Modern Algebra II: Lecture Notes

© 2003 - Ken Monks

by Ken Monks Department of Mathematics University of Scranton Revised: Spring 2003

This is **not** a complete set of lecture notes for Math 449, Modern Algebra II. Additional material will be covered in class and discussed in the textbook.

Fun Facts

Section 8.1 - Direct Products

Definition Let $G_1, ..., G_k$ be groups and $G = G_1 \times ... \times G_k$. Then G is said to be the direct product of $G_1, ..., G_n$. If the groups are abelian then we call G the direct sum of the groups. In this case we write $G = G_1 \oplus ... \oplus G_k$.

Lemma If $M \triangleleft G$ and $N \triangleleft G$ and $M \cap N = \{e\}$ then $\forall a \in M, \forall b \in N, ab = ba$.

Theorem Let $N_1, N_2, ..., N_k$ be normal subgroups of a group G such that every $a \in G$ can be expressed uniquely in the form $a_1a_2\cdots a_k$ where $a_i \in N_i$ for all i (i.e. if

 $a = a_1 a_2 \cdots a_k = b_1 b_2 \cdots b_k$ where $\forall i \in \mathbb{I}_k, a_i \in N_i$ and $b_i \in N_i$ then $\forall i \in \mathbb{I}_k, a_i = b_i$). Then $G \cong N_1 \times \ldots \times N_k$

Theorem If $M \triangleleft G$ and $N \triangleleft G$ and G = MN and $M \cap N = \langle e \rangle$ then $G \cong M \times N$

Section 8.2 - Classification of Finite Abelian Groups

Definition Let *G* be and abelian group and *p* a positive prime integer. Then $G(p) = \left\{ a \in G : \exists n \in \mathbb{N}, |a| = p^n \right\}$

Remark G(p) is a group. Closure: $a^{p^n} = e$ and $b^{p^m} = e$ implies $(ab)^{p^{m+n}} = e$. Inverses: $|a| = |a^{-1}|$ Theorem If G is a finite abelian group then

$$G \cong G(p_1) \oplus G(p_2) \oplus \cdots \oplus G(p_t)$$

where p_1, p_2, \ldots, p_t are the distinct positive primes that divide the order of G.

p-groups

Definition Let p be a positive prime and G a group. G is a p-group $\Leftrightarrow \forall x \in G, \exists n \in \mathbb{N}, |x| = p^n$ *i.e.* a p-group is a group such that the order of all of its elements is a power of p.

Definition Let G be a p-group and $a \in G$. Then a is an element of maximal order in $G \Leftrightarrow \forall b \in G, |b| \leq |a|$.

Lemma Let G be a finite abelian p-group and $a \in G$ an element of maximal order. Then

$$\exists K \lhd G, \ G \cong \langle a \rangle \oplus K$$

Remark Note: In the proof K is the largest subgroup of G such that $K \cap \langle a \rangle = \langle e \rangle$.

The Fundamental Theorem of Finite Abelian Groups

Theorem (Fund Thm of Finite Abelian Groups I) *Every finite abelian group is a direct sum of cyclic groups, each of prime power order.*

Theorem Let $m, k \in N - \{0, 1\}$ and gcd(m, k) = 1. Then $\mathbb{Z}_{mk} \cong \mathbb{Z}_m \oplus \mathbb{Z}_k$

Corollary If $n = p_1^{n_1} p_2^{n_2} \cdots p_t^{n_t}$ with p_1, p_2, \cdots, p_t distinct primes then $\mathbb{Z}_n \cong \mathbb{Z}_{p_1^{n_1}} \oplus \mathbb{Z}_{p_2^{n_2}} \oplus \cdots \oplus \mathbb{Z}_{p_t^{n_t}}$

Definition *Let G be a finite abelian group, and*

 $G \cong \mathbb{Z}_{p_1^{n_1}} \oplus \mathbb{Z}_{p_2^{n_2}} \oplus \cdots \oplus \mathbb{Z}_{p_t^{n_t}}$

with $p_1 \leq p_2 \leq \cdots \leq p_t$ positive primes and $n_i \leq n_{i+1}$ whenever $p_i = p_{i+1}$. Then the sequence

 $p_1^{n_1}, p_2^{n_2}, \cdots, p_t^{n_t}$

is called the sequence of elementary divisors of G.

Theorem (Fund Thm of Abelian Groups II) Let G, H be finite abelian groups. Then $G \cong H \Leftrightarrow G$ and H have the same sequence of elementary divisors.

Invariant Factors

Theorem Every finite abelian group is the direct sum of cyclic groups of orders m_1, m_2, \ldots, m_t such that $m_1|m_2, m_2|m_3, \ldots, m_{t-1}|m_t$.

Definition The numbers $m_1, m_2, ..., m_t$ in the previous theorem are called the *invariant factors of G*.

Section 8.3 - Classification of Finite Non-Abelian Groups The Sylow Theorems

Remark From now on, when ever we say p is a prime, we will mean p is a positive prime integer unless stated otherwise.

Remark *Recall that Lagrange's theorem says that the order of a subgroup must divide the order of the group. What about the converse?*

Sylow I

Theorem (Sylow I) Let *G* be a finite group, *p* a prime, and $k \in \mathbb{N}$. If $p^k \mid |G|$ then *G* has a subgroup of order p^k .

Corollary (Cauchy's Thm) If p is a prime and $p \mid |G|$ then G has an element of order p.

Definition Let *G* be a finite group and *p* a prime. If p^n is the largest power of *p* that divides |G| then a subgroup of order p^n is called a *Sylow p-subgroup*.

Notation We write $H \sqsubseteq_p G$ if and only if H is a Sylow p-subgroup of G. We write $\#_p(G)$ to denote the number of Sylow p-subgroups of G.

