
Topology Lecture Notes
© 2007 - Ken Monks
by Ken Monks
Math 460 - Geometry
Department of Mathematics
University of Scranton

This is not a complete set of lecture notes for Math 460, Topology. Additional material will be
covered in class and discussed in the textbook.

Logic
In this section we give an informal overview of logic and proofs. For a more formal
introduction see any logic textbook.
Variables, Expressions, and Statements
Definition A set is a collection of items called the members (or elements) of the set.

Remark An element is either in a set or it is not in a set, it cannot be in a set more than
once.

Definition An expression is an arrangement of symbols which represents an element of a set
called the domain (or type) of the expression.

Remark It is not necessary that we know specifically which element of the domain an
expression represents, only that it represents some unspecified element in that set.

Definition The element of the domain that the expression represents is called a value of that
expression.

Definition A variable is an expression consisting of a single symbol.

Definition A constant is an expression whose domain contains a single element.

Definition A statement (or Boolean expression) is an expression whose domain is
true, false.

Remark We do not have to know if a statement is true or false, just that it is either true or
false.

Definition The value of a statement is called its truth value.

Definition To solve a statement is to determine the set of all elements for which the
statement is true.

Remark More precisely, if a statement contains n variables, x1,xn, then to solve the
statement is to find the set of all n-tuples a1, ,an such that each ai is an element of the
domain of xi and the statement becomes true when x1, ,xn are replaced by a1, ,an
respectively. Each such n-tuple is called a solution of the statement.

Definition The set of all solutions of a statement is called the solution set.



Definition An equation is a statement of the form A  B where A and B are expressions.

Definition An inequality is a statement of the form A  B where A and B are expressions
and  is one of , , , , or .

Propositional Logic
The Five Logical Operators
Definition Let P,Q be statements. Then the expressions

1.  P

2. P and Q

3. P or Q

4. P  Q

5. P  Q
are also statements whose truth values are completely determined by the truth values of P
and Q as shown in the following table

P Q  P P and Q P or Q P  Q P  Q

T T F T T T T
T F F F T F F
F T T F T T F
F F T F F T T

Rules of Inference and Proof
Definition A rule of inference is a rule which takes zero or more statements (or other items)
as input and returns one or more statements as output.

Notation An expression of the form
P1


Pk

Q1


Qn
represents a rule of inference whose inputs are P1Pk and outputs are Q1, ,Qn.

Notation The rule of inference shown above can also be expressed in recipe notation as
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Show P1


Show Pk
Conclude Q1


Conclude Qn
or equivalently,

To show Q1, ,Qn
Show P1


Show Pk

Definition A formal logic system consists of a set of statements and a set of rules of
inference.

Definition A proof in a formal logic system consists of a finite sequence of statements (and
other inputs to the rules of inference) such that each statement follows from the previous
statements in the sequence by one or more of the rules of inference.
Natural Deduction
Definition The symbol  is an abbreviation for “end assumption”.

Definition The rules of inference for propositional logic are shown in Table 1.
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Table 1: Rules of inference for Propositional Logic

and 
To showW and V
1. ShowW
2. Show V

and 
To showW
1. ShowW and V

and 
To show V
1. ShowW and V

 

To showW  V
1. Assume W
2. Show V
3. 

  (modus ponens)
To show V
1. ShowW
2. ShowW  V

 

To showW  V
1. ShowW  V
2. Show V  W

 

To showW  V
1. ShowW  V

 

To show V  W
1. ShowW  V

or 
To showW or V
1. ShowW

or 
To showW or V
1. Show V

or  (proof by cases)
To show U
1. ShowW or V
2. ShowW  U
3. Show V  U

  (proof by contradiction)
To show  W
1. Assume W
2. Show 

3. 

  (proof by contradiction)
To showW
1. Assume  W
2. Show 

3. 

 

To show 

1. ShowW
2. Show  W

Remark Note that the inputs “Assume -” and “” are not themselves statements but rather
inputs to rules of inference that may be inserted into a proof at any time. There is no reason
however, to insert such statements unless you intend to use one of the rules of inference that
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requires them as inputs.

Remark Precedence: In order to eliminate parentheses we give the operators the following
precedence (from highest to lowest):

other math operators ( ,, ,,,etc)
~

and , or




Example Use Natural Deduction to prove the following tautologies.
1. ~~P  P
2. ~ P and Q  ~P or ~Q [Hint: Use P or ~P, proven in the homework]

Equality
Definition The equality symbol, , is defined by the two rules of inference given in Table 2.

Table 2: Rules of Inference for Equality

Reflexive 
To show x  x

Substitution
To showW with the nth free occurrence of x replaced by y
1. ShowW
2. Show x  y

Remark Note that in the Reflexive rule there are no inputs, so you can insert a statement of
the form x  x into your proof at any time. Note that there is a technical restriction on the
Substitution rule that is not listed here (see the Proof Recipes sheet for details). In most
situations the restriction is not a concern.

Example Use natural deduction to prove that x  y  y  x.

Quantifiers
Definition The symbols  and  are quantifiers. The symbol  is called “for all”, “for
every”, or “for each”. The symbol  is called “for some” or “there exists”.

Definition If W is a statement and x is any variable then x,W and x,W are both
statements. The rules of inference for these quantifiers are given in Table 3.

Notation If x is a variable, t an expression, and Wx a statement then Wt is the statement
obtained by replacing every free occurrence of x in Wx with t,
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Table 3: Rules of Inference for Quantifiers

 

To show x,Wx
1. Let s be arbitrary
2. ShowWs

 

To showWt
1. Show x,Wx

 

To show x,Wx
1. ShowWt

 

To showWt for some t
1. Show x,Wx

Remark Note that there are restrictions on the rules of inference for quantifiers which are
not listed in Table 3 (see the Proof Recipes sheet for details). In most situations they are not a
concern.

Remark Precedence: Quantifiers have a lower precedence than. Thus they quantify the
largest statement to their right possible unless specifically limited by parentheses.

Example Prove ~x,Px  x, ~Px

Example Prove x,Px  Qx and y,Py  z,Qz

Definition Let Wx be a statement and Wy the statement obtained by replacing every free
occurrence of x in Wx with y. We define

!x,Wx  x, Wx and y,Wy  y  x
The statement !x,Wx is read “There exists a unique x such that Wx.”

Table 4: Rules of Inference for !

! 
To show !x,Wx
1. ShowWt
2. Let y be arbitrary
3. Assume Wy
4. Show y  t
5. 

