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Fun Facts
Section 8.1 - Direct Products

Definition Let G1, ,Gk be groups and G  G1 Gk. Then G is said to be the
direct product of G1, ,Gn. If the groups are abelian then we call G the direct
sum of the groups. In this case we write G  G1 Gk.

Lemma If M  G and N  G and M  N  ethen a  M,b  N,ab  ba.

Theorem Let N1,N2, ,Nk be normal subgroups of a group G such that every
a  G can be expressed uniquely in the form a1a2ak where ai  Ni for all i (i.e.
if

a  a1a2ak  b1b2bk
where i  Ik,ai  Ni and bi  Ni then i  Ik,ai  bi). Then

G  N1 Nk

Theorem If M  G and N  G and G  MN and M  N  e then
G  M  N

Section 8.2 - Classification of Finite Abelian Groups

Definition Let G be and abelian group and p a positive prime integer. Then
Gp  a  G : n  N, |a|  pn

Remark Gp is a group. Closure: apn  e and bpm  e implies abp
mn

 e.
Inverses: |a|  |a1 |

© 2001 - Ken Monks



Page 2

Theorem If G is a finite abelian group then
G  Gp1  Gp2   Gpt

where p1,p2, ,pt are the distinct positive primes that divide the order of G.

p-groups

Definition Let p be a positive prime and G a group.
G is a p-group  x  G,n  N, |x|  pn

i.e. a p-group is a group such that the order of all of its elements is a power of p.

Definition Let G be a p-group and a  G. Then
a is an element of maximal order in G  b  G, |b|  |a|.

Lemma Let G be a finite abelian p-group and a  G an element of maximal order.
Then

K  G, G  a  K

Remark Note: In the proof K is the largest subgroup of G such that K  a  e.

The Fundamental Theorem of Finite Abelian Groups

Theorem (Fund Thm of Finite Abelian Groups I) Every finite abelian group is
a direct sum of cyclic groups, each of prime power order.

Theorem Let m,k  N 0,1 and gcdm,k  1. Then
Zmk  Zm  Zk

Corollary If n  p1
n1p2

n2ptnt with p1,p2,,pt distinct primes then
Zn  Zp1n1  Zp2n2   Zptnt

Definition Let G be a finite abelian group, and
G  Zp1n1  Zp2n2   Zptnt

with p1  p2    pt positive primes and ni  ni1 whenever pi  pi1. Then the
sequence

p1
n1 ,p2

n2 ,,ptnt

is called the sequence of elementary divisors of G.
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Theorem (Fund Thm of Abelian Groups II) Let G,H be finite abelian groups.
Then G  H  G and H have the same sequence of elementary divisors.

Invariant Factors

Theorem Every finite abelian group is the direct sum of cyclic groups of orders
m1,m2, ,mt such that m1|m2,m2|m3, ,mt1|mt.

Definition The numbers m1,m2, ,mt in the previous theorem are called the
invariant factors of G.

Section 8.3 - Classification of Finite Non-Abelian Groups
The Sylow Theorems

Remark From now on, when ever we say p is a prime, we will mean p is a positive
prime integer unless stated otherwise.

Remark Recall that Lagrange’s theorem says that the order of a subgroup must
divide the order of the group. What about the converse?

Sylow I

Theorem (Sylow I) Let G be a finite group, p a prime, and k  N. If pk  |G| then
G has a subgroup of order pk.

Corollary (Cauchy’s Thm) If p is a prime and p  |G| then G has an element of
order p.

Definition Let G be a finite group and p a prime. If pn is the largest power of p that
divides |G| then a subgroup of order pn is called a Sylow p-subgroup.

Notation We write H
p
 G if and only if H is a Sylow p-subgroup of G. We write

#pG to denote the number of Sylow p-subgroups of G.

Sylow II

Definition Let G be a group and x  G. Let fx : G  G by a  G, fxa  x1ax.
Then fx is called the inner automorphism of G induced by x.
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Theorem Let G be a group and x  G. Then fx is an isomorphism.