Sylow II

Definition Let G be a group and $x \in G$. Let $f_x : G \to G$ by $\forall a \in G, f_x(a) = x^{-1}ax$. Then f_x is called the **inner automorphism of G induced by x**. **Theorem** Let G be a group and $x \in G$. Then f_x is an isomorphism.

Corollary Let *G* be a group, $x \in G$, and $K \sqsubseteq G$. Then $f_x(K) \cong K$. *i.e.* $\forall x \in G, x^{-1}Kx \cong K$

Theorem (Sylow II) Let *G* be a finite group, *p* a prime. $P \sqsubseteq_p G$ and $K \sqsubseteq_p G \Rightarrow \exists x \in G, P = x^{-1}Kx$

i.e. any two Sylow *p*-subgroups of *G* are conjugate.

Corollary Any two Sylow *p*-subgroups of *G* are isomorphic.

Corollary Let G be a finite group, p a prime, and $K \sqsubseteq G$.

 $K \triangleleft G \Leftrightarrow \#_p(G) = 1$

i.e. a Sylow *p*-subgroup is normal if and only if it is the only Sylow *p*-subgroup.

Sylow III

Theorem (Sylow III) Let G be a finite group and p a prime. Then $\#_p(G) \mid |G|$

and

$$\#_p(G) \equiv 1$$

CLASSIFY!

Theorem Let *G* be a finite group, p, q primes, and |G| = pq. If q < p and $q \not\mid p - 1$ then

 $G \cong \mathbb{Z}_{pq}$

Section 8.4 - Proof of the Sylow Theorems Preliminary Definitions

Definition Let *G* be a group and $a, b \in G$. We say *b* is conjugate to *a* if and only if $b = x^{-1}ax$ for some $x \in G$. In this case we write $b \sim a$.

Theorem \sim is an equivalence relation on G.

Definition Let G be a group and $a \in G$. The centralizer of a is $C(a) = \{x \in G : xa = ax\}$ i.e. C(a) is the set of all elements of G that commute with a.

Theorem Let G be a group and $a \in G$. Then C(a) is a subgroup of G.

Definition Let *G* be a group and $H, K \sqsubseteq G$. We say *H* is **conjugate** to *K* if and only if $H = x^{-1}Kx$ for some $x \in G$. In this case we write $H \sim K$.

Theorem \sim is an equivalence relation on the set of subgroups of *G*.

Definition Let *G* be a group and $H \sqsubseteq G$. The normalizer of *H* is $N(H) = \{g \in G : Hg = gH\}$

i.e. N(H) is the set of all elements of G that commute with H.

Theorem Let *G* be a group and $H \sqsubseteq G$. Then N(H) is a subgroup of *G* and $H \triangleleft N(H)$.

Definition Let G be a group and $a \in G$. The center of a is $Z(G) = \{x \in G : \forall a \in G, xa = ax\}$ i.e. Z(G) is the set of all elements of G that commute with every element of G.

Theorem $Z(G) \triangleleft G$

The Class Equation

Theorem (Conjugacy Class Size) Let G be a finite group and $a \in G$. The number of elements in the conjugacy class [a] is [G : C(a)].

Remark Here [a] is the equivalence class of a with respect to \sim .

Definition The class equation of a finite group G is $|G| = [G : C(a_1)] + [G : C(a_2)] + \dots + [G : C(a_t)]$ where $a_1, a_2, ..., a_t$ are representatives of the distinct conjugacy classes of G with respect to \sim .

Remark The class equation follows immediately from the conjugacy class size theorem and the fact that

$$|G| = |C_1| + |C_2| + \dots + |C_t|$$

where C_1, C_2, \ldots, C_t are the distinct conjugacy classes of G with respect to ~.

Theorem Let G be a group and $a \in G$. The conjugacy class of a is $\{a\}$ if and only if $a \in Z(G)$.

Remark The class equation can also be written as

 $|G| = |Z(G)| + |C_1| + |C_2| + \dots + |C_t|$

where $C_1, C_2, ..., C_t$ are the distinct conjugacy classes of G with respect to ~ having more than one element.

Example Here is the multiplication table for S_3

•	е	(12)	(13)	(23)	(123)	(132)
е	е	(12)	(13)	(23)	(123)	(132)
(12)	(12)	е	(132)	(123)	(23)	(13)
(13)	(13)	(123)	е	(132)	(12)	(23)
(23)	(23)	(132)	e (123) (23) (12)	е	(13)	(12)
(123)	(123)	(13)	(23)	(12)	(132)	е
(132)	(132)	(23)	(12)	(13)	е	(123)

What are the centralizers and conjugacy classes?

Section 8.5 - Classification

Remark We have seen that Abelian and simple finite groups have been classified. Let's turn our attention to groups of order less than 100.

Fact: There is only one group of order one, {e}.Conclusion: Classifies order 1.Scoreboard: 1/100

Theorem (7.28) If |G| = p and p is prime then $G \cong \mathbb{Z}_p$ **Conclusion**: Classifies orders 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97. **Scoreboard**: 26/100

Corollary (8.18) If |G| = pq and p, q are prime, p > q, and $q \not\mid p - 1$ then $G \cong \mathbb{Z}_{pq}$.

Conclusion: Classifies orders 15,33,35,51,65,69,77,85,87,91,95. **Scoreboard**: 37/100

Theorem If $|G| = p^n$, p prime, and n > 1 then |Z(G)| > 1, i.e. $|Z(G)| = p^k$ for some $1 \le k \le n$.

Corollary If p is prime and n > 1 then there is no simple group of order p^n .