! 
To show x,Wx and y,Wy  y  x
1. Show !x,Wx

Sets, Functions, Numbers
Some Definitions from Set theory
The symbol  is formally undefined, but it means “is an element of”. Many of the definitions
below are informal definitions that are sufficient for our purposes.
Set notation and operations
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Finite set notation: x  x1, ,xn  x  x1 or or x  xn
Set builder notation: x  y : Py   Px
Cardinality (see below): #S  the number of elements in a finite set S
Subset: A  B  x,x  A  x  B
Set equality: A  B  A  B and B  A
Def. of : x  A  ~x  A
Empty set: A    x,x  A
Relative Complement: x  B  A  x  B and x  A
Intersection: x  A  B  x  A and x  B
Union: x  A  B  x  A or x  B
Power Set: x  2A  x  A
Indexed Intersection: x  

iI
Ai  i, i  I  x  Ai

Indexed Union: x  
iI
Ai  i, i  I and x  Ai

Two convenient abbreviations: x  A,Px  x,x  A  Px
x  A,Px  x,x  A and Px

Some Famous Sets
The Natural Numbers N  0,1,2,3,4, 

The Integers Z  ,3,2,1,0,1,2,3, 

The Rational Numbers Q  a
b : a  Z, b  N, b  0, and gcda,b  1

The Real Numbers R  x : x can be expressed as a decimal number

The Complex Numbers C  x  yi : x,y  R where i2  1
The positive real numbers R  x : x  R and x  0

The negative real numbers R  x : x  R and x  0

The positive reals in a set A A  A  R

The negative reals in a set A A  A  R

The first n positive integers In  1,2, ,n
The first n  1 natural numbers On  0,1,2, ,n
Cartesian products
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Ordered Pairs: x,y  u,v  x  u and y  vz
Ordered n-tuple: x1, ,xn  y1, ,yn  x1  y1 and and xn  yn
Cartesian Product: x  A  B  x  a,b for some a  A and b  B
Cartesian Product: x  A1   An  x  x1, ,xn for some x1  A1 and and xn  An
Power of a Set An  A  A   A where there are n “A’s” in the Cartesian product

Product of Sets x  
i0


Ai  x  x0,x1,x2,  and i,xi  Ai for some x0,x1,

Functions and Relations
Def of  x  t  ~x  t
Def of relation: R is a relation from A to B R  A  B
Def of function: f : A  B  f  A  B and x,!y, x,y  f

Alt. function notation X
f
 Y  f : X  Y

Def of fx notation: fx  y  f : A  B and x,y  f
Domain: Domainf  A  f : A  B
Codomain: Codomainf  B  f : A  B
Image (of a set): fS  y : x,x  S and y  fx
Range (or Image of f): Rangef  fDomainf
Identity Map: idA : A  A and x, idAx  x
Composition: f : A  B and g : B  C  g  f : A  C and x, g  fx  gfx
Injective (one-to-one): f is injective x,y, fx  fy  x  y
Surjective (onto): f is surjective f : A  B and y,y  B  x,y  fx
Bijective: f is bijective f is injective and f is surjective
Inverse: f1 : B  A  f : A  B and f  f1  idB and f1  f  idA
Inverse Image: f : A  B and S  B  f1S  x  A : fx  S
Constant map: f : A  B is a constant map c  B,x  A, fx  c
Inclusion map: i : A  B is an inclusion map A  B and a  A, ia  a

Example Prove A  B  A  B  A  B

Example Prove if f : A  B, X  A, and Y  B then fX  Y  X  f1Y.
Counting
Definition Two sets have the same cardinality if and only if there is a bijection from one set
to the other.

Definition A finite set A has n elements if and only if there is a bijection from 1,2,3, ,n
to A.
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Remark If two sets have the same cardinality then they are both infinite, or both finite. If
they are finite the have the same number of elements.
Equivalence Relations
Definition Let X be a set.

R is a relation on X  R  X  X.

Definition Let X be a set and R  X  X. For any x,y  X,
xRy  x,y  R (infix notation)

and
Rx,y  x,y  R (prefix notation)

Definition Let X be a set and R  X  X.

R is an equivalence relation x,y, z  X,
(0) xRx (reflexive)
(1) xRy  yRx (symmetric)
(2) xRy and yRz  xRz (transitive)

Definition Let R  X  X be an equivalence relation and a  X.
aR  x : xRa

This is called the equivalence class of a (with respect to R).

Notation We often abbreviate aR by a when the relation R is clear from context.

Theorem (Fundamental Theorem of Equivalence Relations) Let R  X  X be an
equivalence relation and a,b  X. Then

a  b  aRb.

Corollary (1) Let R  X  X be an equivalence relation. Then X is a disjoint union of
equivalence classes, i.e.

X  
aX
a

and
a,b  X, a  b or a  b  .

Definition If X is a set and P  Ai : i  I is a set of subsets of X such that
X  

iI
Ai

and
i, j  I, i  j  Ai  Aj  

we say that P is a partition of X.
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Remark Thus, the set of equivalence classes of an equivalence relation on X is a partition of
X.

Definition Let R  X  X be an equivalence relation. Then the quotient of X by the relation
R is

X/R  xR : x  X
In other words X/R is the set of all equivalence classes.

Definition Let R  X  X be an equivalence relation. The quotient map is the function
 : X  X/R such that for all x  X

x  xR

Theorem Every quotient map is onto.
Composition
Theorem Composition of functions is associative.

Theorem The composition of injective functions is injective and the composition of
surjective functions is surjective.

Theorem (left cancellation law for injective functions) Let Y f
 Z. Then f is injective

if and only if for all functions g,h : X  Y
f  g  f  h  g  h

Theorem (right cancellation law for surjective functions) Let X f
 Yand |Z|  1.

Then f is surjective if and only if for all functions g,h : Y  Z
g  f  h  f  g  h

Inverse Functions
Theorem A function has an inverse function if and only if it is bijective.

Theorem Inverse functions are unique.
Extensions and Restrictions
Definition Let f : A  Y, F : X  Y, A  X. If a  A, fa  Fa then we say that f is
the restriction of F to A and that F is an extension of f to X. In this situation we write
f  F |A.

Remark In this situation, if A i
 X is the inclusion map, then f  F |A  Fi. In other words

the following diagram commutes
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Metric Spaces
Definition A metric space is a pair X,d where X is a set and d : X  X  R such that for
all x,y, z  X :

1. dx,y  0
2. dx,y  0  x  y
3. dx,y  dy,x
4. dx,y  dy, z  dx, z

In this situation, d is called a metric (or distance function) on X, and the elements of X are
called the points in the metric space. The set X is called the underlying set of the metric
space.

Remark It is quite common to refer to the metric space X,d as simply X.

Examples of Metric Spaces
Example (R,dEuc) is a metric space where dEucx,y  |x  y| for all x,y  R.
Notice this is just a special case of the more general theorem:
Theorem (Rn,dEuc) is a metric space where

dEucx1, ,xn, y1, ,yn  
i1

n

xi  yi2

dEuc is called the Euclidean metric on Rn.

Definition Let dTaxi : Rn  Rn  R by

dTaxix1, ,xn, y1, ,yn 
i1

n

|xi  yi |

The map dTaxi is called the lattice metric, theManhattan metric, or the taxicab metric.

