only if the largest
of a,b,c is equal to the sum of the other two. In this situation the point of intersection lies
on the line through the centers.

81. * (disjoint circles) If two circles having radii a and b have centers that are a distance c
apart, then the two circles do not intersect if and only if the largest of a,b,c is greater than
the sum of the other two.

Further Study of Euclidean Plane Geometry
Angles Intercepting Circles
We now begin our study of some of the more advanced topics of Euclidean geometry given in
the textbook. Note that the author assumes that we have an understanding of trigonometry and
also allows us to determine betweenness relationships from diagrams rather than proving them
from the separation axiom. However care must be taken to avoid errors in proofs obtained by
taking this shortcut.
Theorem (Star Trek Lemma) The measure of an angle inscribed in a circle is half of the
measure of the arc it subtends.

Corollary If triangle ABC is inscribed in a circle thenA is a right angle if and only if
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BC is a diameter.

Corollary (Bow Tie Lemma) Two inscribed angles that subtend the same arc are congruent.

Theorem (Tangential Case of Star Trek Lemma) If AT is tangent to circle OT at T and B
is another point on OT then the measure ofATB is half of the measure of the arc it
subtends.

Theorem (interior Star Trek Lemma) If chords AA  and BB  meet at a point P in the interior
of OA and the measures of the minor arcs AB and A B  are  and  respectively, then

|APB|    
2

Theorem (exterior Star Trek Lemma) If chords AA  and BB  are extended to meet at a point
P in the exterior of OA so that P.A .A and P.B .B and the measures of the minor arcs AB
and A B  are  and  respectively, then

|APB|    
2

Similarity
Remark Baragar defines two triangles to be similar if they have corresponding angles that
are congruent in pairs, so his definition is slightly different than ours. However, in Euclidean
geometry the two definitions are equivalent by the AA theorem.

Recall SMSG theorem 67:
Theorem (basic proportionality) A segment connecting points on two sides of a triangle is
parallel to the third side if and only if the segments it cuts off are proportional to the sides.

Lemma (fun with fractions) Let a,b,x,y be real numbers with y,b,y  b, and y  b nonzero.
Then

x
y  a

b  x
y  a

b  x  a
y  b  x  a

y  b

Theorem (Angle Bisector Theorem) If D is the point where the angle bisector ofA in
ABC meets BC then

|BD|
|BA| 

|CD|
|CA|

Also recall SMSG Thm 68,70,71
Theorem (AA) If two triangles have two congruent corresponding angles then the triangles
are similar.

Theorem (similarity SAS) IfA  D and |AB|
|DE| 

|AC |
|DF| then ABC  DEF.

Theorem (similarity SSS) If |AB||DE| 
|AC |
|DF| 

|BC |
|EF| then ABC  DEF.
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Power of a Point
Theorem (power of a point) Let OA be a circle and P a point not on the circle. Then for
every line l through P that meets the circle in two points Q,R the product

|PQ|  |PR|
has the same value.

Definition Let OA be a circle and P a point. Define P  |OP|2  r2 where r  |OA|.

Corollary Let OA be a circle and P a point. Then the value of the product given in the
previous theorem is P if P is outside or on the circle and P if P is inside the circle.

Remark Note that P is zero if P is on the circle, which is the degenerate case of the
power of a point theorem in which all of the products are zero.

Theorem (tangential version of power of a point) Let OA be a circle, P a point in the
exterior of the circle, and PQ a tangent line to the circle meeting the circle at Q. Then

|PQ|2  P.

Remark Thus the tangential version can be thought of as a special case of the power of a
point theorem where we have Q  R.

Ceva’ Theorem

Theorem Let D,E,F be three points, respectively, on sides BC, AC, and AB of ABC. Then
AD, BE, and CF are concurrent at a point P if and only if

|BD|
|CD| 

|CE|
|AE| 

|AF|
|BF|  1

Medians and Centroid

Definition Let ABC be a triangle and A ,B ,C the midpoints of sides BC,AC, and AB
respectively. The cevians AA ,BB  and CC are called the medians of the triangle.

Theorem The medians of a triangle are concurrent.

Definition The intersection of the medians of a triangle is called the centroid of the triangle
and is usually denoted by the letter G.
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Recall SMSG Thm 56,
Theorem (midpoint connector) Let ABC be a triangle and M,N the midpoints of AB and
AC respectively. Then MN  BC and |MN|  1

2 |BC|.

Theorem The medians of a triangle intersect at a point 2/3 of the way from the vertex to the
midpoint of the opposite side. In other words, if G is the centroid of ABC and A ,B , and C

are the midpoints of the sides BC, AC, and AB respectively, then |AG|  2|GA  |,
|BG|  2|GB  |, and |CG|  2|GC |.

Incircle and Excircles

Lemma A point P is equidistant from two distinct lines l,m that intersect at A if and only if
is on an angle bisector of one of the angles formed by the lines at point A.

Theorem The angle bisectors of the angles of a triangle are concurrent.

Definition The point of intersection of the angle bisectors of the angles of a triangle is
called the incenter and is usually denoted by the letter I.

Corollary The incenter is the unique point that is equidistant from the three sides of a
triangle.

Definition Let r be the distance from the incenter I to the sides of ABC. The circle
centered at I with radius r is called the incircle of the triangle.

Remark By the Fundamental Theorem of Circles the incircle is tangent to all three sides of
the circle.

Theorem The external angle bisectors of the angles of a triangle ABC intersect at points
IA, IB, and IC which are respectively on the angle bisectors of angles A,B and C. These three
points are also equidistant from the lines containing the three sides of the triangle.

Definition The points IA, IB, IC are called excenters of ABC. They are the centers of three
circles that are tangent to all three lines containing the sides of ABC. These circles are
called the excircles, and their radii are called the exradii and denoted rA, rB, rC respectively.

Area, Inradius, Exradii
Definition If ABC has sides of length a,b,c then the semiperimeter of the triangle is

s  a  b  c
2
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Theorem * (Vertex to incircle) If ABC has sides of length a,b,c, semiperimeter s, and P is
the point where the incircle meets AB then |AP|  s  a.

Theorem * (Vertex to excircle) If ABC has sides of length a,b,c, semiperimeter s and
exradius rA and Q is the point where the excircle corresponding to A meets AB then |AQ|  s
and |BQ|  s  c.

Theorem If ABC has semiperimeter s and inradius r then
|ABC|  rs

Theorem * If ABC has sides of length a,b,c, semiperimeter s and exradii rA, rB, rC then
|ABC|  rAs  a  rBs  b  rCs  c

Heron’s Formula
Theorem (Heron’s Formula) In any triangle ABC,

|ABC|  ss  as  bs  c
where s  a  b  c/2.

Orthocenter

Theorem * The lines containing the three altitudes of a triangle are concurrent.

Definition The point of intersection of the lines containing the altitudes of a triangle is
called the orthocenter and is usually denoted by the letter H.

Circumcircle, Circumcenter, Circumradius

Recall SMSG Thm 30:
Theorem * (perpendicular bisector) A point P is equidistant from two distinct points A,B if
and only if P is on the perpedicular bisector of AB.

Theorem (circumcenter exists) The perpendicular bisectors of the three sides a triangle are
concurrent.

Definition The point of intersection of the perpendicular bisectors of the sides of a triangle
is called the circumcenter and is usually denoted by the letter O.

Corollary The circumcenter is the unique point that is equidistant from the three vertices of
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a triangle.

Definition Let O be the circumcenter of ABC. Then OA is called the circumcircle of
ABC and the length of its radius is called the circumradius and denoted R.

Extended Law of Sines

Theorem (Extended Law of Sines) In any triangle ABC
a

sinA
 b
sinB

 c
sinC

 2R

where R is the circumradius.

Law of Cosines
Theorem (Law of Cosines) In any triangle ABC,

c2  a2  b2  2abcos|C|

Stewart’s Theorem

Theorem (Stewart) If AP is a cevian of ABC and |AP|  l, |BP|  m, |CP|  n then
al2  mn  b2m  c2n

Cyclic Quadrilaterals and Ptolemy’s Theorem

Definition A quadrilateral is cyclic if it can be inscribed in a circle.

Remark Since any three vertices of a quadrilateral can be circumscribed by a circle, the
quadrilateral is cyclic if and only if the fourth vertex is on the circumcircle of the triangle
formed by the other three vertices. Also, since the circumcircle of a triangle is unique, so is
the circumcircle of a cyclic quadrilateral (because if there were two there would be two
circumcircles for the triangle formed by three of the vertices).

Theorem * A quadrilateral is cyclic if and only if its opposite angles are supplementary.

Theorem (Ptolemy’s Theorem) ABCD is a cyclic quadrilateral if and only if
|AC||BD|  |AB||CD|  |AD||BC|

More Fun with Triangles
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The Euler Line
Theorem The circumcenter, orthocenter, and centroid of a triangle are collinear.

Definition The line containg the circumcenter, orthocenter and centroid is called the Euler
Line.

Theorem In ABC we have H.G.O and |HG|  2|GO| (where H is the orthocenter, G is the
centroid, and O is the circumcenter as usual).

Remark We often refer to the line segment HO as the Euler line even though it is technically
a segment, not a line.

The Nine Point Circle
Theorem In any triangle, the midpoints of the sides, the feet of the altitudes, and the
midpoints of the segments connecting the vertices to the orthocenter are all contained in a
circle whose center is the midpoint of the Euler line.

Pedal Triangles

Definition Let P be a point and ABC a triangle. Let X,Y,Z be the feet of the
perpendiculars through P to AB, BC, and AC respectively. Then XYZ is called the pedal
triangle with repect to P and ABC.

Theorem (Simson line) The pedal triangle with respect to P and ABC is degenerate if and
only if P is on the circumcircle of ABC.

Definition When the pedal triangle is degenerate, the line through X,Y, and Z is called the
Simson line.

Theorem The pedal triangle of the pedal triangle of the pedal triangle with respect to a
point P is similar to the original triangle.

Menelaus Theorem

Definition Let A and B be distinct points and  a coordinate system on AB with A  0
and B  0. Then for any points C,D we define the signed length of the segment CD to be
|CD| if C  D and |CD| if D  C. We denote the signed length of CD (with
respect to this coordinate system) as CD.
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Remark Notice that CD  DC for any choice of coordinate system.

Theorem (Menelaus) Let D,E,F be three points on, respectively, the lines BC, AC, and AB
containing the sides of ABC. Then D,E,F are collinear if and only if

AF
FB

BD
DC

CE
EA  1

Remark The signed lengths in the previous theorem are independent of the coordinate
systems chosen, but all segments on the same line must use the same choice of coordinate
system.

The Gergonne Point

Theorem The cevians from the vertices to the points of intersection of the incircle with the
sides of a triangle are concurrent.