Corollary If $|G| = p^2$ and p is prime then G is abelian (and therefore isomorphic to \mathbb{Z}_{p^2} or $\mathbb{Z}_p \oplus \mathbb{Z}_p$)

Conclusion: Classifies orders 4,9,25,49. **Scoreboard**: 41/100

Theorem If $|G| = p^2 q$, where p, q are distinct primes such that $p^2 \neq 1$ and $q \neq 1$ then G is abelian (and therefore $G \cong \mathbb{Z}_{p^2q}$ or $G \cong \mathbb{Z}_p \oplus \mathbb{Z}_p \oplus \mathbb{Z}_q$)

Conclusion: Classifies orders 45, 99. **Scoreboard**: 43/100

Corollary If p, q are distinct primes there is no simple group of order p^2q .

Theorem If |G| = 2p where p is an odd prime, then $G \cong \mathbb{Z}_{2p}$ or $G \cong D_p$

Conclusion: Classifies orders 6, 10, 14, 22, 26, 34, 38, 46, 58, 62, 74, 82, 86, 94. **Scoreboard**: 57/100

Definition Let
$$e = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, I = \begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix}, J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, K = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$

and $Q = \{e, -e, I, -I, J, -J, K, -K\} \subseteq M_2(\mathbb{C}).$

Theorem *Q* with matrix multiplication is a group.

Definition *Q* is called the quaternion group.

Theorem If |G| = 8 then G is isomorphic to one of the following groups:

 Z_{8} $Z_{4} \oplus Z_{2}$ $Z_{2} \oplus Z_{2} \oplus Z_{2}$ D_{4} Q

Conclusion: Classifies order 8. **Scoreboard**: 58/100

Not bad!

Section 9.1 - Euclidean Domains

Memory Lane...

Definition A ring $(R, +, \cdot)$ is an *integral domain* \Leftrightarrow $(R, +, \cdot)$ is a commutative ring with identity $1_R \neq 0_R$ and $\forall a, b \in R, ab = 0_R \Rightarrow a = 0_R$ or $b = 0_R$.

Definition Let $(R, +, \cdot)$ be a ring and $a \in R$. Then *a* is called a zero divisor of *R* if and only if

 $a \neq 0$ and $\exists b \in R, b \neq 0_R$ and $(ab = 0_R \text{ or } ba = 0_R)$.

Definition Let $(R, +, \cdot)$ be a ring with identity and $a \in R$. If a has a multiplicative inverse then we say a is a **unit** in R.

Definition Let *R* be a commutative ring with identity and $a, b \in R$. We say *a* is an *associate* of *b* in $R \Leftrightarrow a = bu$ for some $u \in U(R)$. If *a* is an associate of *b* we write $a \diamond b$.

Definition Let *R* be a commutative ring with identity, and $a, b \in R$. We say *a* divides *b* and write $a \mid b \Leftrightarrow a \neq 0$ and ax = b for some $x \in R$.

Definition Let R be a commutative ring with identity and $p \in R$. Then p is *irreducible* if and only if p is not a unit and the only divisors of p are units and associates of p.

Lemma \diamond is an equivalence relation.

Theorem Let *R* be an integral domain and $p \in R - \{0\}$. Then *p* is irreducible $\Leftrightarrow \forall r, s \in R, p = rs \Rightarrow r$ is a unit or *s* is a unit.

Euclidean Domains

Definition An integral domain R is a **Euclidean domain** if and only if there exists a function $\delta : R - \{0\} \rightarrow N$ such that

 $1. \forall a, b \in R - \{0\}, \delta(a) \leq \delta(ab)$ $2. \forall a, b \in R, b \neq 0 \Rightarrow$ $\exists q, r \in R, a = bq + r \text{ and } (r = 0_R \text{ or } \delta(r) < \delta(b)).$

Theorem (Killer Death Nice Important) *Let R be a Euclidean domain and*

 $u \in R - \{0\}. T.F.A.E.$ 1. u is a unit 2. $\delta(u) = \delta(1_R)$ 3. $\delta(c) = \delta(uc)$ for some $c \in R - \{0\}.$

Section 9.2 - Principal Ideal Domains

Memory Lane...

Definition Let *R* be a ring and $I \subseteq R$.

I is an ideal \Leftrightarrow (1) *I* is a subring of *R* (2) $\forall r \in R, \forall a \in I, ra \in I \text{ and } ar \in I$

Definition An ideal I of a commutative ring with identity R is a **principal ideal** if and only if

$$\exists a \in R, I = (a)$$

where $(a) = \{ra : r \in R\}.$

PID's

Definition A principal ideal domain (PID) is an integral domain in which every

ideal is principal.

Theorem *Every Euclidean domain is a PID.*

Divisibility vs Principal Ideals

Theorem Let *R* be an integral domain and $a, b \in R$.

- 1. $(a) \subseteq (b) \Leftrightarrow b \mid a$ 2. $(a) = (b) \Leftrightarrow a \mid b \text{ and } b \mid a$
- 3. (a) \subsetneq (b) \Leftrightarrow b | a and \sim (b \diamond a)

Ascending Chain Condition

Definition An integral domain *R* satisfies the ascending chain condition (ACC) if and only if for any collection of principal ideals satisfying

 $(a_1) \subseteq (a_2) \subseteq (a_3) \subseteq \cdots$

there exists $n \in \mathbb{N}$ such that $(a_i) = (a_n)$ for all $i \ge n$.

Theorem *Every PID satisfies the ACC.*

Unique Factorization Domains

Definition An integral domain is a **unique factorization domain (UFD)** if and only if every nonzero nonunit element of R is the product of irreducibles and this factorization is unique up to the ordering of the terms and replacement of factors with one of their associates, i.e. it is a UFD iff

 $\forall a \in R - (\{0\} \cup \mathcal{U}(R)), a = p_1 p_2 \cdots p_r$

for some irreducibles $p_1, \ldots, p_r \in \mathbb{R}$, and if

 $a = q_1 q_2 \cdots q_s$ for some irreducibles $q_1, \dots, q_s \in R$ then s = r and $\exists \sigma \in S_r, \forall i \in \mathbb{I}_r, p_{\sigma(i)} \diamond q_i.$

Theorem *Every PID is a UFD.*

Theorem *Every UFD satisfies the ACC.*

Theorem Let *R* be a UFD, $p \in R$ irreducible, $b, c \in R$.