Definition Let X,d be a metric space. Then a circle with center p  X and radius r  R

is
x : dx,p  r

Remark If S is a finite set of real numbers then maxS is the largest number in the set, in
other words

m  maxS  m  S and n  S,n  m

Definition Let dmax : Rn  Rn  R by
dmaxx1, ,xn, y1, ,yn  max|xi  yi | : i  1, ,n

The map dmax is called the maximum metric.

Definition The set of 2-adic integers, denoted Z2, is the set of all infinite sequences of 0’s
and 1’s, i.e.

Z2  s0, s1,  : i  N, si  0,1
or equivalently
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Z2  s : s : N  0,1

Definition Let d2 : Z2  Z2  R by
d2s0, s1, , t0, t1,   1

2k
where k  mini : si  ti if s0, s1,   t0, t1,  and

d2s0, s1, , t0, t1,   0
if s0, s1,   t0, t1, . The map d2 is called the 2-adic metric.

Theorem Rn, dTaxi, Rn, dmax, and Z2, d2 are metric spaces.

Remark It is a fact that Z2, d2 cannot be embedded in (Rn,dEuc) for any n. The 2-adic
metric is simple to compute and work with, but the geometry of Z2, d2 is very strange.
Product metric
Definition Let X1,d1, X2,d2, , Xn,dn be metric spaces and X  X1  X2   Xn.
Define dmax : X  X  R by

dmaxx1, ,xn, y1, ,yn  maxdixi,yi : i  1, ,n
where x  x1,x2, ,xn and y  y1,y2, ,yn. This is called the product metric.

Theorem The product metric is a metric.

Continuity
Maps between metric spaces
Definition A map between metric spaces X,d and Y,d is any ordered tuple
f,X,d,Y,d where f : X  Y and X,d and Y,d are metric spaces.

Notation We write f : X,d  Y,d to mean that f,X,d,Y,d is a map between metric
spaces X,d and Y,d.

Continuous maps
Definition Let f : X,d  Y,d. Then f is continuous at a  X if and only if

  R,  R,x  X,dx,a    dfx, fa  

Definition Let f : X,d  Y,d. Then f is continuous if and only if f is continuous at
every point a  X.

Theorem Every constant map is continuous.

Theorem Every identity map from a metric space to itself is continuous.

Theorem The identity map i : Rn,dmax  Rn,dEuc and the identity map
i  : Rn,dEuc  Rn,dmax are both continuous.

Theorem If f : X,d  Y,d is continuous at a  X and g : Y,d  Z,d is
continuous at fa then g  f : X,d  Z,d is continuous at a.

Corollary The composition of continuous functions is continuous.
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Open Balls and Neighborhoods
Definition Let X,d be a metric space,   R, and a  X. Then

Ba;  x  X  dx,a   and
Ba;  x  X  dx,a  

Ba; is called the open ball of radius  centered at a, and Ba; is called the closed ball
of radius  centered at a.

Remark This gives us another language for specifying that two elements are close together
since

dx,a    x  Ba;

Two useful facts
Lemma (subset) Let f : X  Y, U  X, and V  Y. Then

U  f1V  fU  V

Lemma (subset) Let f : X  Y, A,B  X and U,V  Y. Then
U  V  f1U  f1V

and
A  B  fA  fB

Neighborhoods
Definition Let X,d be a metric space, a  X, and N  X. Then N is a neighborhood of a if
and only if   R,Ba;  N.

Definition Let X,d be a metric space and a  X. The set
Na  N : N is a neighborhood of a

is called the complete system of neighborhoods of the point a.

Theorem Every open ball is a neighborhood of all of its points.

Definition Let X,d be a metric space and a  X. A set Ba  Na is called a basis for the
neighborhood system of a if and only if N  Na,B  Ba,B  N.
Example The set of all open balls centered at a is a basis for the neighborhood system at a.
Elementary Properties of Neighborhoods and Neighborhood Systems
Theorem Let X,d be a metric space a  X.
N1. a has a neighborhood.
N2. a is an element of each of its neighborhoods.
N3. Every superset of a neighborhood of a is a neighborhood of a.
N4. The intersection of any two neighborhoods of a is a neighborhood of a.
N5. Every neighborhood of a has a subset that is a neighborhood of all of its points.
Open Balls, Neighborhoods, and Continuity
Theorem Let f : X,d  Y,d and a  X. The following are equivalent.
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1. f is continuous at a
2.   R,  R, fBa;  Bfa;
3.   R,  R,Ba;  f1Bfa;
4. N  Nfa, f1N  Na

Open sets and Continuity
Open sets
Definition Let X,d be a metric space and U  X. Then U is open if and only if

 x  U, U  Nx

Remark In other words, a set is open if and only if it is a neighborhood of all of its points.

Definition Let X,d be a metric space and U  X. Then U is closed if and only if X  U is
open.

Remark There are sets which are neither open nor closed.
An equivalent definition of continuity
Theorem Let X,d and Y,d be metric spaces and f : X  Y. Then f is continuous with
respect to the metrics d and d if and only if

U  Y,U is open in Y,d  f1U is open in X,d.

Remark In other words a function between metric spaces is continuous if and only if the
inverse image of every open set is open.
Properties of the set of all open sets
Theorem Let X,d be a metric space.

1. The empty set is open.
2. The set X is open.
3. The union of any collection of open sets is open.
4. The intersection of finitely many open sets is open.

Topology
Topological Spaces
Definition Let X be a set and  a set of subsets of X such that

1.   
2. X  
3. The union of any collection of elements of  is an element of 
4. The intersection of finitely elements of  is an element of 

Then the pair X, is called a topological space, and  is called a topology on the set X. An
element of  is called an open set.

Remark So  is by definition the set of open subsets of X.

Corollary Let X,d be any metric space and  the set of all open (in the metric space)
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subsets of X. Then X, is a topological space.

Definition The topology  given in the previous corollary is called the topology induced by
the metric d. The topological space X, is called the associated topological space for the
metric space X,d.

Remark Just as we often refer to a metric space X,d by X, we also sometimes refer to a
topological space X, by X, and we will often identify a metric space with it’s associated
topological space.

Remark Note that while every metric space has a unique associated topological space, more
than one metric space might have the same associated topological space.

Definition A topological space that is the associated topological space for some metric
space is said to be metrizable.

Definition Let X, be a topological space. A subset of X is closed if and only if its
complement is open.

Neighborhoods, Interior, Boundary, Closure
Definition Let X, be a topological space, x  X, and N  X. Then N is said to be a
neighborhood of x if and only if x  O  N for some open set O  .
Remark In other words a neighborhood of a point in topological space is a set that has an
open subset that contains the point.

Definition Let X, be a topological space and A  X. Then A is closed if and only if X  A
is open.

Definition Let X, be a topological space, x  X, and A  X. Then x is in the closure of
A if and only if every neighborhood of x contains an element of A. The set of all points in the
closure of A is called the closure of A and is denoted A.