Definition The point of concurrency in the previous theorem is called the Gergonne point.

The Nagel Point

Theorem The cevians from the vertices to the points of intersection of the three excircles
with the sides of a triangle are concurrent.

Definition The point of concurrency in the previous theorem is called the Nagel point.

Morley’s Theorem

Theorem (Morley) The points of intersection of consecutive angle trisectors of the angles of
a triangle are the vertices of an equilateral triangle.

Contructions with Straightedge and Compass
Definition Let O and A be distinct points. The following figures and points are
constructible.
1. O and A are constructible.
2. If X,Y are distinct constructible points then the line XY is constructible.
3. If X,Y are distinct constructible points then the circle XY is constructible.
4. If f,g are distinct constructible figures (i.e. circles or lines), then their points of
intersection are constructible.
5. All constructible figures are obtained by a finite number of applications of rules #1-4.
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Remark A more general definition of constructible can be obtained by replacing O,A in
the previous definition with another set of given constructible points S. In this case we can
say that the points, lines, and circles are constructible from S. However, unless otherwise
stated we will always use the term ‘constructible’ to mean ‘constructible from O,A with
|OA|  1.

Remark We also say that a segment, ray, triangle, etc is constructible if the points that
define it are constructible. For example, AB, AB, and ABC are constructible figures if
A,B,C are constructible points. Also the union of constructible figures can be said to be
constructible as well.

Definition A positive real number r is constructible if there exist constructible points P,Q
with |PQ|  r.

Constructions with Geometer’s Sketchpad

Here are a few useful and important tips to keep in mind when using Geometer’s Sketchpad.

 The four rules of construction in the definition of contructible can be accomplished in
Sketchpad in the following way:
1. To construct arbitrary given points such as O,A use the Point tool (the button with the
dot on it on the left hand side of the screen) and just click anywhere to make the point.

2. To construct a line (or a segment or ray) through two points X,Y select the Line Tool
(the button with the segment on it on the left hand side of the screen). If you click on
that button and hold down the mouse button another row of buttons pops out and you
can select between segment, ray, or line. Then move the cursor over point X until it
turns blue and click the left mouse button, then move the cursor over point Y until it
turns blue and then click the left button again.

3. To construct a circle with a given center X and containing point Y select the Circle
Tool from the left hand side of the screen. Then click first on X and then on Y.

4. To construct the point of intersection of two figures (lines or circles), select the Point
tool, and move the cursor over the point of intersection until both circles/lines turn
blue. Then click the left mouse button.

 The Text tool (the button with the A on it) can be used to type text and mathematics into
your document. Double click on the document to open up a text box. You can resize the
text boxes with the Selection tool by dragging the lower right hand corner of the box. You
can select the entire box and reposition it on the screen with the Selection tool also (just
click on the box and then drag it whereever you like). You can insert math symbols into
your text using the toolbar that appears at the bottom of the screen.

 To select lines, segments, rays, circles, arcs, or points, use the Selection tool (the button
with the arrow on it) on the left hand side of the screen. You can select items by clicking
on them or by dragging a box around them with the mouse to select everything inside the
box (press and hold the left mouse button while dragging).

 Selected objects can be hidden by pressing CTRL-H. This is very useful for un-cluttering

© 2004 - Ken Monks



your drawing and making scripts. To unhide objects choose Display/Show All Hidden
from the menu.

 If you select two or more points (and NOTHING else!!) and press CTRL-L, it will
construct line segments between all of the points.

 If you select a segment and press CTRL-M it will construct the midpoint of the segment.
 If your mouse has a middle wheel button, you can use it to change between the various
buttons on the left hand side of the screen. This is very efficient compared with clicking
on the buttons themselves. Clicking the middle mouse wheel changes the selection for the
line button between segment, ray, and line.

 If you right click on an object you can change it’s color, make lines or circles dashed,
solid, or thick, and label the object.

 If you label a point, the label remains attached to the point, but you can drag it to a more
convenient position with the selection tool by moving it over the label until it changes
from an arrow to a hand and then clicking and dragging the label.

 Most menu items, such as those on the Construct menu, require that very specific inputs be
selected in your diagram before the menu item can be used. So if you have a menu item
and it is greyed-out (not available) it is because you have not selected the correct inputs
for it to be available. For example, if you want to construct a Circle-by-Center-and-Radius
you must select one point and one line segment. A common mistake I make over and over
again is to have something ELSE selected and not notice it, for example, if I have selected
a point, a segment, and a text box. So if your menu item is not available the reason is
simple: you have to select the correct inputs for that menu item, nothing more, and
nothing less.

 To create a script construct a figure by hand. Then select (a) the points you want as inputs
to the script and (b) the objects you want the script to construct from your given points.
Then click and hold on the Tool button on the left hand side of the screen (the one with the
double black triangles) and choose Create New Tool... . You do not need to highlight
everything you have used to do the construction, only your starting points and your ending
points. Note that the order that you click on the input points while highlighting will match
the order that those points will be matched when you execute the script.

 To show the script itself (i.e. to read the description of your construction), you can turn on
the Script View from the Tool button.

Basic Constructions
Remark Every constructible line contains at least two constrictible points. The center of
every constructible circle is constructible and every constructible circle contains at least one
constructible point. This follows immediately from the definition of constructible, since no
line or circle can be constructed without such points.

Theorem (perpendiculars are constructible) If l is a constructible line and P a constructible
point then the line perpendicular to l through P is constructible.

Theorem (parallels are constructible) If l is a constructible line and P a constructible point
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then the line parallel to l through P is constructible.

Theorem (noncollapsible compass) If A,B,P are distinct constructible points and A  B
then the circle centered at P with radius |AB| is constructible.

Corollary (copy segments) Given a contructible segment and constructible ray AB, we can
construct a point C on AB so that AC is congruent to the given segment.

Remark Thus we can copy any constructible segment onto any constructible ray.

Theorem (copy triangles) If ABC is constructible and DE are constructible then we can
construct P on DE and Q such that ABC  DPQ.

Corollary (copy angles) Given a contructible angle and constructible ray AB, we can
construct a ray AC so thatA is congruent to the given angle.

Theorem (midpoints) If AB is constructible then the midpoint of AB is constructible.

Theorem (angle bisectors) IfA is constructible then so is its angle bisector.

Geometric Mean
Definition The geometric mean of two positive real numbers a,b is ab .

Theorem In any right triangle ABC with right angle at A, the length of the altitude AP is
the geometric mean of the lengths of the segments BP and CP, i.e.

|AP|2  |BP||CP|

ab

ba PB C

A

Doing Arithmetic with Geometry
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Theorem If x,y are constructible real numbers then
(1) x  y is constructible.
(2) |x  y| is constructible.
(3) x/y is constructible.
(4) xy is constructible.
(5) x is constructible.

Corollary The positive rational numbers are constructible.

Non-Euclidean Geometry
A First look at Hyperbolic Geometry

Definition Neutral Geometry is the collection of theorems that can be proven using all of
the axioms of Euclidean geometry except the parallel axiom, i.e. any theorem that can be
proven using only axioms S1-S11 is a theorem of neutral geometry.

Definition Hyperbolic Geometry consists of all theorems that can be proven from the axiom
system for Euclidean geometry with the parallel axiom replaced by its negation, i.e. any
theorem that can be proven from axioms S1-S11 and ~S12.

Remark Every theorem of Neutral Geometry is thus a theorem of both Euclidean Geometry
and Hyperbolic Geometry.

Definition A Hyperbolic plane, H, is an incidence structure P,L satisfying S1-S11 and
the negation of S12.

Remark Technically speaking, when we refer to the Euclidean plane and the Hyperbolic
plane as incidence structures satisfying certain axioms, we are actually talking about models
for these axiom systems.

A Toy Euclidean Plane

There are many bijections from the Euclidean plane to the open unit disk. Here are two.

Theorem * Label the points in the plane uniquely in polar coordinates r, by requiring
that r  0 and 0    360 for points not on the origin and label the origin 0,0. Then the
function

fr,  1  1
2r ,

is a bijective function from the entire plane to the interior of the unit circle.
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Theorem * Label the points in the plane as in the previous theorem. Then the function

fr,  r
1  r2

,

is a bijective function from the entire plane to the interior of the unit circle.

Statements Equivalent to the Euclidean Parallel Axiom

Theorem In neutral geometry, the following statements are equivalent.
1. Through any point not on a line there is exact one line parallel to the given line.
2. If two lines and a transveral form same side interior angles whose sum is less than 180
then the lines intersect on the same side of the transversal as those two angles.
3. If l,m,n are three distinct lines with l  m and m  n then l  n.
4. A line that intersects one of two parallel lines must also intersect the other.
5. A line perpendicular to one of two parallel lines is perpendicular to the other.
6. The perpendicular bisectors of the sides of a triangle are concurrent.
7. Any triangle can be circumscribed by a circle.
8. A line perpendicular to one ray of an acute angle intersects the other ray.
9. Through any point in the interior of an angle there exists a line intersecting both rays of
the angle at points other than the vertex.
10. There exists an acute angle such that every point in the interior is on a line that intersects
both rays.
11. The sum of the measures of the angles of any triangle is 180.
12. There exists a triangle whose angle sum is 180.
13. The perpendicular bisectors of the legs of a right triangle intersect.
14. There exists a pair of similar, noncongruent triangles.
15. Rectangles exist.

Some theorems of Hyperbolic Geometry
Theorem In hyperbolic geometry:
1. Rectangles do not exist.
2. AAA
3. The angle sum of every triangle is less than 180.
4. Through any point not on a line there are infinitely many lines which are parallel to the
given line.
5. There exist four lines l,m,n, r such that l  m, m  n, n  r, and l  r.
6. The interior of any angle contains two perpendicular lines.

A Toy Hyperbolic Plane
Definition The Poincare Disk is an incidence structure P,L where P is the set of points in
the interior of the unit circle in the complex plane, and L consists of the intersections of P
with lines or circles in the complex plane that are perpendicular to the unit circle at both
points of intersection. The hyperbolic distance between points z,w is
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dz,w  arctanh z  w
1  z w .

The hyperbolic measure of hyperbolic angles is the same as the Euclidean angle measure of
the hyperbolic rays (where we use the Euclidean angle between the Euclidean tangents when
the hyperbolic rays are arcs of Euclidean circles).

Theorem The Poincare disk is a model of hyperbolic geometry.

Analytic Geometry: the Complex Plane
Definition Let C  R2. For each x,y  C we formally write x,y  x  yi. This form,
x  yi, is called the standard form of the complex number x,y.