Corollary Let G be a group, x  G, and K  G. Then fxK  K . i.e.
x  G, x1Kx  K

Theorem (Sylow II) Let G be a finite group, p a prime.
P

p
 G and K

p
 G  x  G, P  x1Kx

i.e. any two Sylow p-subgroups of G are conjugate.

Corollary Any two Sylow p-subgroups of G are isomorphic.

Corollary Let G be a finite group, p a prime, and K
p
 G.

K  G  #pG  1
i.e. a Sylow p-subgroup is normal if and only if it is the only Sylow p-subgroup.

Sylow III

Theorem (Sylow III) Let G be a finite group and p a prime. Then
#pG  |G|

and
#pG

p
 1

CLASSIFY!

Theorem Let G be a finite group, p,q primes, and |G|  pq. If q  p and q  p  1
then

G  Zpq

Section 8.4 - Proof of the Sylow Theorems
Preliminary Definitions

Definition Let G be a group and a,b  G. We say b is conjugate to a if and only if
b  x1ax for some x  G. In this case we write b

G
~ a.
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Theorem
G
~ is an equivalence relation on G.

Definition Let G be a group and a  G. The centralizer of a is
Ca  x  G : xa  ax

i.e. Ca is the set of all elements of G that commute with a.

Theorem Let G be a group and a  G. Then Ca is a subgroup of G.

Definition Let G be a group and H,K  G. We say H is conjugate to K if and only if
H  x1Kx for some x  G. In this case we write H

G
~ K.

Theorem
G
~ is an equivalence relation on the set of subgroups of G.

Definition Let G be a group and H  G. The normalizer of H is
NH  g  G : Hg  gH

i.e. NH is the set of all elements of G that commute with H.

Theorem Let G be a group and H  G. Then NH is a subgroup of G and
H  NH.

Definition Let G be a group and a  G. The center of a is
ZG  x  G : a  G,xa  ax

i.e. ZG is the set of all elements of G that commute with every element of G.

Theorem ZG  G

The Class Equation

Theorem (Conjugacy Class Size) Let G be a finite group and a  G. The
number of elements in the conjugacy class a is G : Ca.

Remark Here a is the equivalence class of a with respect to
G
~ .

Definition The class equation of a finite group G is
|G|  G : Ca1  G : Ca2   G : Cat
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where a1,a2, ,at are representatives of the distinct conjugacy classes of G with
respect to

G
~ .

Remark The class equation follows immediately from the conjugacy class size
theorem and the fact that

|G|  |C1 |  |C2 |   |Ct |
where C1,C2, ,Ct are the distinct conjugacy classes of G with respect to

G
~ .

Theorem Let G be a group and a  G. The conjugacy class of a is a if and only if
a  ZG.

Remark The class equation can also be written as
|G|  |ZG|  |C1 |  |C2 |   |Ct |

where C1,C2, ,Ct are the distinct conjugacy classes of G with respect to
G
~ having

more than one element.

Example Here is the multiplication table for S3

 e 12 13 23 123 132
e e 12 13 23 123 132

12 12 e 132 123 23 13
13 13 123 e 132 12 23
23 23 132 123 e 13 12
123 123 13 23 12 132 e
132 132 23 12 13 e 123

What are the centralizers and conjugacy classes?

Section 8.5 - Classification

Remark We have seen that Abelian and simple finite groups have been classified.
Let’s turn our attention to groups of order less than 100.

Fact: There is only one group of order one, e.
Conclusion: Classifies order 1.
Scoreboard: 1/100

Theorem (7.28) If |G|  p and p is prime then
G  Zp
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Conclusion: Classifies orders 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53,
59, 61, 67, 71, 73, 79, 83, 89, 97.
Scoreboard: 26/100

Corollary (8.18) If |G|  pq and p,q are prime, p  q, and q  p  1 then
G  Zpq.

Conclusion: Classifies orders 15,33,35,51,65,69,77,85,87,91,95.
Scoreboard: 37/100

Theorem If |G|  pn , p prime, and n  1 then |ZG|  1, i.e. |ZG|  pk for some
1  k  n.