Definition Let X, be a topological space, x  X, and A  X. Then x is in the interior of
A if and only if A is a neighborhood of x. The set of all points in the interior of A is called the
interior of A and is denoted IntA or A°.

Definition Let X, be a topological space, x  X, and A  X. Then x is in the boundary
of A if and only every neighborhood of x contains an element of A and an element of X  A.
The set of all points in the boundary of A is called the boundary of A and is denoted BdryA.

Theorem (Elementary Properties) Let X, be a topological space, x  X, and A  X.
1. The intersection of any collection of closed sets is closed.
2. The union of finitely many closed sets is closed.
3. A  A
4. The closure of A is the smallest closed set containing A.
5. A  A.
6. A°  A
7. The interior of a set is the largest open subset of A.
8. BdryA  A  X  A
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9. BdryA is closed.
Applications to metric spaces
Definition Let X,d be a metric space, x  X, and A  X. Then the distance from x to A is

dx,A  infdx,a : a  A

Definition A topological space X, is said to be Hausdorff if and only if for every x,y  X
with x  y, there exists neighborhoods A,B of x,y respectively such that A  B  .

Theorem Every metrizable topological space is Hausdorff.

Functions, Continuity, Homeomorphism
Functions
Definition A map between topological spaces X, and Y,  is an ordered tuple
f,X,,Y,  where f : X  Y and X, and Y,  are topological spaces.

Notation We write f : X,  Y,  to mean that f,X,,Y,  is a map between
topological spaces X, and Y, .

Continuity
Definition A map of topological spaces f : X,  Y,  is continuous at a  X if and
only if the inverse image of every neighborhood of fa in Y,  is a neighborhood of a in
X,, i.e. N  Nfa, f1N  Na.

Definition A map of topological spaces f : X,  Y,  is continuous if and only if the
inverse image of every open set is open, i.e. O , f1O  .
Lemma A map between topological spaces is continuous if and only if it is continuous at
every point.

Theorem The composition of continuous maps between topological spaces is continuous.
Homeomorhisms
Definition A map of topological spaces h : X,  Y,  is called a homeomorphism if
and only if it is a continuous bijection with a continuous inverse.

Definition If there exists a homeomorphism between topological spaces X, and Y,  we
say that these topological spaces are homeomorphic.

Remark Homeomorphic topological spaces are the same topological spaces in disguise!

Subspaces
Definition Let X, be a topological space and S  X. The subspace topology on S is
   S  O : O  .
Theorem A subspace topology is a topology.

Definition Let X, be a topological space, S  X, and   the subspace topology on S. We
say that   is the topology on S induced by . The topological space S,  is called a
subspace of X,. An open set O    is said to be relatively open and the neighborhoods
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in S,  are said to be relative neighborhoods.

Theorem Let S,  be a subspace of X,, and F  S. Then F is closed in S,  if and
only if F  S  F  for some closed set F  in X,.

Theorem Let S,  be a subspace of X,, and x  N  S. Then N is neighborhood of x in
S,  if and only if N  S  N for some neighborhood N of x in X,.

Theorem Let S,  be a subspace of X, and i : S  X be the inclusion map. Then i is
continuous.
Weak vs Strong topologies
Definition Let  and  be topologies on X. We say  is weaker than  if and only if   . If
 is weaker than  we say  is stronger than .

Remark If a map f : X,  Y,  is continuous then it will still be continuous if we
replace  with a stronger topology or   with a weaker one.

Theorem
1. Let f : X  Y and   a topology on Y. The is a unique topology  on X that is the weakest
topology for which f is continuous (namely   f1O : O   ).
2. Let f : X  Y and  a topology on X. The is a unique topology   on Y that is the strongest
topology for which f is continuous (namely    O  Y : f1O  ).
Theorem The subspace topology is the weakest topology on S for which the inclusion map is
continuous.

Product Topologies
Definition Given an indexed family of topological spaces Xi, i iI we defined the
product topology on

iI
Xi to be the weakest topology such that all of the projection maps

pi : 
iI
Xi  Xi are continuous.

Remark Therefore product topology is the smallest topology that contains all sets of the
form pi1Oi such that Oi   i.

Theorem The product topology  on
iI
Xi is the set of all unions of sets which are

themselves the intersection of finitely many sets of the form pi1Oi where Oi   i.
The Finite Case
Definition A collection of open subsets B  OiiI of a topological space X, is a basis
for the topology , if every open subset of X is a union of elements of B.
Theorem Let n be a positive integer and X1,1, X2,2, , Xn,n topological spaces.
Then

O1  O2   On : O1  1, ,On  n
is a basis for the product topology  on X1  X2   Xn.

Example Let X,, Y,  be topological spaces. Then O is open in X  Y (with the product
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topology) if and only if O 
iI
Oi  Oi  for some open sets OiiI in X and OiiI in

Y.

Quotient Topology
Definition Let X, be a topological space and R and equivalence relation on X. Then the
quotient topology (or identification topology) is the strongest topology on X/R for which the
quotient map continuous.

Theorem Let X, be a topological space and R and equivalence relation on X. Then the
quotient topology on X/R is the set

   O  X/R : 1O  
Example Let X, be a topological space and f : X  Y any surjective function and let  
be the strongest topology on Y for which f is continuous. Define an equivalence relation ~f on
X by a~fb if and only if fa  fb. Then X/~f,  is homeomorphic to Y,  where   is
the quotient topology.

Remark Since in the previous example, Y,  is homeomorphic to X/R,  we sometimes
refer to   as a quotient or identification topology as well.

Connectedness
Definition A topological space is connected if an only if the only subsets of it that are both
open and closed are the empty set and the space itself. A space that is not connected is said to
be disconnected.

Remark Hence a subspace of a topological space is connected if and only if the only subsets
of it that are both relatively open and relatively closed are the empty set and the subspace
itself.

Theorem A topological space is disconnected if and only if it is a disjoint union of two
nonempty open sets.

Lemma Let X be a set and A,B nonempty subsets of X. Then X is a disjoint union of A and B
if and only if B  Ac (and A  Bc).

Theorem The continuous image of a connected is connected.

Remark Here by "continuous image" we mean the image by a continuous function, and to
say that the image is connected means that it is a connected topological space when
considered as a subspace of the codomain.

Corollary A quotient space of a connected space is connected.

Definition A property of a topological space is a topological property if and only if it is
preserved by homeomorphisms, i.e. homeomorphic spaces either both have the property or
both do not have the property.

Corollary Connectedness is a topological property.

Lemma Let Y  0,1 and   the discrete topology on Y. Then X, is connected if and
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only if the only continuous map f : X,  Y,  is a constant map.

Theorem If X,, Y,  are connected, then so is X  Y with the product topology.

Theorem In general, the product of connected spaces is connected.

Applications of Connectedness
Connected Subsets of R
Definition A subset S of R is an interval if and only if whenever a,b  S and a  c  b then
c  S, i.e. an interval is a set which contains all of the points between any two of its points.

Theorem The only connected subsets of R are intervals.