Definition Let x  yi,a  bi  C, then:
1. x  yi  x  yi. (This is called the complex conjugate.)
2. |x  yi|  x2  y2 . (This is called the complex norm.)
3. Argx  yi  the angle in 02 of x,y in polar form (not defined for x  y  0) .
(This is called the Argument of x  yi. )
4. Rex  yi  x. (This is called the real part of x  yi. )
5. Imx  yi  y. (This is called the imaginary part of x  yi. )
6. x  yi  a  bi  x  a  y  bi. (This is the definition of addition in C. )
7. x  yia  bi  xa  yb  ya  xbi. (This is the definition of multiplication in C. )

Notation We can abbreviate 0  yi as yi, x  0i as x, x  1i as x  i, and x  1i as x  i with
no ambiguity in the above definitions. With this notation i  0,1 and i2  1. It is easy to
verify that the usual laws of addition and multiplication (associative, commutative,
distributive, identity, etc.) hold for the complex numbers as well.

Definition Let   R. Then ei  cos  i sin

Definition Let x  yi  C  0. The standard polar form of x  yi is rei where r  |x  yi|
and   Argx  yi.

Definition The distance between two complex numbers z,w is denoted dz,w and is defined
to be dz,w  |z  w|.

Theorem ei  1  0 (The most beautiful theorem in mathematics?)

Theorem Let ,  R
1. eiei  ei.
2. |ei |  1.
3. ei  ei.

Theorem Let z, z1, z2  C. Then:
1. |z1z2 |  |z1 ||z2 |
2. z1z2  z1 z2 i.e. the conjugate of a product is the product of conjugates.
3. z1  z2  z1  z2 i.e. the conjugate of a sum is the sum of the conjugates.
4. z z  |z|2
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5. |z|  | z |
6. If z  rei in polar form, then z  rei

Transformations
Definition A transformation of a set S is a bijection from S to S.

Remark In other branches of mathematics a transformation of S is often called a
permutation of S.

Some Useful Geometric Transformations Let w  C and ,k  R.

Translation by w: Tz  z  w

Rotation by  radians counterclockwise about the origin: Tz  eiz

Reflection across the x-axis: Tz  z

Homothety by positive factor k with respect to the origin: Tz  kz

Inversion* with respect to the unit circle: Tz  1
z

*Inversion is a transformation of the extended complex plane C  C  with 1
0   and

1
  0.

Remark You can compose these functions to obtain many useful transformations!

Inversion

Remark Henle defines inversion in the unit circle by Tz  1
z . We will call this algebraic

inversion as opposed to the inversion Tz  1
z which we will call geometric inversion. The

term inversion will refer to geometric inversion in these lecture notes.

Theorem Geometric inversion in the unit circle sends rei to 1
r ei for r  0 and it sends 0

and  to each other.

Definition Given a circle OA with radius R, if P is a point other than O we define the
geometric inverse of P with respect to OA to be the point P  on OP such that
|OP||OP  |  R2. The inverse of O is  and vice versa.

Theorem * If P is outside of OA and Q and R are the points where the tangent lines
through P meet OA, then the inverse of P is the midpoint of QR. Similarly if P is inside

© 2004 - Ken Monks



OA and Q and R are the points where the perpendicular to OP through P meets OA, then
the tangent lines to OA at Q and R intersect at the inverse P  of P with respect OA.

Definition A cline is either a circle or a line.

Theorem Geometric inversion with respect to a circle maps clines to clines.
In particular,
1. Points on the circle of inversion map to themselves
2. The center of the circle of inversion maps to infinity and vice versa.
3. Points inside the circle of inversion map to points outside the circle of inversion and vice
versa.
4. The only clines which map to themselves are those that are orthogonal to the circle of
inversion at both points of intersection, and the circle of inversion itself.

Geometry

Groups
Definition A group is a pair G, where G is a set and  : G  G  G is a binary
operation such that:
1.  is associative (i.e. a,b,c  G, a  b  c  a  b  c)
2. There is an identity element for  in G (i.e. e  G,a  G, a  e  a and e  a  a)
3. Every element has an inverse (i.e. a  G,a1  G,a  a1  e and a1  a  e)

Theorem For any nonempty set G of transformations of a set S, if
1. G is closed under composition (i.e. g,h  G,g  h  G)
2. G is closed under taking inverses (i.e. g  G,g1  G)
then G,  is a group.

Corollary The set of all transformations of a set S forms a group with composition as the
operator.

Definition The group in the previous corollary is called the symmetric group on S and is
denoted SymS.

Remark It is commonplace to refer to the group G, by the set G and vice versa, when the
operation  is understood. For geometry we will only be concerned with the case where G is
a set of transformations and  is composition.

Definition If G,H are groups of transformations and G  H we say G is a subgroup of H.

Remark This does not imply that every subset of a group is a subgroup. The subset must be
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closed under composition and inverses for it to be a subgroup.

Corollary Every group of transformations is a subgroup of a symmetric group.

From now on we will only talk about transformation groups, i.e. subgroups of a symmetric
group, i.e. groups of transformations of a set S with composition as the operation.

Klein’s Erlanger Program

Felix Klein - your greatgreatgreatgreatgreatgreatgrandpop!
(see: http://math.scranton.edu/monks/misc/Lineage.html)

Definition A geometry is pair S,G where S is a set and G is a group of transformations of
S. The set S is called the underlying space of the geometry and G is called the group of
transformation or the transformation group of the geometry.

Definition The elements of the underlying set of a geometry are called points. A figure is a
set of points in a geometry.

Definition Two figures are congruent in a geometry if and only if there is a transformation
in that geometry that maps one to the other, i.e. if S,G is a geometry and U,V  S, then

U  V  T  G, TU  V

Theorem * Congruence is an equivalence relation on the set of all figures in a geometry.

Invariants

Definition A set of figures F in a geometry S,G is said to be invariant if and only if the
image of any figure in F under any transformation in G is also an element of F, i.e. F is
invariant if and only if

U  F,T  G,TU  F

Remark Thus a set of figures is invariant if whenever a figure is in the set, so is every figure
that is congruent to it.

Definition More generally, if F1,F2,F3, . . . ,Fn are sets of figures in a geometry S,G and
F is a subset of F1  F2   Fn then F is said to be an invariant set of n-tuples if and
only for any transformation in G and any tuple A1,A2, ,An in F, the tuple
TA1,TA2, ,TAn is also an element of F, i.e. F is invariant if and only if

A1,A2, ,An  F,T  G, TA1,TA2, ,TAn  F
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Definition A function f whose domain is an invariant set of figures F in a geometry is
invariant if and only if the value of f on a figure is the same as the value of f on the image of
a figure under any transformation, i.e. f is invariant in geometry S,G if and only if

U  F,T  G, fU  fTU

Remark Thus a function on a set of figures is invariant if whenever figure U is congruent to
figure V, fU  fV.

Definition More generally for multivariable functions, let S,G be a geometry and F be an
invariant set of n-tuples figures in S,G. A function f : F  C where C is any set is
invariant if and only if for every T in G, and every A1,A2, ,An  F

fA1,A2, ,An  fTA1,TA2, ,TAn

The Study of a Particular Geometry: is the study of its invariant sets and functions!

Examples of Geometries

Euclidean geometry: C,E where E is the set of all transformations of C of the form
Tz  eiz   or Tz  ei z  

where   R and   C.

Definition An isometry is a distance preserving transformation, i.e. T is an isometry if and
only if for all z,w, dz,w  dTz,Tw.

Theorem (Classification) The transformation group for Euclidean geometry consists of
the set of all reflections, rotations, translations, and glide reflections (a translation followed
by reflection in a line parallel to the direction of translation).

Theorem * A transformation T of C is an isometry if and only if there exists   R and
  C such that

Tz  eiz   or Tz  ei z  

Special Euclidean Geometry: (Henle’s Euclidean geometry) C,E where E is the set of all
rigid motions, i.e. all transformations of C of the form

Tz  eiz  
where   R and   C.

Theorem * Every transformation of C obtained by composing one or more translations and
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rotations is a rigid motion and vice versa.

Translational Euclidean Geometry: (Henle calls this translational geometry) C,T where T
is the set of all translations, i.e. all transformations of C of the form

Tz  z  
where   C.

Rotational Euclidean Geometry: (Henle calls this rotational geometry) C,R whereR is
the set of all rotations about the origin, i.e. all transformations of C of the form

Tz  eiz
where   R.

Trivial Geometry: C,idC

Note: A group with one element is called a trivial group.

Extreme Geometry: S, SymS where S is any set.

Hyperbolic Geometry: D,H where D is the open unit disk
D  z  C : |z|  1

and H is the set of transformations of D of the form
Tz  ei z  1   z

where   C with ||  1 and   R.

[Note: this is actually Special Hyperbolic Geometry, i.e. hyperbolic geometry without
reflections.]

Elliptic Geometry: C,S where S is the set of transformations of C of the form
Tz  ei z  1   z

where   C with ||  1 and   R.

Möbius Geometry: C,M whereM is the set of transformations of C of the form
Tz  az  b

cz  d
where a,b,c,d  C and ad  bc  0.

Affine Geometry: C,L where L is the set of transformations of C of the form
Tz  z   z  

where ,,  C and ||  ||.
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Projective Geometry: P2,P where P is the set of projective transformations (defined later)
of the real projective plane P2.

Complex Analytic Geometry
Direction Number

Definition Let z be a nonzero complex number. The direction number of z is the complex
number

dirz  z
z

Theorem Let z  C 0 and   Argz. Then
dirz  e2i

Complex Equation of a Euclidean Line

Definition A T transformation in E is a reflection if Tz  ei z   and T has fixed
points.

Remark The transformations Tz  ei z   that do not have fixed points are the glide
reflections.

Definition A line in Euclidean geometry C,E is the set of fixed points of a reflection.

Remark Note that while we can develop Euclidean geometry this way, Henle assumes we
already know what a Euclidean line is in C without having to prove everything from this
definition.

Theorem For any two distinct points there is exactly one line which contains them both.

Remark Thus axiom S1 in the SMSG axiomatic development of Euclidean Geometry is a
theorem in the Erlanger Program development of Euclidean Geometry. Similiarly, by making
appropriate definitions, we can prove the rest of the SMSG axioms as theorems in the
Erlanger Program view..

Theorem Let v,w be distinct complex numbers. The solution set of
dirz  w  dirv  w

is the Euclidean line through the points v,w.

Definition Let l be a Euclidean line in C. Then the direction number of the line l is defined
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to be
dirl  dirv  w

where v,w are any two distinct points on l.

Theorem * The direction number of a line does not depend on which points v,w on the line
are used.

Direction Number of a Angle

Definition Let P,Q,R be distinct complex numbers and   |PQR|. The the direction
number of the anglePQR is

dirPQR  e2i

Theorem Let P,Q,R be distinct points. Then

dirPQR 
dir QP

dir QR
or dirPQR 

dir QR

dir QP

Remark PQR is acute if and only if dirPQR is equal to whichever of
dir QP

dir QR
and

dir QR

dir QP
has positive imaginary part.