 $p \mid bc \Rightarrow p \mid b \text{ or } p \mid c$

Theorem An integral domain **R** is a UFD if and only if

- 1. it satisfies the ACC
- 2. $\forall p, b, c \in R, p \text{ irreducible and } p \mid bc \Rightarrow p \mid b \text{ or } p \mid c$

Section 9.3 - Quadratic Integers

Definition An integer $d \in \mathbb{Z}$ is square free if and only if $d \neq 1$ and $\forall c \in \mathbb{Z}, c^2 \mid d \Rightarrow c = \pm 1$

Remark From now on we shall always assume that d is a square free integer when discussing $\mathbb{Z}\left[\sqrt{d}\right]$.

Definition Let $N : \mathbb{Z}[\sqrt{d}] \to \mathbb{Z}$ by

$$N\left(s+t\sqrt{d}\right) = s^2 - dt^2$$

N is called the **norm**.

Theorem Let $a, b \in \mathbb{Z}[\sqrt{d}]$. Then 1. $N(a) = 0 \Leftrightarrow a = 0$ 2. N(ab) = N(a)N(b)

Theorem (Killer Death Nice Important II) Let $u \in \mathbb{Z}[\sqrt{d}]$. Then

u is a unit $\Leftrightarrow N(u) = \pm 1$

Theorem Let *d* be square free.

- 1. If d > 1 then $\mathbb{Z}\left[\sqrt{d}\right]$ has infinitely many units.
- 2. If d = -1 then $\mathbb{Z}[\sqrt{d}]$ has only $\pm 1, \pm i$ as units.
- 3. If d < -1 then $\mathbb{Z}\left[\sqrt{d}\right]$ has only ± 1 as units.

Theorem Let $p \in \mathbb{Z}[\sqrt{d}]$. If N(p) is prime then p is irreducible.

Theorem Every nonzero nonunit element of $\mathbb{Z}\left[\sqrt{d}\right]$ is a product of irreducibles.

Section 9.4 - The Field of Quotients

Definition Let *R* be an integral domain and define a relation \sim on $R \times (R - \{0\})$ by $(a,b)\sim(c,d) \Leftrightarrow ad = bc$ in *R*

Theorem ~ *is an equivalence relation.*

Notation [a,b] is an abbreviation for [(a,b)].

Definition Let R be an integral domain. The field of quotients of R (or field of *fractions*) is the set

 $F_R = R \times (R - \{0\})/\!\!\sim$

with addition and multiplication defined by

 $[a,b] \oplus [c,d] = [ad+bc,bd]$ $[a,b] \odot [c,d] = [ac,bd]$

Notation We will usually use +, for \oplus and \cdot or concatenation for \odot just like in any other ring.

Theorem *The field of quotients of an integral domain is a field.*

Properties of the Field of Quotients

Theorem Let F_R be the field of quotients of an integral domain R and let $a, b, c, k \in R$ and $b \neq 0_R$. Then

1. $0_{F_R} = [0_R, b]$ 2. [a, b] = [ak, bk]3. $1_{F_R} = [b, b] = [1_R, 1_R]$ 4. $[a, b]^{-1} = [b, a]$ if $a \neq 0_R$ 5. -[a, b] = [-a, b]

Definition Let F_R be the field of quotients of an integral domain R. Define $R^* = \{[a, 1_R] : a \in R\}$

Theorem Let F_R be the field of quotients of an integral domain R. Then R^* is a

subring of F_R which is isomorphic to R.

Theorem F_R is the smallest field containing R, i.e. if K is any field with $R \sqsubseteq K$ (or containing a subring that is isomorphic to R), then there is a subfield $E \sqsubseteq K$ such that $R \sqsubseteq E$ (or E contains a subring isomorphic to R) and $E \cong F_R$.

Fractions!!!

Definition Let *R* be an integral domain, F_R its field of quotients, and $a, b \in R, b \neq 0$. Then we define

 $\frac{a}{b} = [a,b]$

Yeeeehaaa!!!

Section 9.5 - R a UFD \Rightarrow R[x] is a UFD

Theorem (IXDOTVE) If *R* is a UFD then so is R[x]

Corollary $\mathbb{Z}[x]$ is a UFD but not a PID

Corollary $\mathbb{Z}[x]$ is not a Euclidean domain

The proof... in stages

Definition Let *R* be a UFD. Then $f \in R[x]$ is primitive if and only if $\forall c \in R, c \mid f \Rightarrow c \in U(R)$

Lemma Let *R* be a UFD, $f \in R[x]$, and $deg(f) \ge 1$. *f* is irreducible \Rightarrow *f* is primitive

Lemma Let R be a UFD, $f \in R[x] - \{0\}$. $\exists c \in R, \exists g \in R[x], f = cg \text{ and } g \text{ is primitive}$

Lemma Let *R* be a UFD, $f \in R[x] - \{0\}$, and *f* not a unit. Then *f* is a product of *irreducibles*.

Lemma Let R be a UFD and $g, h \in R[x]$. If $p \in R$ is irreducible and $p \mid gh$ then $p \mid g \text{ or } p \mid h$.

Corollary (Gauss's Lemma) Let R be a UFD. The product of primitives in R[x] is primitive.

Lemma Let *R* be a UFD, $r, s \in R - \{0\}$, $f, g \in R[x]$ primitive, and rf = sg. Then $r \diamond s$ and $f \diamond g$.

Corollary Let *R* be a UFD, F_R its field of quotients, $f, g \in R[x]$ primitives. $f \diamondsuit g \text{ in } F_R[x] \Rightarrow f \diamondsuit g \text{ in } R[x]$

Corollary Let *R* be a UFD, F_R its field of quotients, and $f \in R[x]$. If deg(f) > 0 and *f* is irreducible in R[x] then *f* is irreducible in $F_R[x]$.