Intermediate Value Theorem
Theorem Let f : ab  R be continuous and L any number between fa and fb
inclusive. Then there exists c  ab such that fc  L.

Corollary If f : ab  R is continuous and changes signs in the interval ab then f
has a root in ab.

Fixed point theorems
Definition Let f : X  X and a  X. Then a is called a fixed point of f if and only if
fa  a.

Definition A topological space has the fixed point property if and only if every continuous
map from the space to itself has a fixed point.

Theorem The fixed point property is a topological property.

Theorem The n-disk Dn  z  Rn : |z|  1 has the fixed point property.

Example When n  1 this is just a corollary of the intermediate value theorem.

Theorem (Borsuk-Ulam) For every continous map f : Sn  Rn there exist antipodal points
z,z  Sn such that fz  fz.

Theorem (Ham Sandwich) Any three subsets of R3 having finite volume in R3 can be
simultaneously bisected by a single plane.

Components and Local Connectedness
Connected Components
Definition Let X, be a topological space and a  X. Define Cmpa to be the union of
all connected subsets of X which contain a, i.e. Cmpa  UP U where
P  U  X : a  U and U is connected . The set Cmpa is called the connected
component of X containing a.
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Theorem Cmpa is connected.

Remark In other words, Cmpa is the largest connected subset of X containing a.

Lemma a  Cmpa

Lemma b  Cmpa if and only if Cmpb  Cmpa.

Theorem Let X, be a topological space and define ~ on X by a~b  b  Cmpa. Then
~ is an equivalence relation on X.

Theorem If A is connected then so is A.

Theorem Every connected component of a topological space is closed.

Remark But they are not all open!
Local Connectedness
Definition A topological space X, is locally connected at a  X if every neighborhood of
a contains a connected neighborhood of a. The space X is locally connected if it is locally
connected at every point.

Theorem Local connectedness is a topological property.
(proof is a homework problem)
Theorem If X, is locally connected then every connected component is open.

Remark Is a locally connected space necessarily connected?

Remark Is a connected space necessarily locally connected?

Path Connectedness
Definition Let X, be a topological space. A continous function f : 0. . 1  X is called a
path in X. The points f0 and f1 are called the initial and terminal points, respectively, of
the path.

Remark We say that such a path f connects or joins its initial point to its terminal point, or
that it is a path from its initial point to its terminal point, or that it is a path between its
initial point and its terminal point.

Definition A path f is called a loop if f0  f1.

Definition A topological space is path connected if and only if there exists a path
connecting any two of its points.

Remark A subspace of a space is path connected if and only if it is path connected as a
topological space with the subspace topology.

Theorem The continous image of a path connected space is path connected.

Corollary Path connectedness is a topological property.

Corollary Any quotient space of a path connected space is path connected.
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Theorem Every path connected space is connected.

Categories

The Grand Unified Theory of Mathematics!

Definition A category consists of
1. a collection of objects in the category
2. for each ordered pair X,Y of objects in the category a set HomX,Y
3. there is a rule called  which associates to each f  HomX,Y and g  HomY,Z an

element g  f  HomX,Z
4.  is associative
5. for each object X there is an element 1X  HomX,X
6. for all f  HomX,Y, f  1X  f and for all g  HomY,X, 1X  g  g

Definition In the previous definition, the elements of HomX,Y are called maps (or
morphisms) from X to Y. The map 1X is called the identity map on X. The operator  is called
composition.

Remark These definitions of the terms map, identity map, and composition are new
definitions that are unrelated to the definitions given previously for functions between sets. In
particular, maps in a category do not have to be ordinary functions, nor do the objects have
to be ordinary sets.
Examples: Most branches of mathematics are examples of categories!

Subject Objects Maps
Set Theory sets functions
Topology topological spaces continuous functions
Metric Space metric spaces continuous functions
Linear Algebra vector spaces linear transformations
Group Theory groups group homomorphisms
Ring Theory rings ring homomorphisms
Geometry underlying space geometric transformations
Analysis real numbers differentiable functions

For those of you who haven’t had group theory yet:
Definition A group is a pair G,  where G is a set and  : G  G  G such that
1.  is associative
2. there exists e  G such that for all g  G, g  e  e  g  g
3. for all g  G there exists h  G such that g  h  h  g  e

Remark e is called the identity element of the group, and h is called the inverse of g.
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Definition A group homomorphism is a map f : G,   X, such that for all g,h  G,
fg  h  fg  fh.

Example: A single group itself is an entire category if we define HomG,G to be the
elements of G and  to be the group operation.

Example: Let the integers in I12  1,2, , 12 be the objects and for each A,B  I12 define
HomA,B  A,B if A  B and  otherwise. How can we define composition to turn this
into a category? What is 15?

Example:
Theorem In any category if f has a left inverse g and a right inverse g then g  g.
Functors
Definition Let C,C be categories and A,A  their respective collections of objects. A
covariant functor, F : C  C is a pair of functions F1,F2 such that
1. F1 : A  A 
2. for each X,Y  A, F2 : HomX,Y  HomF1X,F1Y such that
(a). F21x  1F1X
(b). F2g  f  F2g  F2f for all f  HomX,Y and g  HomY,Z

Example The forgetful functor from CTop to CSet.
Example The associated space functor from CMet to CTop.
Homotopy
Definition Let X, be a topological space and f,g paths from a to b in X. A homotopy
between f and g is a continous function H : 01  01  X such that for all
x, t  01

1. Hx, 0  fx
2. Hx, 1  gx
3. H0, t  a
4. H1, t  b

If there exists a homotopy between f and g we say the paths f and g are homotopic.

Definition Define a relation on the set of paths from a to b in a topological space X, by
f  g if and only if f and g are homotopic.

Theorem  is an equivalence relation.

Lemma Let X,, Y,  be a topologial spaces and A,B closed subsets of X. Let f : A  Y
and g : B  Y be continous maps which agree on A  B. Then the map h : A  B  Y by

hx 
fx if x  A
gx otherwise

is continous.
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Remark As usual, we will denot the equivalence class of a path f as f.
The Fundamental Group
Definition Let X, be a topological space and a  X. The set of all equivalence classes of
paths from a to a (i.e. loops) in X is denoted X,a.

Definition Let X, be a topological space and f,g paths from a to a in X. The product (or
concatenation) of f and g is the path f  g from a to a in X defined by

f  gt 
f2t if 0  t  1

2

g2t  1 if 12  t  1

Theorem Let X, be a topologial spaces f,g, f ,g paths from a to a in X. If f  f  and
g  g then f  g  f   g.

Definition Let X, be a topologial spaces f,g paths from a to a in X. Define a product
 : X,a  X,a  X,a by f  g  f  g.

Theorem X,a,  is a group!

Remark X,a is often denoted 1X,a. For path connected spaces, the same
(isomorphic) group is obtained no matter what base point is selected, so for path connected
spaces X,a is often abbreviated as X or 1X.

