Tarski's Axioms

Undefined terms: between and congruent
Notation:

- $a b \equiv c d$ is an abbreviation for congruent (a, b, c, d)
- $a . b . c$ is an abbreviation for between (a, b, c)

Note: We can think of all variables as representing points, $a b \equiv c d$ as saying "the distance from point a to point b is the same as the distance from point c to point $d "$, and a.b.c as saying " b is between a and c "... but we don't have to! All free variables in the following axioms are assumed to be quantified by \forall.
$\mathrm{T} 1: a b \equiv b a$
$\mathrm{T} 2: a b \equiv p q$ and $a b \equiv r s \Rightarrow p q \equiv r s$
T3: $a b \equiv c c \Rightarrow a=b$
T4: $\exists x, q . a . x$ and $a x \equiv b c$
T5: $\left(a \neq b\right.$ and $a . b . c$ and $a^{\prime} . b^{\prime} . c^{\prime}$ and
$a b \equiv a^{\prime} b^{\prime}$ and $b d \equiv b^{\prime} d^{\prime}$ and $b c \equiv b^{\prime} c^{\prime}$ and $\left.a d \equiv a^{\prime} d^{\prime}\right) \Rightarrow c d \equiv c^{\prime} d^{\prime}$
T6: $a . b . a \Rightarrow a=b$
T7: a.p.c and b.q.c $\Rightarrow \exists x, p . x . b$ and q.x.a
T8: $\exists a \exists b \exists c, \sim(a . b . c$ or $a . c . b$ or $c . a . b)$
T9: $p \neq q$ and $a p \equiv a q$ and $b p \equiv b q$ and $c p \equiv c q \Rightarrow a . b . c$ or a.c.b or b.a.c
T10: a.d.t and b.d.c and $a \neq b \Rightarrow \exists x \exists y, a . b . x$ and a.c.y and x.t.y
T11: $(\exists a \forall x \forall y,(\Phi(x)$ and $\Psi(y)) \Rightarrow a . x . y) \Rightarrow(\exists b \forall x \forall y,(\Phi(x)$ and $\Psi(y)) \Rightarrow x . b . y)$
Note: T11 is actually an axiom scheme, one axiom for each formula Φ and Ψ.
[Source: Szczerba, Tarski and Geometry, Journal of Symbolic Logic, 51, 4 (1986), 907-912]