Section 10.1 - Vector Spaces

Definition A vector space is a tuple $(V, +, F, *, \oplus, \cdot)$ where 1. (V, +) is an abelian group 2. $(F, *, \oplus)$ is a field 3. $\cdot : F \times V \rightarrow V$ and $\forall a, a_1, a_2 \in F, \forall v, v_1, v_2 \in V$ (i) $a \cdot (v_1 + v_2) = (a \cdot v_1) + (a \cdot v_2)$ (ii) $(a_1 \oplus a_2) \cdot v = (a_1 \cdot v) + (a_2 \cdot v)$ (iii) $a_1 \cdot (a_2 \cdot v) = (a_1 * a_2) \cdot v$ (iv) $1_F \cdot v = v$

Remark In this situation we say "V is an F-vector space" or "V is a vector space over F". As usual, we als write + for both \oplus and + and we use juxtaposition for both * and \cdot . Let's be somewhat careful about 0_F vs 0_V however.

Memory Lane..

Definition Let V be an F-vector space and $v_1, ..., v_n, w \in V$. We say w is an F-linear combination of $v_1, ..., v_n$ if and only if

 $w = a_1v_1 + a_2v_2 + \ldots + a_nv_n$

for some $a_1, \ldots, a_n \in F$.

Definition Let V be an F-vector space and $S \subseteq V$. If every element of V can be written as a linear combination of finitely many elements of S we say S spans V.

Definition Let V be an F-vector space and $v_1, ..., v_n \in V$. We say that $v_1, ..., v_n$ are *F*-linearly independent if and only if $\forall a_1, ..., a_n \in F$

 $a_1v_1 + a_2v_2 + \ldots + a_nv_n = 0_V \Rightarrow a_1 = a_2 = a_3 = \cdots = a_n = 0_F$

In this situation we also say that the set $\{v_1, ..., v_n\} \subseteq V$ is also linearly independent over F.

Definition Let V be an F-vector space and $B \subseteq V$. We say B is a **basis for** V over F if and only if B spans V and every finite subset of B is linearly independent.

Theorem Let V be an F-vector space which has a finite basis. Any two bases of V have the same number of elements.

Definition If a vector space V has a finite basis over F then we say that V is a finite dimensional vector space over F. The dimension of V over F is the number of elements in any basis and is denoted

[V:F]

If V does not have a finite basis over F then we say that V is infinite dimensional and write $[V : F] = \infty$.

Theorem Let F, K, L be fields with $F \sqsubseteq K \sqsubseteq L$. If [K : F] and [L : K] are finite then [L : F] = [L : K][K : F]

Theorem Let F, K, L be fields with $F \sqsubseteq K$ and $F \sqsubseteq L$. Let $f : K \to L$ be an isomorphism such that $\forall c \in F, f(c) = c$. Then [K : F] = [L : F]

Section 10.2 - Simple Extensions

Definition Let $F \sqsubseteq K$ be fields and $u \in K$.

$$F(u) = \bigcap_{J \in I} J$$

where $I = \{J : F \sqsubseteq J \sqsubseteq K \text{ and } J \text{ is a field and } u \in J\}$, i.e. F(u) is the intersection of all subfields of K that contain F and u. F(u) is called a simple extension of F.

Theorem Let $F \sqsubseteq K$ be fields and $u \in K$. Then F(u) is a field.

Algebraic vs Transcendental

Definition Let $F \sqsubseteq K$ be fields and $u \in K$. We say u is algebraic over F if and only if u is a root of an nonzero polynomial in F[x]. If F is not algebraic over F we say u is transcendental over F.

Minimal Polynomials

Theorem Let $F \sqsubseteq K$ be fields an $u \in K$ algebraic over F. Then there exists a unique monic irreducible polynomial $p \in F[x]$ such that u is a root of p. Furthermore, for all $g \in F[x]$, u is a root of $g \Leftrightarrow p \mid g$.

Definition Let $F \sqsubseteq K$ be fields and $u \in K$ algebraic over F. The unique monic irreducible polynomial in F[x] having u as a root is called the minimal polynomial of u over F.

Theorem Let $F \sqsubseteq K$ be fields, $u \in K$ algebraic over $F, p \in F[x]$ the minimal polynomial of u, and n = deg(p).

1. $F(u) \cong F[x]/(p)$ 2. $\{1_F, u, u^2, \dots, u^{n-1}\}$ is a basis for F(u) as a vector space over F. 3. [F(u) : F] = n

Extending isomorphisms

Definition Let F, E be fields and $\sigma : F \to E$ an isomorphism. Define $\Phi : F[x] \to E[x]$ by $\Phi(a_0 + a_1x + \dots + a_nx^n) = \sigma(a_0) + \sigma(a_1)x + \dots + \sigma(a_n)x^n$ The map Φ is called the **extension** of σ to F[x].

Lemma Let F, E be fields and $\sigma : F \to E$ an isomorphism and $i_F : F \to F[x]$ and $i_E : E \to E[x]$ the inclusion maps. Then the extension of σ to F[x] is an isomorphism and

 $\begin{array}{ccc} F & \stackrel{\sigma}{\longrightarrow} & E \\ i_F \downarrow & & \downarrow i_E \\ F[x] & \stackrel{\sigma}{\longrightarrow} & E[x] \end{array}$

commutes.

Corollary Let E, F be fields, $\sigma : F \to E$ an isomorphism, u algebraic over F with minimum polynomial $p \in F[x]$, and v algebraic over E with minimal polynomial $\Phi(p)$. There exists an extension isomorphism $\overline{\sigma} : F(u) \to F(v)$ such that $\overline{\sigma}(u) = v$ and $\overline{\sigma}(c) = \sigma(c)$ for all $c \in F$.