Corollary If p is prime and n  1 then there is no simple group of order pn.

Corollary If |G|  p2 and p is prime then G is abelian (and therefore isomorphic to
Zp2 or Zp  Zp)

Conclusion: Classifies orders 4,9,25,49.
Scoreboard: 41/100

Theorem If |G|  p2q, where p, q are distinct primes such that p2
q
 1 and q

p
 1

then G is abelian (and therefore G  Zp2q or G  Zp  Zp  Zq)

Conclusion: Classifies orders 45, 99.
Scoreboard: 43/100

Corollary If p,q are distinct primes there is no simple group of order p2q.

Theorem If |G|  2p where p is an odd prime, then
G  Z2p or G  Dp

Conclusion: Classifies orders 6, 10, 14, 22, 26, 34, 38, 46, 58, 62, 74, 82, 86, 94.
Scoreboard: 57/100

Definition Let e 
1 0
0 1

, I 
i 0
0 i

, J 
0 1
1 0

, K 
0 i
i 0

and Q  e,e, I,I,J,J,K,K  M2C.
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Theorem Q with matrix multiplication is a group.

Definition Q is called the quaternion group.

Theorem If |G|  8 then G is isomorphic to one of the following groups:
Z8
Z4  Z2
Z2  Z2  Z2
D4
Q

Conclusion: Classifies order 8.
Scoreboard: 58/100

Not bad!

Section 9.1 - Euclidean Domains

Memory Lane...

Definition A ring R,,  is an integral domain R,,  is a commutative ring
with identity 1R  0R and a,b  R,ab  0R  a  0R or b  0R.

Definition Let R,,  be a ring and a  R. Then a is called a zero divisor of R if
and only if

a  0 and b  R,b  0R and ab  0R or ba  0R .

Definition Let R,,  be a ring with identity and a  R. If a has a multiplicative
inverse then we say a is a unit in R.

Definition Let R be a commutative ring with identity and a,b  R. We say a is an
associate of b in R a  bu for some u  U R. If a is an associate of b we write
ab.

Definition Let R be a commutative ring with identity, and a,b  R. We say a divides
b and write a  b a  0 and ax  b for some x  R.
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Definition Let R be a commutative ring with identity and p  R.Then p is
irreducible if and only if p is not a unit and the only divisors of p are units and
associates of p.

Lemma  is an equivalence relation.

Theorem Let R be an integral domain and p  R  0. Then p is irreducible
r, s  R, p  rs  r is a unit or s is a unit.

Euclidean Domains

Definition An integral domain R is a Euclidean domain if and only if there exists a
function  : R  0  N such that

1. a,b  R  0,a  ab
2. a,b  R, b  0 
q, r  R,a  bq  r and (r  0R or r  b).

Theorem (Killer Death Nice Important) Let R be a Euclidean domain and
u  R  0. T.F.A.E.
1. u is a unit
2. u  1R
3. c  uc for some c  R  0.

Section 9.2 - Principal Ideal Domains
Memory Lane...

Definition Let R be a ring and I  R.

I is an ideal (1) I is a subring of R
(2) r  R,a  I, ra  I and ar  I

Definition An ideal I of a commutative ring with identity R is a principal ideal if and
only if

a  R, I  a
where a  ra : r  R.

PID’s

Definition A principal ideal domain (PID) is an integral domain in which every
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ideal is principal.

Theorem Every Euclidean domain is a PID.

Divisibility vs Principal Ideals

Theorem Let R be an integral domain and a,b  R.

1. a  b  b  a
2. a  b  a  b and b  a
3. a  b  b  a and ~ba

Ascending Chain Condition

Definition An integral domain R satisfies the ascending chain condition (ACC) if
and only if for any collection of principal ideals satisfying

a1  a2  a3  

there exists n  N such that ai  an for all i  n.

Theorem Every PID satisfies the ACC.

Unique Factorization Domains

Definition An integral domain is a unique factorization domain (UFD) if and only
if every nonzero nonunit element of R is the product of irreducibles and this
factorization is unique up to the ordering of the terms and replacement of factors
with one of their associates, i.e. it is a UFD iff

a  R  0  U R,a  p1p2pr
for some irreducibles p1, ,pr  R, and if

a  q1q2qs
for some irreducibles q1, ,qs  R then s  r and

  Sr,i  Ir, pi qi.