Theorem Two Euclidean angles are congruent if and only their direction numbers are the
same.

The Universal Proving Machine!

To prove a theorem in a geometry which only deals with functions and figures which are
invariant for that geometry, it suffices to prove it for one well-chosen example in each
congruence class, since by definition of invariance, if the theorem is verified for one example it
must be true for all situations that are congruent to that example.

Example Prove that the medians of a triangle are concurrent at a point 2/3 of the way from
each vertex to the midpoint of the opposite side by the Erlanger Program method.

Möbius Geometry
Conformal Maps

Definition If c,d are smooth curves in the Euclidean plane that intersect at a point P, then
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the angle between the curves at point P is defined to be the angle between their respective
tangent lines at P.

Definition A continuous transformation of the Euclidean plane is conformal at a point P if
it preserves angles at P, i.e. if T is a conformal map and smooth curves c,d meet at a point P
at an angle  then the angle between Tc and Td at TP is also . A transformation is
conformal if it is conformal at every point in its domain.

Definition In Möbius geometry and its subgeometries, the angle between two curves is
defined to be the same as it is in Euclidean geometry.

Remark Clearly translation, rotation, reflection, and glide reflection are all conformal.

Theorem Algebraic inversion is conformal at every point except the origin.

Corollary Geometric inversion is conformal at every point except the center of inversion.

Möbius Transformations

Definition AMöbius Transformation is a transformation of the extended complex plane C

of the form
Tz  az  b

cz  d
where a,b,c,d  C and ad  bc  0.

Remark Möbius transformations include all translations, rotations, homotheties, and
algebraic inversions in circles.

Remark If c  0 then

az  b
cz  d  a

c 
ad  bc
c2

1
z  d

c

and so these Möbius transformations are a composition of a translation, inversion, homothety
and rotation, and another translation.

If c  0 then
az  b
cz  d  a

d z 
b
d

and so these Möbius transformations are a composition of a translation followed by a
homothety and rotation.

Thus every Möbius transformation is a composition of rotations, translations,
homotheties, and algebraic inversions.
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Matrix of a Möbius Transformation

Lemma If Tz  azb
czd and Sz 

ezf
gzh are Möbius transformations then

T  Sz  ae  bgz  af  bh
ce  dgz  cf  dh

Definition If Tz  azb
czd is a Möbius transformation then the matrix

a b
c d

is called the matrix associated with the Möbius transformation T.

Corollary The matrix associated with T  S is the matrix product of the matrix associated
with T and the matrix associated with S.

Lemma If Tz  azb
czd is a Möbius transformation then T

1z  dzb
cza and T1 is also a

Möbius transformation.

Corollary Möbius geometry is a geometry.

Fixed Points

Theorem A Möbius transformation other than the identity has either one or two fixed
points.

Corollary The only Möbius transformation that has three or more fixed points is the identity
map.

Fundamental Theorem

Theorem (Fundamental Theorem of Möbius Geometry) Given six points
z1, z2, z3,w1,w2,w3  C with z1, z2, z3 distinct and w1,w2,w3 distinct there is a unique
Möbius transformation T mapping z1 to w1, z2 to w2, and z3 to w3.

Cross Ratio

Definition The cross ratio of z1, z2, z3, z4  C is
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z1, z2, z3, z4   z1  z3
z1  z4

z2  z4
z2  z3

Remark If z2, z3, z4 are distinct then the function
Tz  z, z2, z3, z4 

is the unique Möbius transformation sending z2 to 1, z3 to 0, and z4 to .

Theorem The cross ratio of four distinct points is an invariant of Möbius geometry.

Corollary The cross ratio of four distinct points is an invariant of special Euclidean,
Hyperbolic, and Elliptic geometry.

Theorem Let a,b,c be distinct points. The cross ratio z,a,b,c is real if and only if z is on
the Euclidean circle or line containing a,b,c.

Corollary The set of clines is an invariant of Möbius geometry.

Corollary In Möbius geometry all clines are congruent.

Symmetry

Definition Two points z and z in the extended complex plane are symmetric with respect to
the cline containing the distinct points z2, z3, z4 if and only if

z, z2, z3, z4   z, z2, z3, z4 

Theorem If z2, z3, z4 are distinct and collinear then the map that sends z to z is reflection in
the line containing the three points. If z2, z3, z4 are distinct and not collinear then the map
that sends z to z is geometric inversion in the circle containing the three points.

Theorem Symmetry is an invariant of Möbius geometry.

Hyperbolic Geometry

Definition Hyperbolic geometry is D,H where D is the open unit disk
D  z  C : |z|  1

and H is the set of transformations of D of the form
Tz  ei z  1   z
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where   C with ||  1 and   R.

Theorem H is the group of all Möbius transformations that map the open unit disk to itself.

Definition A hyperbolic straight line is the intersection with the open unit disk of a
Euclidean circle or line in the complex plane that meets the unit circle at two right angles.

Definition The points on the Euclidean unit circle (which are not points in hyperbolic
geometry) are called ideal points.

Remark Henle says that two hyperbolic lines are parallel if the Euclidean clines that
contain them intersect at an ideal point. He calls two hyperbolic lines that do not intersect
either at a hyperbolic or ideal point hyperparallel.

Definition Two distinct clines are orthogonal if they intersect at right angles.

Theorem For any cline  and distinct points A,B  C there exists a unique cline 
through A,B which is orthogonal to . Furthermore, in this situation the geometric inverse of
any point on  is also on .

Theorem All hyperbolic straight lines are congruent in hyperbolic geometry.

Theorem In hyperbolic geometry, through any two distinct points there is exactly one
hyperbolic straight line.

Theorem The sum of the measures of the angles in any triangle in hyperbolic geometry is
less than 180.

Example Proofs
Euclidean Geometry

In the following theorems all points, lines, etc are assumed to be in E. Proofs use the SMSG
axioms and definitions given in the Euclidean geometry sections of the lecture notes above.
Proofs of theorems from the Review of Some Elementary Theorems section above are labled
(Thm n.) where n is the theorem number.

Lemma (relabeling) If A,B,C,D are collinear points and A  B and C  D then AB  BA
and AB  CD.

Proof:
1. A,B,C,D are collinear given
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2. A  B and C  D given
3. A  l and B  l and C  l and D  l for some line l def collinear;1
4. AB is the unique line containing A,B 2 pts det a line (Axiom S1);2
5. l  AB def unique;4;3
6. BA is the unique line containing B,A 2 pts det a line (Axiom S1);2
7. l  BA def unique;6;3
8. CD is the unique line containing C,D 2 pts det a line (Axiom S1);2
9. l  CD def unique;8;3
10. AB  BA and AB  CD substitution;5,7,9
QED

Remark Because of this Lemma, we won’t fuss over relabeling lines in our proofs, and will
treat all such relabelings as equivalent names for the same line. A similar comment will apply
when we prove other relabeling lemmas in the future.

Theorem (Thm 5.)If A.B.C then C.B.A.

Proof:
1. A.B.C Given
2. A,B,C are distinct collinear point def between;1
3. |AC|  |AB|  |BC| def between;1
4. |AC|  |CA| and |AB|  |BA| and |BC|  |CB| distance axiom
5. |CA|  |BA|  |CB| substitution;4,3
6.  |CB|  |BA| commutativity of 
7. C.B.A def between;2,5,6
QED

Lemma (relabeling) If A,B are distinct points then AB  BA.

Proof:
1. A,B are distinct points Given
2. AB  C : C  A or C  B or A.C.B def segment
3.  C : C  B or C  A or B.C.A SMSG Thm 5 (twice)
4.  BA def segment
QED

Lemma (distinct pts, distinct coords) If A,B are distinct points and  is a coordinate system
for the line containing them, then A  B.

Proof:
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1. A,B are distinct points Given
2.   AB Given
3. A  B def distinct;1
4.  is bijective coordinate axiom (S3)
5.  is injective def bijective
6. Assume A  B
7. A  B def injective;5;6
8.   ;7,3
9. 
10. A  B ~ ;6,8
QED

Theorem (order thm) Let A,B,C be three distinct collinear points and  a coordinate
system for the line containing them. Then

A  B  C or C  B  A  A.B.C

Proof:
1. A,B,C are distinct collinear points Given
2.  a coordinate system for AB Given
()

3. Assume A  B  C or C  B  A
(case 1)

4. Assume A  B  C
5. 0  B  A and 0  C  A and 0  C  B algebra
6. |AC|  |C  A| coordinate axiom (S3)
7.  C  A def absolute value;5
8.  C  B  B  A algebra
9.  |C  B|  |B  A| def absolute value;5
10.  |B  A|  |C  B| algebra
11.  |AB|  |BC| coordinate axiom (S3)
12. A.B.C def between;1,6,11
13. 

(case 2)
14. Assume C  B  A
15. 0  B  C and 0  A  C and 0  A  B algebra
16. |CA|  |A  C| coordinate axiom (S3)
17.  A  C def absolute value;15
18.  A  B  B  C algebra
19.  |A  B|  |B  C| def absolute value;15
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20.  |B  C|  |A  B| algebra
21.  |BC|  |CA| coordinate axiom (S3)
22. C.B.A def between;1,16,21
23. A.B.C SMSG Thm 5
24. 
25. A.B.C or-;3,4,12,14,23
26. 
27. A  B  C or C  B  A  A.B.C  ;3,25

()
28. Assume A.B.C
29. A,B,C are distinct dist pts,dist coords lemma;1
30. A  B  C or

C  B  A or
B  A  C or
C  A  B or
A  C  B or
B  C  A trichotomy;29
(case 1 or 2)

31. Assume A  B  C or C  B  A
32. 

(case 3 or 4)
33. Assume B  A  C or C  A  B
34. B.A.C () proof above
35. |BC|  |BA|  |AC| and |AC|  |AB|  |BC| def between;28,34
36. |BC|  |BA|  |AB|  |BC| substitution;35,35
37. 0  2|BA| algebra
38. |BA|  0 algebra
39. |BA|  0 coordinate axiom (S3);1
40. |BA|  0 trichotomy
41.   ;40,38
42. A  B  C or C  B  A  implies anything
43. 