Corollary If u, v have the same minimal polynomial over F then $F(u) \cong E(v)$.

Eisenstein's Irreduciblity Theorem

Theorem (Eisenstein's Irreducibility Theorem) Let R be an integral domain

and

 $f = a_0 + a_1 x + \dots + a_n x^n \in R[x]$

where $a_n \neq 0_R$. If there is an irreducible $p \in R$ such that p divides each of a_0, a_1, \dots, a_{n-1} and $p \not\mid a_n$ and $p^2 \not\mid a_0$ then f is irreducible in $F_R[x]$.

Section 10.3 - Algebraic Extensions

Definition Let $F \sqsubseteq K$ be fields. *K* is an algebraic extension of *F* if every element of *K* is algebraic over *F*.

Theorem (Finite Dim \Rightarrow Algebraic) If *K* is a finite dimensional extension field of *F* then *K* is an algebraic extension of *F*.

Finitely Generated Extensions

Definition Let $F \sqsubseteq K$ be fields, $n \in \mathbb{Z}^+$, and $u_1, \ldots, u_n \in K$. Define

$$F(u_1,\ldots,u_n) = \bigcap_{u \in I} J$$

where $I = \{J : J \text{ is a field and } F \sqsubseteq J \sqsubseteq K \text{ and } u_1, \dots, u_n \in J\}$, i.e. $F(u_1, \dots, u_n)$ is the smallest subfield of K that contains F and u_1, \dots, u_n .

 $F(u_1, ..., u_n)$ is called the extension of F generated by $u_1, ..., u_n$ and we say it is a finitely generated extension.

Remark In the next three theorems let $F \sqsubseteq K$ be fields, $n \in \mathbb{Z}^+$, and $u_1, \ldots, u_n \in K$.

Theorem $F(u_1, \ldots, u_n)$ is a field.

Theorem (Finite Dim \Rightarrow Finite Gen) If K is a finite dimensional extension field of F

then *K* is finitely generated.

Theorem $F(u_1,...,u_n) = F(u_1,...,u_{n-1})(u_n)$

Remark Thus we can "build" a finitely generated extension by a sequence of simple extensions.

Theorem (Algebraic & Finite Gen \Rightarrow **Finite Dim)** Let $F \sqsubseteq K$ be fields, $n \in \mathbb{Z}^+$, and $u_1, \ldots, u_n \in K$ be algebraic over F. Then $F(u_1, \ldots, u_n)$ is a finite dimensional algebraic extension of F.

The Field of Algebraic Numbers

Theorem Let *K* be an extension field of *F* and $E = \{x \in K : x \text{ is algebraic over } F\}$

Then E is an algebraic extension of F.

Definition The *field of algebraic numbers* is the extension field of Q consisting of all $z \in C$ such that z is algebraic over Q.

Section 10.4 - Splitting Fields

Definition Let $F \sqsubseteq K$ be fields and $f \in F[x]$ a nonconstant polynomial. The K is a *splitting field* of f over F if and only if

 $I.f = c(x - u_1)(x - u_2)\cdots(x - u_n) \text{ in } K[x] \text{ (i.e. it splits in } K[x])$

 $2. K = F(u_1, u_2, \ldots, u_n)$

i.e. K is a smallest field containing all of the roots of *f*.

Theorem (Splitting Fields Exist) Let F be a field and $f \in F[x]$ polynomial of degree $n \ge 1$. There exists a splitting field K of f over F with $[K : F] \le n!$

Theorem Let $\sigma : F \to E$ be a field isomorphism, $f \in F[x]$ nonconstant, and σf the corresponding polynomial in E[x]. If K is a splitting field of f over F and L is a splitting field of σf over E then σ extends to an isomorphism $K \cong L$.

Corollary (Splitting Fields are "Unique") Any two splitting fields of $f \in F[x]$

over a field *F* are isomorphic.

Normal Extensions

Definition An algebraic extension field K of a field F is **normal** if and only if for all irreducible polynomials $p \in F[x]$, if p has a root in K then p splits in K (i.e. its normal iff whenever an irreducible polynomial has one root, it has them all)

Theorem A field K is a splitting field over a field F of some polynomial in F[x] if and only if K is a finite dimensional normal extension of f.

Algebraic Closure

Definition A field F is algebraically closed if and only if every nonconstant polynomial $f \in F[x]$ splits in F[x], i.e. iff the only irreducible polynomials are of degree 1. The algebraic closure of a field F is an algebraic extension field K of F which is algebraically closed.

Theorem *Every field has an algebraic closure.*

Section 10.5 - Separable Extensions

Definition Let F be a field, $f \in F[x]$, deg(f) = n, K a splitting field of f over F and $f = c(x - u_1)(x - u_2)\cdots(x - u_n)$ where $c \in F$ and $u_1, u_2, \dots, u_n \in K$. If $u_i = u_j$ for some $i \neq j$ then we say u_i is a **repeated root**. If f has no repeated roots, we say f is **separable**.

Definition Let *K* be any extension field of a field *F* and $u \in K$. We say *u* is separable over *F* if and only if

1. u is algebraic over *F* and

2. the minimal polynomial of u is separable

We say K is separable over F (or a separable extension of F) if and only if every element of K is separable over F.

Definition Let *F* be a field and $f = a_0 + a_1x + a_2x^2 + \dots + a_nx^n \in F[x]$. The *algebraic derivative of f is*

 $f' = a_1 + 2a_2x + 3a_3x^2 + \dots + na_nx^{n-1}$

Remark In the previous definition, the numerical coefficients 2, 3, ... etc are additive notation for power in a group, i.e. $3a_3$ means $a_3 + a_3 + a_3$. (Equivalently we can consider the 3 to be $1_F + 1_F + 1_F$ in F)

Theorem Let *F* be a field and $f,g \in F[x]$. Then (f+g)' = f' + g'(fg)' = fg' + gf'

Lemma Let *F* be a field and $f \in F[x]$. If $gcd(f, f') = 1_{F[x]}$ then *f* is separable.