Theorem Every PID is a UFD.

Theorem Every UFD satisfies the ACC.

Theorem Let R be a UFD, p  R irreducible, b,c  R.
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p  bc  p  b or p  c

Theorem An integral domain R is a UFD if and only if

1. it satisfies the ACC
2. p,b,c  R, p irreducible and p  bc  p  b or p  c

Section 9.3 - Quadratic Integers

Definition An integer d  Z is square free if and only if
d  1 and c  Z, c2  d  c  1

Remark From now on we shall always assume that d is a square free integer when
discussing Z d .

Definition Let N : Z d  Z by

N s  t d  s2  dt2

N is called the norm.

Theorem Let a,b  Z d . Then

1. Na  0  a  0

2. Nab  NaNb

Theorem (Killer Death Nice Important II) Let u  Z d . Then

u is a unit  Nu  1

Theorem Let d be square free.

1. If d  1 then Z d has infinitely many units.

2. If d  1 then Z d has only 1,i as units.

3. If d  1 then Z d has only 1 as units.

Theorem Let p  Z d . If Np is prime then p is irreducible.

Theorem Every nonzero nonunit element of Z d is a product of irreducibles.
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Section 9.4 - The Field of Quotients

Definition Let R be an integral domain and define a relation ~ on R  R  0 by
a,b~c,d  ad  bc in R

Theorem ~ is an equivalence relation.

Notation a,b is an abbreviation for a,b.

Definition Let R be an integral domain. The field of quotients of R (or field of
fractions) is the set

FR  R  R  0/~
with addition and multiplication defined by

a,b  c,d  ad  bc,bd
a,b  c,d  ac,bd

Notation We will usually use , for  and  or concatenation for  just like in any
other ring.

Theorem The field of quotients of an integral domain is a field.

Properties of the Field of Quotients
Theorem Let FR be the field of quotients of an integral domain R and let
a,b,c,k  R and b  0R. Then

1. 0FR  0R,b

2. a,b  ak,bk

3. 1FR  b,b  1R, 1R 

4. a,b1  b,a if a  0R

5. a,b  a,b

Definition Let FR be the field of quotients of an integral domain R. Define
R  a, 1R  : a  R

Theorem Let FR be the field of quotients of an integral domain R. Then R is a
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subring of FR which is isomorphic to R.

Theorem FR is the smallest field containing R, i.e. if K is any field with R  K (or
containing a subring that is isomorphic to R), then there is a subfield E  K such
that R  E (or E contains a subring isomorphic to R) and E  FR.

Fractions!!!

Definition Let R be an integral domain, FR its field of quotients, and a,b  R,b  0.
Then we define

a
b  a,b

Yeeeehaaa!!!
Section 9.5 - R a UFD  Rx is a UFD

Theorem (IXDOTVE) If R is a UFD then so is Rx

Corollary Zx is a UFD but not a PID

Corollary Zx is not a Euclidean domain

The proof... in stages
Definition Let R be a UFD. Then f  Rx is primitive if and only if
c  R,c  f  c  U R

Lemma Let R be a UFD, f  Rx, and degf  1.
f is irreducible  f is primitive

Lemma Let R be a UFD, f  Rx  0.
c  R,g  Rx, f  cg and g is primitive

Lemma Let R be a UFD, f  Rx  0, and f not a unit. Then f is a product of
irreducibles.

Lemma Let R be a UFD and g,h  Rx. If p  R is irreducible and p  gh then
p  g or p  h.
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Corollary (Gauss’s Lemma) Let R be a UFD. The product of primitives in Rx is
primitive.

Lemma Let R be a UFD, r, s  R  0, f,g  Rx primitive, and rf  sg. Then r s
and fg.