(case 5 or 6)
44. (the proof is similar to case 3 or 4 and is omitted here)
45. A  B  C or C  B  A or ;30,31,31,33,42,44
46. 
47. A.B.C  A  B  C or C  B  A  ;28,45
QED
Theorem (Thm 10) Midpoints exist and are unique.
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Proof:
1. Let S be a segment
2. S  AB for some distinct points A,B def segment
3. There exists a coordinate system  on AB with A  0 and 0  B ruler placement
axiom (S4)

4. AB 
 R and  is bijective coordinate axiom (S3)

5.  is surjective def of bijective
6. B/2  R def of fx and closure of real numbers;4
7. There existsM  AB such that M  B/2 def surjective;5,4
8. 0  B/2  B arithmetic
9. A  M  B substitution;3,7,8
10. A.M.B order theorem (Thm 6);9
11. |AM|  |M  A| coordinate axiom (S3)
12.  |B/2  0| substitution;3,7,11
13.  |B/2| arithmetic;2
14.  |B  B/2|  |B  M| arithmetic
15.  |MB| coordinate axiom (S3)
16. M is a midpoint of S def midpoint;10,11,15
17. Every segment has a midpoint  ;1,16

(Now we show that it’s unique)
18. Let N be a midpoint of S
19. A.N.B and |AN|  |NB| def of midpoint
20. A  N  B order theorem (Thm 6);3,19
21. 0  N and 0  B  N arithmetic and substitution;3
22. N  |N  0| arithmetic
23.  |N  A| substitution;3
24.  |AN| coordinate axiom (S3)
25.  |NB| substitution;19
26.  |B  N| coordinate axiom (S3)
27.  B  N arithmetic;21
28. 2N  B algebra;22,27
29. N  B/2 algebra
30.  M substitution;7
31.  is injective def of bijective;4
32. N  M def injective;29-31
33. Midpoints are unique def of unique;18,32
QED

Lemma (alternate def of ray) Let A,B be distinct points. Then X  AB if and only if X  AB

© 2004 - Ken Monks



and ~X.A.B.

Proof:
1. (do in class)

Lemma (sides) If l is a line and points A,B are on the opposite side of l from point C then
A,B are on the same side of l. Similarly, if A,B are on the same side of l and C is on the
opposite side of l as A then C is on the opposite side of l as B.

Proof:
1. l is a line, A,B,C points given
2. A is on the opposite side of l as C given
3. B is on the opposite side of l as C given
4. l separates the points of the plane not on l into a disjoint union half-planes L,R separation
axiom (S6)

5. C  R or C  L def union, opposite;2,3,4
(case 1:)

6. Assume C  R
7. A  L and B  L def opposite side;2,3
8. A,B are on the same side of l def same side
9. 

(case 2:)
10. Assume C  L
11. A  R and B  R def opposite side;2,3
12. A,B are on the same side of l def same side
13. 
14. A,B are on the same side of l or-;5,6,8,10,12
QED

Theorem (Pasch) If l meets side AC in ABC at exactly one point between A and C then l
intersects AB or BC.

Proof:
1. l meets side AC in ABC at exactly one point D between A and C given
2. B  l or B  l P or not P thm
(case 1:)

3. Assume B  l
4. B  AB def segment
5. l intersects AB def intersect;3,4
6. l intersects AB or l intersects BC or
7. 
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(case 2:)
8. Assume B  l
9. A  l def exactly one;1
10. (B is on the same side of l as A) or (B is on the opposite side of l as A)separation axiom
(S6);8,9
(case a:)

11. Assume B is on the opposite side of l as A
12. l intersects AB separation axiom (S6);11
13. l intersects AB or l intersects BC or
14. 
15. (case b:)
16. Assume B is on the same side of l as A
17. AC intersects l at D copy;1
18. A is on the opposite side of l as C separation axiom (S6)
19. B is on the opposite side of l as C sides lemma;16,18
20. l intersects BC separation axiom (S6)
21. l intersects AB or l intersects BC or
22. 
23. l intersects AB or l intersects BC or-;10,11,13,16,21
24. 
25. l intersects AB or l intersects BC or-;2,3,6,8,23
QED

Lemma (segment subset ray subset line) Let A,B be distinct points. Then AB  AB  AB.

Proof:
1. Let A,B be distinct points given
2. Let X  AB
3. X  A or X  B or A.X.B def segment
4. X  A or X  B or A.X.B orA.B.X or
5. X  AB def ray
6. AB  AB def subset;2,5
7. Let Y  AB
8. Y  A or Y  B or A.Y.B orA.B.Y def ray

(case 1)
9. Assume Y  A or Y  B
10. Y  AB def AB
11. 

(case 2)
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12. Assume A.Y.B orA.B.Y
13. Y  AB def between
14. 

15. Y  AB or-;8,9,10,12,13
16. AB  AB def subset;7,15
QED

Lemma (intersect all supersets) If F,G,H are figures with G  H. If F intersects G then F
intersects H.

Proof:
1. F,G,H are figures given
2. G  H given
3. F intersects G given
4. There exists X with X  F and X  G def intersects
5. X  H def subset;2,4
6. There exists X with X  F and X  H  ;4,5
7. F intersects H def intersects
QED

Lemma (opposites don’t attract) Let A,B be distinct points and C,D on opposite sides of AB.
Then AC does not intersect BD.

Proof:
1. Let A,B be distinct points and C,D on opposite sides of AB given
2. Let X be an arbitrary point on AC
3. X  A or X is on the same side of AB as C ray-half plane thm
4. Assume X is on BD
5. X  B or X is on the same side of AB as D ray-half plane thm

(case 1)
6. Assume X  B
7. X  A def distinct;1
8. X is not on the same side of AB as C separation axiom (S6);6
9. ~ X  A or X is on the same side of AB as C DeMorgan’s Law;7,8

10.   ;3,9
11. 

(case 2)
12. Assume X is on the same side of AB as D
13. X  A separation axiom (S6)
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14. X is on the oppositite side of AB as C sides lemma;1,12
15. X is not on the same side of AB as C separation axiom (S6)
16. ~ X  A or X is on the same side of AB as C DeMorgan’s Law;7,8

17.   ;3,9
18. 
19.  or-;5,6,10,12,17
20. 

21. X is not on BD ~ ;4,19
22. No point X on AC is on BD  ;2,21
23. AC does not intersect BD def of intersect
QED

Theorem (crossbar) If D is in the interior ofA in ABC then AD intersects BC.

B

E

C
A

D

Proof:
1. D is in the interior ofA in ABC given
2. A,B,C are not collinear and distinct def 
3. There exists E on AB such that E.A.B and |AB|  |AE| point plotting thm
4. A  EB def segment
5. A  EB segment subset line lemma
6. A  AD def of AD
(show BEC forms a triangle)

7. Assume E  BC
8. BC  EB 2pts det a line (S1)
9. A  BC substitution;8,5
10. A,B,C are collinear def collinear
11.   ;10,2
12. 

13. E  BC ~ ;7,11
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14. E,B,C are not collinear def collinear
(ok, now we know it’s a triangle)

15. AD intersects side BE of BEC at A def intersects;4,5
(Here’s a key idea)

16. AD intersects BC or AD intersects CE Pasch’s Theorem
(So all we have to show is that it doesn’t intersect CE )

17. D is on the same side of AC as B def interior;1
18. A  AC def AC
19. EB intersects AC def intersects;4,18
20. E is on the opposite side of AC as B separation axiom (S6)
21. D is on the opposite side of AC as E sides lemma;17,20
22. AD does not intersect CE opposites don’t attract lemma;2;20;21
23. CE  CE segment subset ray lemma
24. AD does not intersect CE contrapositive of intersect all supersets lemma
25. D is on the same side of AB as C def interior;1
26. There exists a point P such that P.A.D point plotting thm
27. A  PD def segment
28. P is on the opposite side of AB as D separation axiom (S6)
29. P is on the opposite side of AB as C sides lemma25,28
30. AP does not intersect EC opposites don’t attract lemma;2;20;21
31. EC  EC segment subset ray lemma
32. AP does not intersect CE contrapositive of intersect all supersets lemma;30,31
33. AD  AD  AP SMSG Thm 11
34. AD  CE  AD  AP  CE substitution

35.  AD  CE  AP  CE distributivity of  over 

36.     def intersect;32;24
37.   def union
38. AD does not intersect CE def intersects;34,37
39. AD intersects BC alt form of or-;16,38
40. There exists a point Q on AD and BC def of intersects
41. Q  BC segment subset ray thm
42. Q is on the same side of AB as C ray half-plane thm
43. Q.A.D or A.Q.D or A.D.Q or Q  D or Q  A SMSG Thm 8
44. Q.A.D or Q  AD def ray

(case 1)
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45. Assume Q  AD
46. 

(case 2)
47. Assume Q.A.D
48. A  QD def segment
49. A  AB def AB
50. QD intersects AB def intersects;48,49
51. Q is on the opposite side of AB as D separation axiom (S6)
52. Q is on the opposite side of AB as C sides lemma
53. Q is not on the same side of AB as C definition of opposite
54.   ;53,42
55. Q  AD  implies anything
56. 

57. Q  AD or-;44,45,45,47,55
58. AD intersects BC def intersects;57,40
QED!

Remark At this point we are going to make another of our transitions from formal to
informal proofs. From now on we will only number lines when referring to them in a reason
is a key idea in the proof and they are not referred to immediately as illustrated in the
following example proofs.

Theorem (SOCAC) Supplements of the same or congruent angles are congruent.

Proof:
LetA andB be congruent angles given
LetC be a supplement ofA
LetD be a supplement ofB
|C|  |A|  180 def supplement

 |D|  |B| def supplement
|A|  |B| def  angles
|C|  |A|  |D|  |A| substitution
|C|  |D| algebra
C  D def  angles
QED

Theorem (ASA) IfA  D, AB  DE,B  E then ABC  DEF.
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C

A B ED

F

F'

Proof:
1. A,B,C are noncollinear and DEF are noncollinear given
2. A  D given
3. AB  DE given
4. B  DEF given
5. There exists F  on DF such that DF   AC point plotting SMSG Thm 9

ABC  DEF  SAS axiom (S11);4,1,2
6. B  DEF  CPOCTAC
F  is on the same side of DE as F ray half-plane thm
Define r  |DEF  |

7. EF  is the unique ray in same half-plane of DE as F such that r  |DEF  | angle
construction axiom (S8)
|DEF  |  |B| def  angles;5

 |DEF| def  angles;3
 r copy

EF  EF  def unique;6
F   EF def ray
F  F  SMSG Thm 4
ABC  DEF substitution

QED

Theorem (isosceles ) Two sides in a triangle are congruent if and only if the angles
opposite those sides are congruent.

Proof:
Let A,B,C be noncollinear points forming ABC
Define the correspondence A  A, B  C, C  B
()
Assume AB  BC
A  A  is an equiv reln (SMSG Thm 3)
ABC  ACB SAS axiom (S11) using 
B  C CPOCTAC via 


()
AssumeB  C
BC  BC  is an equiv reln (SMSG Thm 3)
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ABC  ACB ASA (SMSG Thm 23) using 
AB  AC CPOCTAC via 


QED

Remark In the following proofs we will start to add “connector” words from English to
connect the reasons to the statements and to make grammatical transitions from one
statement connect to the next. We also add punctutation like periods, etc.