Theorem  is a functor from the category of topological spaces with a point to the category
of groups.

Simple Connectedness
Definition Any one element group is called a trivial group.

Remark All trivial groups are isomorphic. For example, they are all isomorphic to 0,
where  is the ordinary addition of integers.

Definition A topological space is simply connected if and only if its fundamental group is
the trivial group at every base point.

Remark In other words every loop is homotopic to every other loop at the same point in a
simply connected space.

Theorem A path connected topological space is simply connected if and only if its
fundamental group is the trivial group at some base point.
For the proof of this we require some notation.

Definition If f : 0. . 1  X is a path in topological space X, then f is the path
f : 0. . 1  X by f t  f1  t. We will call f the reverse of f.

Remark The book refers uses f1 to represent f , because, hey, you just can’t have too many
completely different simultaneous definitions for the symbol f1!

Definition If f is a path from a to b in topological space X,, and g is a path from b to b
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then gf is the path from a to a defined by

gft 

f3t if 0  t  1
3

g3t  1 if 13  t 
2
3

f 3t  2 if 23  t  1

Definition If f is a path from a to b in path connected topological space X,, define
 f : X,b  X,a by  fg  gf .

Theorem  f is a group isomorphism.

Compactness
Covers
Definition Let S be a subset of a set X. An indexed family of sets AiiI is a cover of S if
and only if S  iI Ai. If I is finite then this cover is said to be a finite cover of S. If X, is
a topological space and Ai is an open set for all i  I then this cover is said to be an open
cover.

Definition A cover BjjJ of S is a subcover of AiiI if and only if
Bj : j  J  Ai : i  I. We say AiiI contains the subcover BjjJ if J  I.

Definition of Compactness
Definition A topological space is said to be compact if and only if every open cover
contains a finite subcover.

Remark A subset of a topological space is said compact if it is a compact topological space
with the subspace topology. The following shows that for subsets of a topological space we
can consider open covers in the larger space instead of those in the subset itself (i.e. an open
cover vs a relatively open cover).

Theorem A subset S of a topological space is compact if and only if every open cover of S
with open sets of X contains a subcover of S with open sets of X.
Continuity and Compactness
Theorem The continuous image of a compact set is compact.

Corollary Compactness is a topological property.
Characterizing Compactness
Theorem A closed subset of a compact space is compact.

Theorem Every compact subset of a Hausdorff space is closed.

Corollary In a compact Hausdorff space, a subset is compact if and only if it is closed.

The Heine-Borel Theorem
Definition A subset of Rn is bounded if and only if it is a subset of some closed ball
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centered at the origin.

Theorem A compact subset of Rn is closed and bounded.

Theorem The unit interval 01 is compact.

Corollary The closed interval ab is compact.

Theorem (Heine-Borel) A subset of R is compact if and only if it is closed and bounded.

Products of Compact Spaces
Lemma Let X, be a topological space, B a basis for , and S  X. If every open cover of
S with elements of B contains a finite subcover, then S is compact.
Theorem If X,, Y,  are compact then so is X  Y (with the product topology).

Corollary If X1,1, X2,2, Xn,n are compact then so is X1  X2   Xn (with the
product topology).

Corollary The n-dimensional unit hypercube, 01n is compact.

Corollary (n-dimensional Heine-Borel) A subset of Rn is compact if and only if it is closed
and bounded.

Proofs
Theorem (Fundamental Theorem of Equivalence Relations) Let R  X  X be an
equivalence relation and a,b  X. Then

a  b  aRb.

Pf.
1. Let R  X  X be an equivalence relation Given
2. Let a,b  X Given

 ()
3. Assume a  b -
4. aRa reflexive;1,2
5. a  a def of  
6. a  b substitution;3,5
7. aRb def of  
8.  -
9. a  b  aRb  ;3,7,8

 ()
10. Assume aRb -
11. Let x  a -
12. xRa def of  
13. xRb transitivity;1,10,12
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14. x  b def of  
15. a  b def of 
16. Let y  b -
17. yRb def of  
18. bRa symmetry;1,10
19. yRa transitivity;1,17,18
20. y  a def of  
21. b  a def of 
22. a  b def set 
23.  -
24. aRb  a  b  ;
25. a  b  aRb  ;
QED

Corollary (1) Let R  X  X be an equivalence relation. Then X is a disjoint union of
equivalence classes, i.e.

X  
aX
a

and
a,b  X, a  b or a  b  .

Pf
1. Let R  X  X be an equivalence relation. Given

 show X  
aX
a

2. Let x  X
3. xRx reflexive;1,2
4. x  x def of  
5. x   for some   X  ;2,4
6. x  

aX
a def indexed 

 show 
aX
a  X

7. Let y  
aX
a

8. y   for some   X def indexed 
9. yRb def of  
10. y  X def equiv reln;1,9

 conclude the sets are equal
11. X  

aX
a def set ;2,6,7,10

 now show a,b  X, a  b or a  b  
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12. Let a,b  X -
13. aRb or not aRb P or ~P tautology

 Case 1:
14. Assume aRb -
15. a  b Fund Thm of Equiv Relns;1,12,14
16. a  b or a  b   or 
17.  -

 Case 2:
18. Assume not aRb -
19. Assume a  b   -
20. t  a  b for some t def 
21. t  a and t  b def 
22. tRa and tRb def  
23. aRt symmetry;1,22
24. aRb transitivity;1,22,23
25.   
26. 
27. a  b   pf by contradiction;19,25,26
28. a  b or a  b   or 
29. 
30. a  b or a  b   pf by cases;13,14,16,18,28
31. a,b  X, a  b or a  b    ;12,30
QED
Theorem Every projection map is onto.

Pf.
1. Let R  X  X be an equivalence relation.
2. Let  : X  X/R be the projection map
3. x  X, x  x def of projection map
4. Let q  X/R
5. q  a for some a  X def of quotient set
6.  a  ; 3
7.  is onto def of onto
8. Every projection map is onto  ; 1, 2,7
QED

Theorem Composition of functions is associative.

Pf.
1. Let f : A  B and g : B  C and h : C  D
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2. Domainh  g  f  Domainf def of 
3.  Domaing  f def of 
4.  Domainh  g  f def of 
5. Codomainh  g  f  Codomainh  g def of 
6.  Codomainh def of 
7.  Codomainh  g  f def of 
8. Let x  A
9. h  g  fx  h  gfx def of 
10.  hgfx def of 
11.  hg  fx def of 
12.  h  g  fx def of 
13. h  g  f  h  g  f def function ;2-4,5-7,8,9-12
14. Composition of functions is associative.  
QED

Theorem (right cancellation law for surjective functions) Let X f
 Y and |Z|  1.