Corollary Let R be a UFD, FR its field of quotients, f,g  Rx primitives.
fg in FRx  fg in Rx

Corollary Let R be a UFD, FR its field of quotients, and f  Rx. If degf  0 and f
is irreducible in Rx then f is irreducible in FRx.

Section 10.1 - Vector Spaces

Definition A vector space is a tuple V,,F,,,  where

1. V, is an abelian group

2. F,, is a field

3.  : F  V  V and a,a1,a2  F,v,v1,v2  V

(i) a  v1  v2  a  v1  a  v2

(ii) a1  a2  v  a1  v  a2  v

(iii) a1  a2  v  a1  a2  v

(iv) 1F  v  v

Remark In this situation we say “V is an F-vector space” or “V is a vector space
over F”. As usual, we als write  for both  and  and we use juxtaposition for
both  and  . Let’s be somewhat careful about 0F vs 0V however.

Memory Lane...

Definition Let V be an F-vector space and v1, ,vn,w  V. We say w is an F-linear
combination of v1, ,vn if and only if

w  a1v1  a2v2 anvn
for some a1, ,an  F .

Definition Let V be an F-vector space and S  V. If every element of V can be
written as a linear combination of finitely many elements of S we say S spans V.
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Definition Let V be an F-vector space and v1, ,vn  V. We say that v1, ,vn are
F-linearly independent if and only if a1, ,an  F

a1v1  a2v2 anvn  0V  a1  a2  a3    an  0F
In this situation we also say that the set v1, ,vn  V is also linearly
independent over F.

Definition Let V be an F-vector space and B  V. We say B is a basis for V over F if
and only if B spans V and every finite subset of B is linearly independent.

Theorem Let V be an F-vector space which has a finite basis. Any two bases of V
have the same number of elements.

Definition If a vector space V has a finite basis over F then we say that V is a finite
dimensional vector space over F. The dimension of V over F is the number of
elements in any basis and is denoted

V : F
If V does not have a finite basis over F then we say that V is infinite dimensional
and write V : F  .

Theorem Let F,K,L be fields with F  K  L. If K : F and L : K are finite then
L : F  L : KK : F

Theorem Let F,K,L be fields with F  K and F  L. Let f : K  L be an
isomorphism such that c  F, fc  c. Then

K : F  L : F

Section 10.2 - Simple Extensions

Definition Let F  K be fields and u  K.
Fu 

JI

 J

where I  J : F  J  K and J is a field and u  J , i.e. Fu is the
intersection of all subfields of K that contain F and u. Fu is called a simple
extension of F.

Theorem Let F  K be fields and u  K. Then Fu is a field.
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Algebraic vs Transcendental

Definition Let F  K be fields and u  K. We say u is algebraic over F if and only if
u is a root of an nonzero polynomial in Fx. If F is not algebraic over F we say u is
transcendental over F.

Minimal Polynomials

Theorem Let F  K be fields an u  K algebraic over F. Then there exists a unique
monic irreducible polynomial p  Fx such that u is a root of p. Furthermore, for
all g  Fx, u is a root of g  p  g.

Definition Let F  K be fields and u  K algebraic over F. The unique monic
irreducible polynomial in Fx having u as a root is called the minimal polynomial
of u over F.

Theorem Let F  K be fields, u  K algebraic over F, p  Fx the minimal
polynomial of u, and n  degp.

1. Fu  Fx/p

2. 1F,u,u2, ,un1 is a basis for Fu as a vector space over F.

3. Fu : F  n

Extending isomorphisms

Definition Let F,E be fields and  : F  E an isomorphism. Define
 : Fx  Ex by

a0  a1x   anxn  a0  a1x   anxn

The map  is called the extension of  to Fx.

Lemma Let F,E be fields and  : F  E an isomorphism and iF : F  Fx and
iE : E  Ex the inclusion maps. Then the extension of  to Fx is an
isomorphism and

F 
 E

iF   iE
Fx


 Ex

commutes.
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Corollary Let E,F be fields,  : F  E an isomorphism, u algebraic over F with
minimum polynomial p  Fx, and v algebraic over E with minimal polynomial
p. There exists an extension isomorphism  : Fu  Fv such that u  v
and c  c for all c  F.