Theorem Angle bisectors exist and are unique.

Comment: You might think that the easy way to prove this is to imitate what we did for the
proof that midpoints exist, by using the angle construction axiom to construct a ray of measure
half that of the given angle on the appropriate side of one of the rays. But you would be wrong.
Try it and see!

N

M

CA

B

Proof:
LetBAC be an angle.
There exists a point C on AC with AB  AC by the point plotting theorem.
ABC is isosceles by the definition of isosceles.
SoABC  ACB by the isosceles triangle theorem.
There exists a midpoint M of segment BC by SMSG Thm 10.
Hence BM  MC by the definition of midpoint.
Thus AMB  AMC by the SAS axiom (S11).
SoBAM  CAM since CPOCTAC.
Now B.M.C by the definition of midpoint.
So M is on BC andM is on CB by the definition of ray.
But M is on the same side of AC as B andM is on the same side of AB as C by the ray
half-plane theorem.
So M is in the interior ofBAC by the definition of angle interior.
So AM is the angle bisector ofBAC by the definition of angle bisector.
Now suppose AN is also an angle bisector ofBAC
Then N is in the interior ofBAC andBAN  CANby the definition of angle bisector.
So AN intersects BC at some point P by the crossbar theorem.
But AP  AP since  is an equivalence relation.
So PAB  PAC by the SAS axiom (S11).
Therefore PB  PC since CPOCTAC,
and thus P is a midpoint of BC by the definition of midpoint.
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But midpoints are unique by SMSG Thm 10.
So P  M by the definition of unique.
Thus, AP  AM by substitution
and AP  AN by the relabeling lemma.
So AN  AM by substitution.

So angle bisectors are unique by the definition of unique.
QED

Remark Notice that if we eliminate the space between the statements and reasons, and word
wrap this we get a typical informal math proof such as those found in most textbooks:

Proof: LetBAC be an angle. There exists a point C on AC with AB  AC by the point
plotting theorem. ABC is isosceles by the definition of isosceles. SoABC  ACB by the
isosceles triangle theorem. There exists a midpoint M of segment BC by SMSG Thm 10.
Hence BM  MC by the definition of midpoint. Thus AMB  AMC by the SAS axiom
(S11). SoBAM  CAM since CPOCTAC. Now B.M.C by the definition of midpoint. So
M is on BC and M is on CB by the definition of ray. But M is on the same side of AC as B and
M is on the same side of AB as C by the ray half-plane theorem. So M is in the interior of
BAC by the definition of angle interior. So AM is the angle bisector ofBAC by the
definition of angle bisector.

Now suppose AN is also an angle bisector ofBAC. Then N is in the interior ofBAC
andBAN  CAN by the definition of angle bisector. So AN intersects BC at some point
P by the crossbar theorem. But AP  AP since  is an equivalence relation. So
PAB  PAC by the SAS axiom (S11). Therefore PB  PC since CPOCTAC and thus P is
a midpoint of BC by the definition of midpoint. But midpoints are unique by SMSG Thm 10.
So P  M by the definition of unique. Thus, AP  AM by substitution and AP  AN by the
relabeling lemma. So AN  AM by substitution. So angle bisectors are unique by the
definition of unique.
QED

Theorem (SSS) If AB  DE, BC  EF,AC  DF then ABC  DEF.

H

G

A
B

C F

ED

F'

Proof:
Let ABC and DEF be triangles with AC  DF,AB  DE, and BC  EF.
There exists a point F  on the opposite side of AB as C such thatBAF   D by the angle
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congstruction axiom (S8).
There exists a point G on AF  such that AG  DF by the point plotting theorem.
Every point of AF  other than A is on the same side of AB by the ray half-plane thm.
G is on the same side of AB as F  by  .
G is on the opposite side of AB as C by the sides lemma.
CG intersects AB at some point H by the separation axiom (S6).
H  A or H  B or H.A.B or A.H.B or A.B.H by SMSG Thm 8.
(case 1)
Assume A.H.B
AG  DF from above (aka copy).
BAF   D also from above.
AB  AB by reflexivity of .
ABG  DEF by SAS (S11).
H is in the interior ofACB andAGB by SMSG Thm 17.
BG  EF since CPOCTAC.
BG  BC by transitivity of .
ACG  AGC by the isosceles  thm applied to ACG.
BCG  BGC by the isosceles  thm applied to BCG.
|ACG|  |AGC| and |BCG|  |BGC| by the definition of congruent segments.
|ACB|  |ACG|  |BCG| by the angle addition axiom (S7).

 |AGC|  |BGC| by substitution.
 |AGB| by the angle addition axiom (S7).

ACB  AGB by the definition of congruent segments.
AG  AC by transitivity of .
BC  EF from above.
So ABC  ABG by SAS (S11).
Thus ABC  DEF by transitivity of .


(the other cases are similar and are omitted)
QED

Remark In the following proof we continue to make our proofs more informal. In additions
to omitting all but essential line numbers, we now eliminate all but essential reasons, and in
addition skip non-essential steps. For example, if a statement only has one main logical
operation, or only one thing has been modified in going from one statement to the next, then
it is usually obvious what the reason is. Also the rules of logic are so well used by this point
that it is usually clear when you are doing an or-, implies, proof by contradiction, etc. at
this point and so no reason need to be given.

Another shortcut we introduce here is that instead of referring to a previous line or lines by
giving their line numbers in a reason, we might simply restate the needed information as part
of the reason for a statement. For example, “soBAR  BAP by the definition of
congruent angles since they have the same measure.” in the following proof.

Theorem (existance of perpendiculars) Through a given point there exists a line

© 2004 - Ken Monks



perpendicular to a given line.

F

R

P

A B

R'

Proof:
Let AB be a line and P a point.
Either P  AB or P  AB.
(case 1)
Assume P  AB.
There exists a unique ray CP such that |BPC|  90 (or |APC|  90 if P  B) by the

angle construction axiom (S8).
CP  AB by def of perpendicular.
So there is a perpendicular to AB through P.

(case 2)
Assume P  AB.
There is a ray AR  with R  on the opposite side of AB as P such that |BAR  |  |BAP| by

the angle construction axiom (S8).
There exists a point R on AR  such that AR  AP by the point plotting theorem.
(we will show that RP  AB )
R is on the same side of AB as R by the ray half-plane theorem.
So R is on the opposite side of AB as P by the sides lemma.
Thus RP intersects AB at some point F with R.F.P by the separation axiom (S6).
BAR  BAR  by the relabeling lemma,
so |BAR|  |BAR  | by substitution,

 |BAP| from above.
soBAR  BAP by the definition of congruent angles since they have the same measure.
Either F  A or F  A.
(case a)
Assume F  A
A is on RP and R.F.P by substitution.
R,A,P are collinear by definition of between.
BAR  BAP are a linear pair by definition of linear pair.
BAR,BAP are right angles by definition of right angle since they have equal measure.
So RP  AB by definition of perpendicular.
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
(case b)
Assume F  A.
F.A.B or A.F.B or A.B.F or F  B by SMSG Thm 8.
F.A.B or F  AB by definition of ray.
(case i)
Assume F  AB
BAP  FAP and BAR  FAR by relabeling.
FAR  FAP by substitution.

(case ii)
Assume F.A.B
FAP,BAP are a linear pair and
FAR,BAR are a linear pair by the definition of linear pair.
FAP,BAP are supplementary and
FAR,BAR are supplementary by the supplement axiom (S10).
FAR  FAP since SOCAC.


FAR  FAP in both cases.
AF  AF since congruence is reflexive.
AR  AP by above.
So AFP  AFR by SAS axiom (S11).
AFP  AFR because CPOCTAC.
FR,FP are opposite by definition of opposite.
AFP,AFR are a linear pair by definition of linear pair.
RP  AB by definition of perpendicular.


RP  AB in both cases.
So there is a perpendicular to AB through P.


So there is a perpendicular to AB through P in every case.
QED

Remark Note to prove that the perpendicular through a point to a line is unique we will
need the following theorem.

Theorem (exterior angle) The measure of an exterior angle of a triangle is greater than the
measure of either of the two opposite angles.

Proof:
Let ABC be a triangle and D a point on AC with A.C.D.
There exists a unique midpoint M of BC by SMSG Thm 10.
BM  CM by definition of midpoint.
There exists a point P on AM withMP  MA and A.M.P by the point plotting theorem.
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AMB  CMP since vertical angles are equal.
Thus, AMB  CMP by SAS.
(*)PCB  B since CPOCTAC.

(we now want to show that P is in the interior ofDCB )
M is in the interior ofBAC by SMSG Thm 17.
M is on the same side of AC as B by definition of interior.
P is on the same side of AC asM by the ray half-plane theorem.
P is on the same side of AC as B by the sides lemma.
D is on the opposite side of BC as A by the separation axiom, since AD intersects BC at C.
P is on the opposite side of BC as A by the separation axiom, since AP intersects BC at M.
P is on the same side of BC as D by the sides lemma.
|PCD|  0 by the angle measure axiom.
|BCD|  |PCD|  |PCB| by the angle addition axiom

 |PCB| by algebra.
 |B| by definition of congruent angles.

Similarly, if E is a point on BC with B.C.E then |ECA|  |CAB|.
But |ECA|  |BCD| since vertical angles are congruent.
So |BCD|  |CAB| by substitution.
Thus, |BCD| is greater than either of the measures of the two opposite angles in ABC.
QED

Theorem (uniqueness of perpendiculars) Through a given point there exists a unique line
perpendicular to a given line.

Proof:
Let AB be a line and P a point.
Either P  AB or P  AB.
(case 1)
Assume P  AB
There exists a unique ray CP such that |BPC|  90 (or |APC|  90 if P  B) by the

angle construction axiom (S8).
CP  AB by def of perpendicular.
So there is a unique perpendicular to AB through P since CP is unique.

(case 2)
Assume P  AB.
There exists a line PF  AB with F  AB by the existance of perpendiculars theorem.
Let AG be a arbitrary line perpendicular to AB at G.
Assume G  F.
There exists H  AB with F.G.H by the point plotting theorem.
HGA andGFA are right angles.
All right angles have equal measure by SMSG Thm 21.
So |HGA|  |GFA| by forall minus.
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GFA is an exterior angle of AFG by definition of exterior angle.
|GFA|  |HGA| by the exterior angle theorem.
|GFA|  |HGA| by trichotomy.
 since we showed these measures are both equal and not equal.


G  F by proof by contradiction.
AG  AF by substitution.
So there is a unique perpendicular to AB through P by definition of unique.


So there is a unique perpendicular to AB through P by proof by cases.
QED
Theorem (AAS) IfA  D, B  E, and BC  EF then ABC  DEF.