Definition Let *F* be a field. *F* has characteristic 0 if and only if $\forall n \in \mathbb{N}^+, n1_F \neq 0_F$.

Theorem (Alg & Char 0 \Rightarrow **separable)** If *F* has characteristic 0 then every *irreducible polynomial in F*[x] *is separable and every algebraic extension of F is separable.*

Theorem (Fin Gen & Separable \Rightarrow **Simple)** *Every finitely generated separable extension of a field simple.*

Section 10.6 - Classification of Finite Fields

Definition Let *R* be a ring with identity. We say *R* has characteristic 0 if $m1_R \neq 0_R$ for any $m \in \mathbb{Z}^+$. We say *R* has characteristic *n* if $n1_R = 0_R$ and $m1_R \neq 0_R$ for any $1 \leq m < n$. We denote the characteristic of *R* by char(*R*).

Lemma If *R* is an integral domain then char(R) = 0 or char(R) is a positive prime integer.

Lemma If char(R) = n > 0 then

 $k1_R = 0_R \Leftrightarrow n \mid k$

The Prime Subfield

Theorem Let *R* be a ring with identity. Then

1. $P = \{k1_R : k \in \mathbb{Z}\}$ is a subring of R2. $char(R) = 0 \Rightarrow P \cong \mathbb{Z}$ 3. char(R) = $n > 0 \Rightarrow P \cong \mathbb{Z}_n$

Corollary If char(R) = 0 then R is infinite.

Corollary *Every finite field has characteristic p for some prime p.*

Definition Let K be a finite field of characteristic p. The subfield P in the previous theorem is called the **prime subfield** of K.

Remark Every finite field contains a subfield isomorphic to \mathbb{Z}_p , i.e. it is an extension field of \mathbb{Z}_p .

The order of finite fields

Definition *The number of elements in a finite field is called its order.*

Theorem Every finite field K has order p^n where p = char(K) and $n = [K : \mathbb{Z}_p]$.

Classification of all Finite Fields

Lemma (The Freshman's Dream) Let p be a prime and R a commutative ring with identity and char(R) = p. Then $\forall a, b \in R, \forall n \in \mathbb{N}^+$, $(a+b)^{p^n} = a^{p^n} + b^{p^n}$

Theorem (Classification of Finite Fields) Let *K* be an extension field of \mathbb{Z}_p and $n \in \mathbb{N}^+$.

 $|K| = p^n \Leftrightarrow K$ is a splitting of $x^{p^n} - x$ over \mathbb{Z}_p

Corollary For each positive prime p and each $n \in \mathbb{N}^+$, there exists a field of order p^n .

Corollary *Any two finite fields of the same order are isomorphic.*

Definition Let p be a positive prime and $n \in \mathbb{N}^+$. The unique field of order p^n is called the **Galois field** of order p^n and is denoted \mathbb{F}_{p^n} .

The Simplicity of Finite Field Extensions

Theorem Let K be a finite field and F a subfield. Then K is a simple extension of F.

Corollary Let p be a prime. For each $n \in \mathbb{N}^+$, there exists an irreducible polynomial of degree n in $\mathbb{Z}_p[x]$.

Section 11.1 - The Galois Group Solving Polynomial Equations

Q: Let $f \in \mathbb{R}[x]$. When can we solve $\overline{f}(x) = 0$, i.e. when can we find the roots of f? **Degree 0**

A: If $f = a \in \mathbb{R} - \{0\}$ then there are no roots of f.

Degree 1

A: If f = ax + b and $a \neq 0$ then the root of f is -b/a.

Degree 2 (the quadratic formula)

A: If $f = ax^2 + bx + c$ and $a \neq 0$ then the roots of f are

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Degree 3 (the cubic formula)

A: If $f = ax^3 + bx^2 + cx + d$ and $a \neq 0$, define p = b/a, q = c/a, and r = d/a so that the roots of f are the same as the roots of $x^3 + px^2 + qx + r$. Define

$$\alpha = \frac{1}{3}(3q - p^2)$$

$$\beta = \frac{1}{27}(2p^3 - 9pq + 27r)$$

$$A = \sqrt[3]{-\frac{\beta}{2}} + \sqrt{\frac{\beta^2}{4} + \frac{\alpha^3}{27}}$$

$$B = \sqrt[3]{-\frac{\beta}{2}} - \sqrt{\frac{\beta^2}{4} + \frac{\alpha^3}{27}}$$

Then the roots of *f* are

$$A + B - \frac{p}{3} - \frac{A + B}{2} - \frac{p}{3} + \frac{A - B}{2}\sqrt{-3} - \frac{A + B}{2} - \frac{p}{3} - \frac{A - B}{2}\sqrt{-3}$$

Degree 4 (the quartic formula)

A: If $f = a_4x^4 + a_3x^3 + a_2x^2 + a_1x + a_0$ and $a_4 \neq 0$, define $a = a_3/a_4$, $b = a_2/a_4$, $c = a_1/a_4$, and $d = a_0/a_4$, so that the roots of f are the same as the roots of $x^4 + ax^3 + bx^2 + cx + d$.

Let y be any root of $x^3 - bx^2 + (ac - 4d)x + (4bd - a^2d - c^2)$ and define $R = \sqrt{\frac{a^2}{4} - b + y}$

If R = 0 define

$$D = \sqrt{\frac{3a^2}{4} - 2b + 2\sqrt{y^2 - 4d}}$$
$$E = \sqrt{\frac{3a^2}{4} - 2b - 2\sqrt{y^2 - 4d}}$$

If $R \neq 0$ define

$$D = \sqrt{\frac{3a^2}{4} - R^2 - 2b + \frac{4ab - 8c - a^3}{4R}}$$
$$E = \sqrt{\frac{3a^2}{4} - R^2 - 2b - \frac{4ab - 8c - a^3}{4R}}$$

Then the roots of *f* are

$$-\frac{a}{4} + \frac{R}{2} \pm \frac{D}{2}$$
$$-\frac{a}{4} - \frac{R}{2} \pm \frac{E}{2}$$

Degree 5 ???