Corollary If u,v have the same minimal polynomial over F then Fu  Ev.

Eisenstein’s Irreduciblity Theorem

Theorem (Eisenstein’s Irreducibility Theorem) Let R be an integral domain
and

f  a0  a1x   anxn  Rx
where an  0R. If there is an irreducible p  R such that p divides each of
a0,a1, . . . ,an1 and p  an and p2  a0 then f is irreducible in FRx.

Section 10.3 - Algebraic Extensions

Definition Let F  K be fields. K is an algebraic extension of F if every element of
K is algebraic over F.

Theorem (Finite Dim  Algebraic) If K is a finite dimensional extension field of
F then K is an algebraic extension of F.

Finitely Generated Extensions

Definition Let F  K be fields, n  Z, and u1, ,un  K. Define
Fu1, ,un 

JI

 J

where I  J : J is a field and F  J  K and u1, ,un  J , i.e. Fu1, ,un
is the smallest subfield of K that contains F and u1, ,un.

Fu1, ,un is called the extension of F generated by u1, ,un and we say it is a
finitely generated extension.

Remark In the next three theorems let F  K be fields, n  Z, and u1, ,un  K.

Theorem Fu1, ,un is a field.

Theorem (Finite DimFinite Gen) If K is a finite dimensional extension field of F
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then K is finitely generated.

Theorem Fu1, ,un  Fu1, ,un1un

Remark Thus we can “build” a finitely generated extension by a sequence of simple
extensions.

Theorem (Algebraic & Finite GenFinite Dim) Let F  K be fields, n  Z,
and u1, ,un  K be algebraic over F. Then Fu1, ,un is a finite dimensional
algebraic extension of F.

The Field of Algebraic Numbers

Theorem Let K be an extension field of F and
E  x  K : x is algebraic over F

Then E is an algebraic extension of F.

Definition The field of algebraic numbers is the extension field of Q consisting of all
z  C such that z is algebraic over Q.

Section 10.4 - Splitting Fields

Definition Let F  K be fields and f  Fx a nonconstant polynomial. The K is a
splitting field of f over F if and only if

1. f  cx  u1x  u2x  un in Kx (i.e. it splits in Kx)

2. K  Fu1,u2, ,un

i.e. K is a smallest field containing all of the roots of f.

Theorem (Splitting Fields Exist) Let F be a field and f  Fx polynomial of
degree n  1. There exists a splitting field K of f over F with

K : F  n!

Theorem Let  : F  E be a field isomorphism, f  Fx nonconstant, and f the
corresponding polynomial in Ex. If K is a splitting field of f over F and L is a
splitting field of f over E then  extends to an isomorphism K  L.

Corollary (Splitting Fields are “Unique”) Any two splitting fields of f  Fx
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over a field F are isomorphic.

Normal Extensions

Definition An algebraic extension field K of a field F is normal if and only if for all
irreducible polynomials p  Fx, if p has a root in K then p splits in K (i.e. its
normal iff whenever an irreducible polynomial has one root, it has them all)

Theorem A field K is a splitting field over a field F of some polynomial in Fx if and
only if K is a finite dimensional normal extension of f.

Algebraic Closure

Definition A field F is algebraically closed if and only if every nonconstant
polynomial f  Fx splits in Fx, i.e. iff the only irreducible polynomials are of
degree 1. The algebraic closure of a field F is an algebraic extension field K of F
which is algebraically closed.

Theorem Every field has an algebraic closure.

Section 10.5 - Separable Extensions

Definition Let F be a field, f  Fx, degf  n, K a splitting field of f over F and
f  cx  u1x  u2x  un where c  F and u1,u2, ,un  K. If ui  uj for
some i  j then we say ui is a repeated root. If f has no repeated roots, we say f is
separable.

Definition Let K be any extension field of a field F and u  K. We say u is separable
over F if and only if

1. u is algebraic over F and

2. the minimal polynomial of u is separable

We say K is separable over F (or a separable extension of F) if and only if every
element of K is separable over F.