Proof:
Let ABC and DEF be triangles withA  D, B  E, and BC  EF.
There exists P on AB with AP  ED by the point plotting theorem.
PAC  DEF by SAS.
BPC  D by CPOCTAC.
BPC  A since  is transitive.
|BPC|  |A| by definition of  angles.
B.P.A or B.A.P or P  A
(case 1)
Assume B.P.A
BPC is an exterior angle of PAC by definition of exterior angle.
|BPC|  |A| by the exterior angle theorem.
|BPC|  |A| by trichotomy.
 since the measures are both equal and not equal.
P  A since a contradiction implies anything.

(case 2)
Assume B.A.P
A is an exterior angle of PAC by definition of exterior angle.
|A|  |BPC| by the exterior angle theorem.
|BPC|  |A| by trichotomy.
 since the measures are both equal and not equal.
P  A since a contradiction implies anything.

(case 3)
Assume P  A


So P  A by proof by cases.
ABC  DEF by substitution.
QED
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Lemma (order lemma) If C is on AB then |AC|  |AB| if and only if A.B.C.

Proof: The proof is left as an easy exercise in using axioms S2, S3, and S4.
Theorem (big angle, big side) In ABC, |A|  |B| if and only if a  b (i.e.
|BC|  |AC|).

Proof:
Let ABC be a triangle.
()
Assume |BC|  |AC|
There exists D on CA such that |DC|  |BC| by the point plotting theorem.
|DC|  |AC| by substitution.

C.A.D by the order lemma.
A is in the interior ofCBD by SMSG Thm 17.
|ABD|  0 by the angle measure axiom (S7).
|CBD|  |CBA|  |ABD| by the angle addition axiom (S9).

 |CBA| by algebra.

BCD is isosceles by the definition of isoceles.
CBD  D since CPOCTAC.
|CBD|  |D| by the definition of  angles.
|D|  |CBA| by substitution.

BAC is an external angle of ABD by definition of external angle.
|BAC|  |D| by the external angle theorem.

 |CBA| from above.

So |BAC|  |CBA| by the transitivity of .


()
( Note: This is an interesting example of how you can sometimes use one half of an
theorem to prove the other )
Assume |A|  |B|.
|BC|  |AC| or |BC|  |AC| or |BC|  |AC| by trichotomy.
(case 1)
Assume |BC|  |AC|.

(case 2)
Assume |BC|  |AC|
ABC is isosceles by definition of isosceles.
|A|  |B| by the isosceles triangle theorem.
|A|  |B| by the trichotomy law since |A|  |B|.
 since these lengths are equal and not equal.
|BC|  |AC| since a contradiction implies anything.
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
(case 3)
Assume |BC|  |AC|
|A|  |B| by the () direction of this theorem.
|A|  |B| by the trichotomy law since |A|  |B|.
 since the previous statement is the negation of the one before it.
|BC|  |AC| since a contradiction implies anything.


|BC|  |AC| by proof by cases.
QED

Theorem (triangle inequality) The sum of the lengths of two sides of a triangle is greater
than the length of the third side.

Proof:
Let ABC be a triangle.
(WLOG it suffices to show |AB|  |BC|  |AC| )
There exists D on AB with BD  BC and A.B.D by the point plotting theorem.
So CBD is isosceles.
D  BCD by the isosceles triangle theorem.
B is in the interior ofACD by SMSG Thm 17.
|ACB|  0 by the angle measure axiom (S7).
|ACD|  |ACB|  |BCD| by the angle addition axiom (S9).

 |BCD| by algebra.
 |D| by the definition of  angles.

So |AC|  |AD| by the big side, big angle theorem applied to DAC.
 |AB|  |AC| by the definition of between.

QED

Lemma (converse of the vertical angles theorem) If AB and AC are opposite rays and P,R
are on opposite sides of AB such thatCAR  BAP then P,A,R are collinear and hence
CAR andBAP are vertical angles.

Proof:
Let AB and AC be opposite rays and P,R on opposite sides of AB such thatCAR  BAP.
|CAR|  |BAP| by definition of  angles.
CAR,BAR form a linear pair by definition of linear pair.
CAR,BAR are supplementary by the supplement axiom (S10).
|CAR|  |BAR|  180 by the definition of supplement.
|BAP|  |BAR|  180 by substitution.
|BAP|  180  |BAR| by algebra.
Define P  such that AP and AP  are opposite rays.
BAP  andBAP are a linear pair.
BAP ,BAP are supplementary by the supplement axiom (S10).
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|BAP|  |BAP  |  180 by the definition of supplement.
|BAP|  180  |BAP  | by algebra.
So 180  |BAR|  180  |BAP  | by substitution and
|BAR|  |BAP  | by algebra.
Define r  |BAR|.
There is a unique ray with vertex A on the half-plane of AB making an angle of measure r with
AB by the angle construction axiom.
AR  AP  by definition of unique.
AR is the opposite ray to AP by substitution.
P,A,R are collinear by the definition of opposite.
PAB andCAR are vertical angles by the definition of vertical angle.
QED

Theorem (alternate interior angle) If two lines are cut by a transversal then the two lines
are parallel if and only if the alternate interior angles formed are congruent.

Proof:
Let l,m,n be lines with m  n and l a transversal meeting m,n at A and B respectively.
()
Assume C  m and D  n are points on opposite sides of l withCAB  ABD.
|ABD|  |CAB| by definition of .
There exists a midpoint M of AB by the midpoint theorem.
AM  BM by definition of midpoint.
|CAB|  90 or |CAB|  90.
(case 1)
Assume |CAB|  90.
|ABD|  90 by substitution.
l  m and l  n by definition of perpendicular.
m  n by the common perpendicular theorem.

(case 2)
Assume |CAB|  90.
|ABD|  90 by substitution.
There exists a unique perpendicularMC through M to m meeting m at E by the uniqueness

of perpendiculars theorem.
There exists a unique perpendicularMD through M to n meeting n at F by the uniqueness

of perpendiculars theorem.
MEA  MFB by AAS.
AME  BMF since CPOCTAC.
E,M,F are collinear by the converse of the vertical angles theorem.
EF is a common perpendicular to m and n.
m  n by the common perpendicular theorem.


m  n in both cases.
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
()
Assume m  n.
There exists a point D on n such that B  D since every line has infinitely many points.
There exists C on the opposite side of AB from D such that |BAC |  |DBA| by the angle

construction axiom (S8).
AC  n by the () direction of this theorem proven above.
AC and m are both parallel to n and contain A
(Note that the following line is the first place we are using the parallel axiom, so this is the

first SMSG theorem in our list that does not apply to both Euclidean and hyperbolic geometry,
but rather just to Euclidean.)
There exists a unique line through A parallel to n by the parallel axiom (S12).
m  AC by the definition of unique.
m makes congruent alternate interior angles with AB by substitution.


QED

Theorem ( sum) The sum of the measures of the angles in a triangle is 180.

Proof:
Let ABC be a triangle.
There exists a unique line l through A which is parallel to BC by the parallel axiom (S12).
There exist P,Q on l with P.A.Q by the point plotting theorem.
QAC,PAC are a linear pair.
|QAC|  |PAC|  180 by the supplement axiom (S10)..
(WLOG we can assume P is on same side of AC from B )
PAB  B and QAC  C by the alternate interior angle theorem.
|PAB|  |B| and |QAC|  |C| by the definition of  angles.
B is on the same side of l as C by the separation axiom since BC doesn’t intersect l.
B is on the same side of AC as P from above.
So B is in the interior ofPAC.
|PAC|  |PAB|  |BAC| by the angle addition axiom (S9).
|PAB|  |BAC|  |QAC|  180 by substitution.
|B|  |BAC|  |C|  180 by substitution.
QED

Lemma (intersect one-intersect all) If one line intersects a second dstinct line it must
intersect every line in the parallel class of the second line as well.

Proof:
E is an affine plance by SMSG Thm 2.
In any affine plane, if one line intersects a second distinct line it must intersect every line in the
parallel class of the second line as well by the theorem proved for homework in Affine Plane
Part II #1.
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QED

Theorem (parallel projection) Let A,B,C,D be distinct points on line l with AB  CD and
A ,B ,C,D points on m such that AA   BB   CC  DD then A B   CD.

Proof:
Let A,B,C,D be distinct points on line l with AB  CD.
Let A ,B ,C,D points on m such that AA   BB   CC  DD.
There exists a unique line q through A parallel to m by the parallel axiom (S12).
There exists a unique line r through C parallel to m by the parallel axiom (S12).
The Euclidean place is an affine plane by SMSG Thm 2.
q intersects BB  at some unique point Q and r intersects DD at some unique point R by the
intersect one-intersect all lemma.
AQB A , CRDC are parallelograms.
AQ  A B  and CR  CD by the parallelogram theorem (SMSG Thm 47).
l  m or l  m.
(case 1)
Assume l  m
l  q  r and Q  B and R  D by definition of unique.
AB  A B  and CD  CD by substitution.
A B   CD by transitivity of .

(case 2)
Assume l  m.
Assume q  r.
A is on r by substitution.
r  AC l because two points determine a line (S1).
l  m by substitution.



q  r by proof by contradiction.
q  r by SMSG Thm 42.
QAB  RCD by the corresponding angles theorem.
ABQ  CDR by the corresponding angles theorem.
ABQ  CDR by ASA.
AQ  CR since CPOCTAC.
A B   CD by transitivity of .


A B   CD in both cases.
QED

Theorem (area of a triangle) The area of a triangle is half of the product of an altitude and
its corresponding base.

Proof:
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(We first prove this for right triangles)
Let PQR be a right triangle with right angle at P.
There exists a unique perpendicular l to PR through R by the perpendiculars theorem.
l  PQ by the common perpendicular theorem.
There exists a unique line m parallel to PR through Q by the parallel axiom.
m intersects l at some point S by the intersect one-intersect all lemma.
PQRS is a parallelogram by definition of parallelogram.
PQRS is a rectangle by the rectangle theorem.
PQR  SRQ by the parallelogram theorem.
|PQR|  |SRQ| by the congruence preserves areas axiom (S14).
|PR||PQ|  |PQRS| by the area of a rectangle axiom (S16).

 |PQR|  |SRQ| by the area addition axiom (S15).
 |PQR|  |PQR| by substitution.
 2|PQR| by substitution.

|PQR|  1
2 |PR||PQ| by algebra.

Thus, every right triangle has area equal to half the product of an altitude and its corresponding
base.

(Now we can use this for general triangles)
Let ABC be a triangle.
There exists a line through A perpendicular to BC meeting BC at some point H by the
perpendicular theorem.
H  B or H  C or B.H.C or H.B.C or B.C.H by SMSG Thm 8.
(case 1)
Assume H  B or H  C.
ABC is a right triangle.
|ABC|  1

2 |AH||BC| by the result proven above.