Then f is surjective if and only if for all functions g,h : Y  Z
g  f  h  f  g  h

Pf.
1. Let X f

 Y and |Z|  1 Given
 ()

2. Assume f is surjective
3. Let g,h : Y  Z
4. Assume g  f  h  f
5. Let y  Y
6. y  fx for some x  X def surjective;1,2,5
7. gy  gfx substitution;6
8.  g  fx def 
9.  h  fx substitution;4
10.  hfx def 
11.  hy substitution;6
12. g  h def function ;3,5,7-11
13. 
14. g  f  h  f  g  h  ;4,12,13
15. g,h : Y  Z, g  f  h  f  g  h  ;3,14
16. 
17. f is surjective  g,h : Y  Z, g  f  h  f  g  h  ;2,15

 ()
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18. Assume g,h : Y  Z, g  f  h  f  g  h
19. Let s  Y
20. Assume ~t  X, ft  s
21. t  X, ft  s DeMorgan
22. Let g : Y  Z be any function
23. u  gs for some u  Z def cardinality;1

24. Define h : Y  Z by y  Y,hy 
gy if y  s
u if y  s

25. hs  u def of h
26.  gs copy;23
27. h  g def function ;25,26
28. g  f : X  Z and h  f : X  Z def 
29. Let r  X
30. fr  s  ;21
31. g  fr  gfr def 
32.  hfr def of h
33.  h  fr def 
34. g  f  h  f def function ;28,31-33
35. g  f  h  f  g  h  ;18
36. g  h modus ponens
37.   ;27,36
38. 
39. t  X, ft  s ~ ;20,37
40. f is surjective def surjective;19,39
41. 
42. g,h : Y  Z, g  f  h  f  g  h  f is surjective  ;18,40
43. f is surjective g,h : Y  Z, g  f  h  f  g  h  ;
QED

Theorem A function has an inverse function if and only if it is bijective.

Pf.
1. Let f : X  Y

 ()
2. Assume f has an inverse
3. g : Y  X, g  f  idX and f  g  idY def inverse function
4. g : Y  X and g  f  idX and f  g  idY for some g  

 show it is injective
5. Let x,y  X
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6. Assume fx  fy
7. x  idXx def identity map
8.  g  fx substitution;4
9.  gfx def 
10.  gfy plug in;6
11.  g  fy def 
12.  idXy substitution;4
13.  y def identity map
14. 
15. f is one to one def one to one;5,6,7-13

 show it is onto
16. Let z  Y
17. gz  X def function;4,16
18. Define q  gz
19. fq  fgz substitution
20.  f  gz def 
21.  idYz substitution;4
22.  z def identity map
23. q  X, fq  z  ;17,19-22
24. f is onto def onto;16,23

 so it is bijective
25. f is bijective def bijective;15,24
26. 
27. f has an inverse  f is bijective  ;2,25

 ()
28. Assume f is bijective
29. f is one to one def bijective
30. f is onto def bijective;28

 it is easier to prove that a relation is a function than to try
 to make an inverse function directly, so we switch to ordered pair
 notation.

31. f  X  Y def function;1
32. x,y  X,z  Y, x, z  f and y, z  f  x  y def one to one;29
33. z  Y,x  X, x, z  f def onto;30

 we define g to be the set of ordered pairs in f with the
 coordinates reversed

34. Define g  z,x : x, z  f
 first we prove g is a function
 show its a relation

35. Let w  g
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36. w  z,x and x, z  f for some x  X and z  Y def g, f;31,34
37. w  Y  X def 
38. g  Y  X def ;35,37

 show it maps everything in the domain to something
39. Let t  Y
40. x  X, x, t  f  ;33
41. s, t  f for some s  X  
42. t, s  g def g;34
43. t  Y,s  X, t, s  g  , ;39,42

 show that it doesn’t map anything to two different places
44. Let u,v  X
45. Assume t,u  g and t,v  g
46. u, t  f and v, t  f def g;34
47. u  v  , ;32
48. 
49. t  Y,u,v  X, t,u  g and t,v  g  u  v  , ;45,47,44,39

 so it’s a function
50. g : Y  X def function;38,43,49
51. f  g : Y  Y and g  f : X  X def ;1,50
52. idY : Y  Y and idX : X  X def identity map

 now that we know g is a function we can return to
 using function notation to show it’s f1

53. f  gt  fgt def 
54.  fs def fx notation;42
55.  t def fx notation;41
56.  idYt def identity map;39
57. f  g  idY def function ;51,52,39,53-56
58. u, fu  f def fx notation
59. fu,u  g def g;34
60. gfu  u def fx notation
61. g  fu  gfu def 
62.  u substitution;60
63.  idXu def identity map;44
64. g  f  idX def function ;51,52,44,61-63

65. g : Y  X, g  f  idX and f  g  idY and , ;57,64
66. f has an inverse def inverse function
67. 
68. f is bijective  f has an inverse  ;28,66
69. f has an inverse f is bijective  ;27,68
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QED

Theorem The product metric is a metric.

Pf
1. Let X1,d1, X2,d2, , Xn,dn be metric spaces and X  X1  X2   Xn.
2. Define dmax : X  X  R by

dmaxx1, ,xn, y1, ,yn  maxdixi,yi : i  1, ,n
where x  x1,x2, ,xn and y  y1,y2, ,yn

3. Let x,y, z  X
4. x  x1,x2, ,xn for some x1  X1 and  and xn  Xn def 
5. y  y1,y2, ,yn for some y1  X1 and  and yn  Xn def 
6. z  z1, z2, , zn for some z1  X1 and  and zn  Xn def 

 show it’s nonnegative
7. dmaxx,y  dmaxx1,x2, ,xn, y1,y2, ,yn substitution
8.  maxdixi,yi : i  1, ,n def dmax;2
9.  dkxk,yk for some k  In def max
10.  0 def metric;1

 show it’s symmetric
 first show that dkyk,xk  diyi,xi : i  1, ,n

11. dkyk,xk  diyi,xi : i  1, ,n set builder
12. Let   diyi,xi : i  1, ,n
13.   djyj,xj for some j  1, ,n
14. djyj,xj  djxj,yj def metric
15.  dkxk,yk def max;8-9
16.  dkyk,xk def metric;1
17. dkyk,xk  maxdiyi,xi : i  1, ,n def max;11,12,14-16
18. dmaxx,y  dkxk,yk lines 7-9
19.  dkyk,xk def metric;1
20.  maxdiyi,xi : i  1, ,n substitution;17
21.  dmaxy,x def dmax;2

 prove the triangle inequality
22. dmaxx, z  dmaxx1,x2, ,xn, z1, z2, , zn substitution
23.  maxdixi, zi : i  1, ,n def dmax;2
24.  dlxl, zl for some l  In def max
25. dmaxy, z  dmaxy1,y2, ,yn, z1, z2, , zn substitution
26.  maxdiyi, zi : i  1, ,n def dmax;2
27.  dmym, zm for some m  In def max
28. dmaxx,y  dmaxy, z  dkxk,yk  dmym, zm substitution;7-9,25-27
29.  dlxl,yl  dlyl, zl def max;8-9,26-27
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30.  dlxl, zl def metric;1
31.  dmaxx, z substitution;22-24

 show dx,x  0
32. dmaxx,x  dmaxx1,x2, ,xn, x1,x2, ,xn substitution
33.  maxdixi,xi : i  1, ,n def dmax;2
34.  max0 : i  1, ,n def metric;1
35.  0 def max

 show dx,y  0  x  y
36. Assume dmaxx,y  0
37. dkxk,yk  0 substitution;7-9
38. Let i  In
39. 0  dixi,yi def metric;1
40.  dkxk,yk def max;8-9
41.  0 substitution;37
42. dixi,yi  0 arithmetic;39-41
43. xi  yi def metric;1
44. i  N,xi  yi  ;38,43
45. x1,x2, ,xn  y1,y2, ,yn def n-tuple
46. x  y substitution;4,5
47. 
48. dmax is a metric def metric;2,3,7-10,18-21,28-31,32-35,36,46
QED