Definition Let F be a field and f  a0  a1x  a2x2   anxn  Fx. The
algebraic derivative of f is

f   a1  2a2x  3a3x2   nanxn1
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Remark In the previous definition, the numerical coefficients 2,3, etc are additive
notation for power in a group, i.e. 3a3 means a3  a3  a3. (Equivalently we can
consider the 3 to be 1F  1F  1F in F)

Theorem Let F be a field and f,g  Fx. Then
f  g   f   g

fg   fg  gf 

Lemma Let F be a field and f  Fx. If gcd f, f   1Fx then f is separable.

Definition Let F be a field. F has characteristic 0 if and only if n  N,n1F  0F.

Theorem (Alg & Char 0  separable) If F has characteristic 0 then every
irreducible polynomial in Fx is separable and every algebraic extension of F is
separable.

Theorem (Fin Gen & SeparableSimple) Every finitely generated separable
extension of a field simple.

Section 10.6 - Classification of Finite Fields

Definition Let R be a ring with identity. We say R has characteristic 0 if m1R  0R
for any m  Z. We say R has characteristic n if n1R  0R and m1R  0R for any
1  m  n. We denote the characteristic of R by charR.

Lemma If R is an integral domain then charR  0 or charR is a positive prime
integer.

Lemma If charR  n  0 then
k1R  0R  n  k

The Prime Subfield

Theorem Let R be a ring with identity. Then

1. P  k1R : k  Z is a subring of R

2. charR  0  P  Z
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3. charR  n  0  P  Zn

Corollary If charR  0 then R is infinite.

Corollary Every finite field has characteristic p for some prime p.

Definition Let K be a finite field of characteristic p. The subfield P in the previous
theorem is called the prime subfield of K.

Remark Every finite field contains a subfield isomorphic to Zp, i.e. it is an extension
field of Zp.

The order of finite fields

Definition The number of elements in a finite field is called its order.

Theorem Every finite field K has order pn where p  charK and n  K : Zp .

Classification of all Finite Fields

Lemma (The Freshman’s Dream) Let p be a prime and R a commutative ring
with identity and charR  p. Then a,b  R,n  N,

a  bp
n
 apn  bpn

Theorem (Classification of Finite Fields) Let K be an extension field of Zp and
n  N.

|K|  pn  K is a splitting of xpn  x over Zp

Corollary For each positive prime p and each n  N, there exists a field of order
pn.

Corollary Any two finite fields of the same order are isomorphic.

Definition Let p be a positive prime and n  N. The unique field of order pn is
called the Galois field of order pn and is denoted Fpn .
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The Simplicity of Finite Field Extensions

Theorem Let K be a finite field and F a subfield. Then K is a simple extension of F.

Corollary Let p be a prime. For each n  N, there exists an irreducible polynomial
of degree n in Zpx.

Section 11.1 - The Galois Group
Solving Polynomial Equations

Q: Let f  Rx. When can we solve f x  0, i.e. when can we find the roots of f?
Degree 0

A: If f  a  R 0 then there are no roots of f.

Degree 1

A: If f  ax  b and a  0 then the root of f is b/a.

Degree 2 (the quadratic formula)

A: If f  ax2  bx  c and a  0 then the roots of f are
b  b2  4ac

2a
Degree 3 (the cubic formula)

A: If f  ax3  bx2  cx  d and a  0, define p  b/a, q  c/a, and r  d/a so that the
roots of f are the same as the roots of x3  px2  qx  r. Define

  1
3 3q  p

2

  1
27 2p

3  9pq  27r

A  3  2 
2

4  3
27

B  3  2 
2

4  3
27

Then the roots of f are
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A  B  p3
 A  B2  p3  A  B2 3

 A  B2  p3 
A  B
2 3

Degree 4 (the quartic formula)

A: If f  a4x4  a3x3  a2x2  a1x  a0 and a4  0, define a  a3/a4, b  a2/a4,
c  a1/a4, and d  a0/a4, so that the roots of f are the same as the roots of
x4  ax3  bx2  cx  d.