Galois Theory The Galois Group

Definition Let $F \sqsubseteq K$ be fields. A map $\sigma : K \rightarrow K$ is an *F*-automorphism iff

1. σ is a field isomorphism

2. $\forall x \in F, \sigma(x) = x$

Definition The set of all *F*-automorphisms of *K* over *F* is called the **Galois group** of *K* over *F* and is denoted $Gal_F(K)$

Theorem $(Gal_F(K), \circ)$ is a group.

The Action of the Galois Group on Roots

Theorem Let *K* be an extension field of *F* and $f \in F[x]$. If $u \in K$ is a root of *f* and $\sigma \in Gal_F(K)$ then $\sigma(u)$ is also a root of *f*.

Theorem Let *K* be the splitting field of $f \in F[x]$ and $u, v \in K$. Then $\sigma(u) = v$ for some $\sigma \in Gal_F(K)$ if and only if u, v have the same minimal polynomial.

Theorem Let $K = F(u_1, ..., u_n)$ be an algebraic extension of F and $\sigma, \tau \in Gal_F(K)$. If $\sigma(u_i) = \tau(u_i)$ for all $1 \le i \le n$ then $\sigma = \tau$.

Corollary If *K* is the splitting field of a separable polynomial $f \in F[x]$ and deg(f) = n then $Gal_F(K)$ is isomorphic to a subgroup of S_n .

Intermediate Fields

Definition Let $F \sqsubseteq E \sqsubseteq K$ be fields. *E* is called an intermediate field of the extension $F \sqsubseteq K$.

Theorem If $F \sqsubseteq E \sqsubseteq K$ are fields then $Gal_E(K) \sqsubseteq Gal_F(K)$.

Theorem Let $F \sqsubseteq K$ be fields and $H \sqsubseteq Gal_F(K)$. Define $E_H = \{ \alpha \in K : \sigma(\alpha) = \alpha \text{ for every } \sigma \in H \}$ Then E_H is an intermediate field of the extension, i.e. $F \sqsubseteq E_H \sqsubseteq K$.

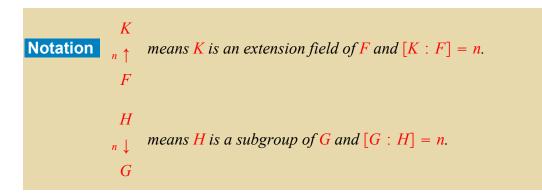
Definition In the previous theorem, E_H is called the fixed field of the subgroup H.

Section 11.2 - The Fundamental Theorem of Galois Theory

The Galois Correspondence

Definition Let $F \sqsubseteq E \sqsubseteq K$ fields and [K : F] finite. Define $\theta(E) = Gal_E(K)$

Then θ is called the **Galois correspondence** between the intermediate fields of the extension $F \sqsubseteq K$ and the subgroups of $Gal_F(K)$.



Q: Is θ surjective? injective? Does it have an inverse?

Surjective

Theorem Let *K* be a finite dimensional extension field of *F* and *H* a subgroup of $Gal_F(K)$. Then $\theta(E_H) = H$ and $[K : E_H] = |H|$.

Corollary θ is surjective.

Injective

Definition We say K is a Galois extension of F (or Galois over F) iff K is a finite dimensional normal separable extension field of F.

Theorem Let *K* be a finite dimensional extension field of *F* and *H* a subgroup of $Gal_F(K)$. Then *K* is Galois over E_H and *K* is a simple extension of E_H .

Theorem If *K* is a Galois extension of *F* and $F \sqsubseteq E \sqsubseteq K$ then $E = E_{Gal_{E}(K)}$.

Corollary θ is injective for Galois extensions.

Corollary Let *K* be a finite dimensional extension field of *F*. *K* is Galois over $F \Leftrightarrow F = E_{Gal_F(K)}$

The Fundamental Theorem

Theorem (Fundamental Theorem of Galois Theory) *Let K be Galois over F. Define*

$$S = \{E : F \sqsubseteq E \sqsubseteq K\}$$

and

 $T = \{H : H \sqsubseteq Gal_F(K)\}$

and θ : $S \to T$ by $\theta(E) = Gal_E(K)$. Then

1. θ is a bijection

2. $[K : E] = |\theta(E)|$ and $[E : F] = [\theta(F) : \theta(E)]$

3. *E* is a normal extension of $F \Leftrightarrow \theta(E)$ is a normal subgroup of $\theta(F)$. In this situation $Gal_F(E) \cong Gal_F(K)/Gal_E(K)$.

(clip here)						
Galois cheet sheet						
Types of Field Extensions						
finite dimensional	has a finite basis as a vector space					
algebraic	every element is a root of a polynomial					
finitely generated	the smallest extension containing finitely many additional elements					
simple	finitely generated by one element					
splitting field	the smallest extension in which a particular nonconstant polynomial splits					
separable	algebraic and no minimal polynomial of an element has repeated roots					
normal	every irreducible polynomial that has a root splits					
Galois	finite dimensional, normal, and separable					

Implications
simple \Rightarrow finitely generated
finite dimensional ⇔ algebraic & finitely generated
separable ⇒ algebraic
algebraic & characteristic $0 \Rightarrow$ separable
finitely generated & separable \Rightarrow simple
splitting field \Rightarrow finitely generated & algebraic & finite dimensional
splitting field ⇔ finite dimensional & normal
Galois \Rightarrow finite dim, normal, separable, algebraic, finitely gen, simple

(clip here).....