Section 2.1: Congruence in \mathbb{Z}
In the following recipes, $n \in \mathbb{N}^{+}, a, b \in \mathbb{Z}$, and [] is [$]_{\equiv}$.

Recipes for Section 2.1	
1. Show $n \mid a-b$ Conclude $a \equiv b$	1. Show $a \equiv b$ Conclude $n \mid a-b$
Thm 1 Conclude \equiv is an equiv reln	
$\begin{aligned} & \hline \mathbb{Z}_{n}+ \\ & \text { 1. Show } x=[a] \\ & \text { Conclude } x \in \mathbb{Z}_{n} \end{aligned}$	$\begin{aligned} & \mathbb{Z}_{n}- \\ & \text { 1. Show } x \in \mathbb{Z}_{n} \\ & \text { Conclude } x=[a] \text { for some } a \in \mathbb{Z} \end{aligned}$
Cor to Burning Thm 1. Show $[a]=[b]$ Conclude $a \equiv b$	Cor to Burning Thm 1. Show $a \equiv b$ Conclude $[a]=[b]$
Cor 2a 1. Show $q, r \in \mathbb{Z}$ 2. Show $a=n q+r$ 3. Show $0 \leq r<n$ Conclude $[a]=[r]$	
```Cor 2b 1. Show \(x \in \mathbb{Z}_{n}\) Conclude \(x \in\{[0],[1], \ldots,[n-1]\}\)```	Cor 2b   1. Show $i, j \in\{0,1, \ldots, n-1\}$   2. Show $[i]=[j]$   Conclude $i=j$

Section 2.2: Arithmetic in $\mathbb{Z}_{n}$
In the following recipes let $n \in \mathbb{N}^{+}, a, b, c, d \in \mathbb{Z}$ and [ ] denote [ $]_{\equiv^{*}}$.

Recipes for Section 2.2	
Sec 2.2 Thm 1   1. Show $a \equiv b$   2. Show $c \equiv d$   Conclude $a+c \equiv b+d$   Conclude $a c \equiv b d$	
Mod +   1. Show $q, r \in \mathbb{Z}$   2. Show $a=n q+r$   3. Show $0 \leq r<n$   Conclude $r=(a \operatorname{Mod} n)$	Mod -   1. Show $r=a \operatorname{Mod} n$   Conclude $r \in \mathbb{Z}$   Conclude $a=n q+r$ for some $q \in \mathbb{Z}$   Conclude $0 \leq r<n$
binary operator +   1. Show $f: X \times X \rightarrow X$   Conclude $f$ is a binary operator on $X$	binary operator -   1. Show $f$ is a binary operator on $X$   Conclude $f: X \times X \rightarrow X$
Sec 2.2 Thm 2   Conclude $\oplus: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}$   Conclude $\otimes: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}$	
Def $\oplus$   Conclude $[a] \oplus[b]=[a+b]$	Def $\otimes$   Conclude $[a] \otimes[b]=[a b]$
Sec 2.2 Thm 3   1. Show $A, B, C \in \mathbb{Z}_{n}$   Conclude $A \oplus(B \oplus C)=(A \oplus B) \oplus C$   Conclude $A \oplus B=B \oplus A$   Conclude [0] $\oplus A=A \oplus[0]=A$   Conclude $\exists X \in \mathbb{Z}_{n}, A \oplus X=[0]$   Conclude $A \otimes(B \otimes C)=(A \otimes B) \otimes C$   Conclude $A \otimes(B \oplus C)=(A \otimes B) \oplus(A \otimes C)$   Conclude $A \otimes B=B \otimes A$   Conclude $A \otimes[1]=[1] \otimes A=A$	$\begin{aligned} & \text { Mult by } 0 \text { in } \mathbb{Z}_{n} \\ & \text { 1. Show } A \in \mathbb{Z}_{n} \\ & \text { Conclude }[0] \otimes A=[0] \end{aligned}$