Let y be any root of x3  bx2  ac  4dx  4bd  a2d  c2 and define

R  a2
4  b  y

If R  0 define

D  3a2
4  2b  2 y2  4d

E  3a2
4  2b  2 y2  4d

If R  0 define

D  3a2
4  R2  2b  4ab  8c  a

3

4R

E  3a2
4  R2  2b  4ab  8c  a

3

4R
Then the roots of f are

 a4  R2  D2
 a4 

R
2  E2

Degree 5 ???

Galois Theory
The Galois Group

Definition Let F  K be fields. A map  : K  K is an F-automorphism iff

1.  is a field isomorphism

2. x  F, x  x

Definition The set of all F-automorphisms of K over F is called the Galois group of
K over F and is denoted GalFK
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Theorem GalFK,  is a group.

The Action of the Galois Group on Roots

Theorem Let K be an extension field of F and f  Fx. If u  K is a root of f and
  GalFK then u is also a root of f.

Theorem Let K be the splitting field of f  Fx and u,v  K. Then u  v for
some   GalFK if and only if u,v have the same minimal polynomial.

Theorem Let K  Fu1, ,un be an algebraic extension of F and ,  GalFK.
If ui  ui for all 1  i  n then   .

Corollary If K is the splitting field of a separable polynomial f  Fx and
degf  n then GalFK is isomorphic to a subgroup of Sn.

Intermediate Fields

Definition Let F  E  K be fields. E is called an intermediate field of the
extension F  K.

Theorem If F  E  K are fields then GalEK  GalFK.

Theorem Let F  K be fields and H  GalFK. Define
EH    K :    for every   H

Then EH is an intermediate field of the extension, i.e. F  EH  K.

Definition In the previous theorem, EH is called the fixed field of the subgroup H.

Section 11.2 - The Fundamental Theorem of Galois Theory

The Galois Correspondence

Definition Let F  E  K fields and K : F finite. Define
E  GalEK

Then  is called the Galois correspondence between the intermediate fields of the
extension F  K and the subgroups of GalFK.
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Notation
K
n 

F

means K is an extension field of F and K : F  n.

H
n 

G

means H is a subgroup of G and G : H  n.

Q: Is  surjective? injective? Does it have an inverse?

Surjective

Theorem Let K be a finite dimensional extension field of F and H a subgroup of
GalFK. Then EH  H and K : EH   |H|.

Corollary  is surjective.

Injective

Definition We say K is a Galois extension of F (or Galois over F) iff K is a finite
dimensional normal separable extension field of F.

Theorem Let K be a finite dimensional extension field of F and H a subgroup of
GalFK. Then K is Galois over EH and K is a simple extension of EH.

Theorem If K is a Galois extension of F and F  E  K then E  EGalEK.

Corollary  is injective for Galois extensions.

Corollary Let K be a finite dimensional extension field of F.
K is Galois over F  F  EGalFK

The Fundamental Theorem

Theorem (Fundamental Theorem of Galois Theory) Let K be Galois over F.
Define

S  E : F  E  K
and
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T  H : H  GalFK
and  : S  T by E  GalEK. Then

1.  is a bijection

2. K : E  |E| and E : F  F : E

3. E is a normal extension of F  E is a normal subgroup of F. In
this situation GalFE  GalFK/GalEK.

(clip here)..........................................................................................................................
Galois cheet sheet

Types of Field Extensions
finite dimensional has a finite basis as a vector space
algebraic every element is a root of a polynomial
finitely generated the smallest extension containing finitely many additional elements
simple finitely generated by one element
splitting field the smallest extension in which a particular nonconstant polynomial splits
separable algebraic and no minimal polynomial of an element has repeated roots
normal every irreducible polynomial that has a root splits
Galois finite dimensional, normal, and separable

Implications
simple  finitely generated

finite dimensional algebraic & finitely generated
separable  algebraic

algebraic & characteristic 0  separable
finitely generated & separable  simple

splitting field  finitely generated & algebraic & finite dimensional
splitting field finite dimensional & normal

Galois  finite dim, normal, separable, algebraic, finitely gen, simple
(clip here)......................................................................................................................................
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