(case 2)
Assume B.H.C
ABC is a right triangle.
|ABC|  |AHB|  |AHC| by the area addition axiom (S15).

 1
2 |AH||HB| 

1
2 |AH||HC| by the result proven above.

 1
2 |AH||BH|  |HC| by algebra.

 1
2 |AH||BC| by the definition of between.


(case 3)
Assume H.B.C.
AHB and AHC are right triangles.
|AHC|  |AHB|  |ABC| by the area addition axiom (S15).
1
2 |AH||HC| 

1
2 |AH||BC|  |ABC| by the result proven above.

1
2 |AH||HB|  |HC| 

1
2 |AH||BC|  |ABC| by the definition of between.

|ABC|  1
2 |AH||BC| by algebra.


(case 4 is similar to case 3 and is omitted)
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|ABC|  1
2 |AH||BC| in every case.

QED

Theorem (Pythagorean Theorem) In any right triangle the square of the length of the
hypotenuse is equal to the sum of the squares of the lengths of the legs.

Proof: (See page 9 of Baragar’s book for a nice proof. Notice that we can fill in the missing
details he mentions after the proof using the SMSG theorems we have proven. For example,
squares exist because we can construct them in a manner similar to the rectangle construction
in the previous proof above. The area of a square is it’s side length squared by the area of a
rectangle axiom (S16).)

Theorem (basic proportionality) A segment connecting points on two sides of a triangle is
parallel to the third side if and only if the segments it cuts off are proportional to the sides.

A

B C

D E

Proof:
Let ABC be a triangle, D on AB, and E on AC.
()
Assume DE  BC.
There exist altitudes DH and EH of triangles DBC and ECB respectively by the

perpendiculars theorem.
DH and EH are perpendicular to DE by the common perpendicular theorem.
DEHH is a rectangle.
|DH|  |EH | by the parallelogram theorem.
|DBC|  1

2 |BC||DH| by the area of a triangle theorem.
 1

2 |BC||DH
 | by substitution.

 |EBC| by the area of a triangle theorem.
|DAC|  |DBC|  |ABC| by the area addition axiom (S15).

 |EBA|  |EBC| by the area addition axiom (S15).
 |EBA|  |DBC| by substitution.

|DAC|  |EBA| by algebra.
Define h to be the length of the altitude of ABC through C.
Define j to be the length of the altitude of ABC through B.
1
2 h|AD| 

1
2 j|AE| by the area of a triangle theorem.

h
j  |AE|

|AD| by algebra.
1
2 h|AB|  |ABC| by the area of a triangle theorem.

 1
2 j|AC| by the area of a triangle theorem.

h
j  |AC |

|AB| by algebra.
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|AE|
|AD| 

|AC |
|AB| by substitution.

QED

Theorem (similarity SSS) If |AB||DE| 
|AC |
|DF| 

|BC |
|EF| then ABC  DEF.

Proof:
Let ABC,DEF be triangles with |AB|

|DE| 
|AC |
|DF| 

|BC |
|EF|  1 (WLOG).

There exist X,Y on DE and DF respectively with |DX|  |AB| and |DY|  |AC| by the point
plotting theorem.
|DX|
|DE| 

|DY |
|DF| by substitution.

DXY  ABC by the basic proportionality theorem.
|XY |
|EF| 

|DY |
|DF| by CPOST.

 |AC |
|DF| by substitution.

 |BC |
|EF| by substitution.

|XY|  |BC| by algebra.
XY  BC,DX  AB,DY  AC by definition of  segments.
DXY  ABC by SSS.
D  A since CPOCTAC.
ABC  DEF by similarity SAS.
QED

Theorem (fundamental theorem for circles) Let l be a line, OA a circle, and F the foot of
the perpendicular to l through O. Then either
(a) Every point of l is outside the circle, or
(b) F is on the circle and every other point of l is outside the circle (and thus l is a tangent

line), or
(c) F is inside the circle and l intersects the circle in two points which are equidistant from

F.

Proof:
Let l be a line, OA a circle, and F the foot of the perpendicular to l through O.
Define r  |OA|.
|OF|  r or |OF|  r or |OF|  r
(case 1)
Assume |OF|  r.
Let X  l.
|OX|  |OF| by the point-to-line distance theorem.

 r from above.
X is outside OA by definition of circle exterior.
Every point of l is outside the circle since X was arbitrary.

(case 2)
Assume |OF|  r.
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F  OA by definition of circle.
Let X  l and X  F.
OFX is a right triangle by definition of perpendicular.
|OX|2  |FX|2  r2 by the Pythagorean theorem.

 r2 by algebra.
|OX|  r by algebra.
X is outside OA by definition of circle exterior.
Every point of l other than F is outside the circle since X was arbitrary.
F is on the circle and every other point of l is outside the circle from above.

(case 3)
Assume |OF|  r.
F is inside the circle by definition of circle interior.
There exist points P,Q on both sides of F on l such that |FP|  |FQ|  r2  |OF|2 by the

point plotting theorem.
PFO,QFO are right triangles by definition of perpendicular.
|OP|  |OQ|  r by the Pythagorean theorem and algebra.
P,Q are on OA by the definition of circle.
F is inside the circle and l intersects the circle in two points which are equidistant from F

from above.


QED

Theorem (Two Circle Theorem) If two circles having radii a and b have centers that are a
distance c apart, and if each of a,b,c is less than the sum of the other two, then the two
circles intersect at exactly two points, one on each side of the line through their centers.

Proof:
Let AA  and BB  be circles with radii a and b respectively and |AB|  c where
any of a,b,c is less than the sum of the other two and wlog assume a  b.
a2  b2  c2 or a2  b2  c2 or a2  b2  c2 by trichotomy.
(case 1)
Assume a2  b2  c2
Define x  b2c2a2

2c .
b  x  b  b2c2a2

2c by substitution.
 2bcb2c2a2

2c by algebra.
 a2bc2

2c by algebra.
 acbabc

2c by algebra.
 0 by algebra since a  c  b and a  c  b from above.

So x  b by algebra.
c  x  c  b2c2a2

2c by substitution.
 2c2b2c2a2

2c by algebra.
 a2c2b2

2c by algebra.


a2a2b2 b2

2c since c2  a2  b2 by the assumption above.
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 a2b2
c by algebra.

 abab
c by algebra.

 0 since a  b from above.
So x  c by algebra.
a  c  x  a  c  b2c2a2

2c by substitution.
 2ac2c2b2c2a2

2c by algebra.
 b2c22aca2

2c by algebra.
 b2ca2

2c by algebra.
 bcabca

2c by algebra.
 0 by algebra since a  b  c and b  c  a from above.

So c  x  a.
There exists a point P on AB with |BP|  x by the point plotting theorem.
P is inside BB  by definition of interior since |BP|  b.
There exists  on AB with B  0 and A  0 by the ruler placement axiom (S4).
P  x and A  c by the coordinate axiom (S3).
|AP|  |A  P| by the coodinate aciom (S3).

 |c  x| by substitution.
 c  x by algebra since x  c.
 a from above.

So P is inside AA  by definition of interior since |AP|  a.
There exists a unique line l through P that is perpendicular to AB by the perpendiculars

theorem.
l intersects BB  at exactly two points C,C on opposite sides of AB by the fundamental

theorem for circles.
l intersects AA  at exactly two points S,S on opposite sides of AB by the fundamental

theorem for circles (wlog we can assume S is on the same side as C).
a2  c  x2  a2  c2  2xc  x2 by algebra.

 a2  c2  2 b2c2a2
2c c  x2 by substitution.

 a2  c2  b2  c2  a2  x2 by algebra.
 b2  x2 by algebra.

|PS|  a2  c  x2 by the Pythagorean theorem applied to APS.
 b2  x2 by substitution.
 |PC| by the Pythagorean theorem applied to BPS.

There exists a unique point on PS whose distance from P is |PS| by the point plotting
theorem.
S  C by the definition unique.
S  C by a similar argument.
AA ,BB  intersect at two points, C,C on each side of AB by the definition of intersect.
Let X be any point of intersection of these circles (wlog on the same side of AB as C).
|AX|  a and |BX|  b by definition of circle.
ABX  ABC by SSS.
BAX  BAC since CPOCTAC.
AX  AC by the angle construction axiom (S8).

© 2004 - Ken Monks



X,C are the unique point on AC at distance a from A by the point plotting theorem.
X  C by the definition of unique.
AA ,BB  intersect at exactly two points, C,C on each side of AB.

(case 2 and case 3 are similar proofs using x  0 and x   b2c2a22c respectively and are

omitted)
QED
Theorem (triangle existance) For any positive real numbers a,b,c such that the sum of any
two is greater than the third there is a triangle ABC having side lengths a,b,c.

Proof:
Let a,b,c be positive real numbers such that the sum of any two is greater than the third.
There exists distinct points A,B  by the point existance axiom (S5).
There exists B on AB  such that |AB|  c by the point plotting theorem.
Define B to be the circle of radius a centered at B.
Define A to be the circle of radius b centered at A.
A intersects B at a point C not on AB by the Two Circle Theorem.
|BC|  a and |AC|  b by definition of circle.
ABC has side lengths a,b,c from above.
QED

Further Study of Euclidean Geometry

Lemma (fun with fractions) Let a,b,x,y, r be real numbers. Then
x
y  a

b  r  x  a
y  b  x  a

y  b  r

Pf:
Let a,b,x,y, r be real numbers.

Assume x
y  a

b  r.
ay  bx by algebra
xy  ay  xy  bx substitution
x  ay  y  bx by algebra
xa
yb  x

y by algebra
 r substitution

QED

Theorem (Angle Bisector Theorem) If D is the point where the angle bisector ofA in
ABC meets BC then

|BD|
|BA| 

|CD|
|CA|

Proof:
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D

A

B

C

Let D be the point where the angle bisector ofA in ABC meets BC (which exists by the
crossbar theorem).
There is a unique line through B parallel to AD by the parallel axiom.
This line intersects AC at some point E by the intersect one, intersect all lemma in the proof
section below.

E

D

C

B

A

EBA  BAD by the alternate interior angles theorem.
AEB  DAC by the corresponding angles theorem.
BAD  DAC by the definition of angle bisector.
SoEBA  AEB by transitivity of .
Thus EA  BA by the isosceles triangle theorem,
and |EA|  |BA| by the definition of congruent segments.
|CD|
|CB| 

|CA|
|CE| by the basic proportionality theorem.

|CD|
|CA| 

|CB|
|CE| by algebra.

|CD|
|CA| 

|CB||CD|
|CE||CA| by the fun with fractions lemma.

 |BD|
|EA| by the definition of between (segment addition).

 |BD|
|BA| by substitution.

QED
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