Note: as we make the transition from semi-formal to informal word-wrapped style proofs we
will slowly add additional shortcuts to our proofs. One common shortcut is that in most word
wrapped textbook style proofs they do not name the specific rules of logic used for dealing with
the five propositional operators and the two quantifiers. Instead they either just say "Hence" or
"Thus" or "So" or "Therefore" or "It follows that" as a catch-all phrase to cover all logical
rules of inference. Another way they get around that is to say "by (2)" to indicate that the
statement they just gave followed from some rule of logic using the line labeled (2) as an input.
This is the style we will use in the next proof.

Theorem Suppose f : X,d  Y,d is continuous at a  X and g : Y,d  Z,d is
continuous at fa. Then g  f : X,d  Z,d is continuous at a.

Pf.
1. f : X,d  Y,d is continuous at a  X Given
2. g : Y,d  Z,d is continuous at fa Given
3.   R,  R,x  X,dx,a    dfx, fa   def continuous;1
4.   R,  R,y  Y,dy, fa    dgy,gfa   def continuous;2
5. Let   R
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6.   R,y  Y,dy, fa    dgy,gfa   by (4)
7. y  Y,dy, fa  1  dgy,gfa   for some 1  R by (6)
8.   R,x  X,dx,a    dfx, fa  1 by (3)
9. x  X,dx,a  2  dfx, fa  1 for some 2  R by (8)
10. Define   2
11.   R substitution;10,9
12. Let x  X
13. Assume dx,a  
14.  2 substitution;10
15. dfx, fa  1 by (9),(13-14)
16. dgfx,gfa   by (7),(16)
17. dg  fx,g  fa   def 
18. 
19. g  f : X,d  Z,d is continuous at a def of continuous;5,11,12,13,17
QED

In the following proof we are only numbering lines that are referred to specifically in the
reason of some future statement rather than numbering every line in the proof. This is similar
to the way proofs in textbooks and articles are numbered... only essential lines that need to be
referred to later on in the proof are given equation or line numbers. Because of the lack of line
numbers, instead of using the abbreviation “by (n)” for reasons that are rules of logic, we are
just giving the name of the rule of logic with no line numbers, the hope being that the reader
can determine what lines satisfy the inputs. This is the next step in making a proof that is more
like the word wrapped informal proofs found in your book.

Theorem Let X,d and Y,d be metric spaces and f : X  Y. Then f is continuous with
respect to the metrics d and d if and only if

U  Y,U is open in Y,d  f1U is open in X,d.

Pf.
1. Let X,d and Y,d be metric spaces and f : X  Y.

 ()
2. Assume f is continuous

Let U  Y
Assume U is open in Y,d
Let a  f1U
fa  U def of inverse image
U is a neighborhood of fa def of open
  R,Bfa;  U def of neighborhood
Bfa;  U for some   R

  R,x  X,dx,a    dfx, fa   def continuous;1

© 2007 - Ken Monks



3. x  X,dx,a    dfx, fa   for some   R

4. Let y  Ba;
y  X and dy,a   def of open ball
dfy, fa    , ;2
fy  Bfa; def open ball

5. y  f1Bfa; def inverse image
Ba;  f1U def ;3-4
  R,Ba;  f1U  
f1U  Na def of neighborhood
a  f1U, f1U  Na  
f1U is open in X,d def of open


U is open in Y,d  f1U is open in X,d  
U  Y,U is open in Y,d  f1U is open in X,d  
 ()
Assume U  Y,U is open in Y,d  f1U is open in X,d
Let b  X
Let   R

6. Define U  Bfb;
U  Y def of open ball
U is open in Y,d Thm: open balls are open;5

7. f1U is open in X,d  ; 
fb  U Lemma: every open ball contains its center;5
b  f1U def inverse image
f1U is a neighborhood of b def open set;6
  R,Bb;  f1U def neighborhood

8. Bb;  f1U for some   R  
Let z  X
Assume dz,b  
z  Bb; def open ball
z  f1U def ;7
fz  U def inverse image
fz  Bfb; substitution;5
dfz, fb   def open ball


dz,b    dfz, fb    
  R,  R,x  X,dx,b    dfx, fb    , , 
f is continuous at b def continuous at a point
x  X, f is continuous at x  
f is continuous def continuous
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QED

Theorem Let X,d be a metric space.
1. The empty set is open.
2. The set X is open.
3. The union of any collection of open sets is open.
4. The intersection of finitely many open sets is open.

Pf
1. Let X,d be a metric space.
Let x be arbitrary

 Show (1)
Assume x  
x   by def of empty set
  
 is a neighborhood of x Thm:anything


x     is a neighborhood of x  
x,x     is a neighborhood of x  
 is open def of open

 Show (2)
Assume x  X
Bx;  X def open ball
  R arithmetic
  R,Bx;  X  
X is a neighborhood of x def neighborhood


x  X  X is a neighborhood of x  
x,x  X  X is a neighborhood of x  
X is open def of open

 Show (3)
2. Let I be a set and OiiI an indexed family of open subsets of X
Define U  iI Oi
Assume x  U
x  Ok for some k  I def union
Ok is open by (1)
y  Ok,Ok is a neighborhood of y def open

© 2007 - Ken Monks



Ok is a neighborhood of x  
Ok  U Exercise 1.4.1.a
U is a neighborhood of x Thm N3


x  U  U is a neighborhood of x  
x,x  U  U is a neighborhood of x  
U is open def of open
 Show (4)

3. Let n be a positive integer and V1,V2, ,Vn by open subsets of X
Define V  V1  V2 Vn
Assume x  V
k  In,x  Vk def intersection
k  In,k  R,Bx;k  Vk def open;2
Bx;k  Vk for some 1,2, ,n  R  
Define   min1,2, ,n
Let k  In
Let z  Bx;
dz,x   def open ball

 k def min
z  Bx;k def open ball
Bx;  Bx;k def 

 Vk def open ball
k  In,Bx;  Vk  
Bx;  kIn Vk def intersection

 V substitution
V is a neighborhood of x def neighborhood


x  V  V is a neighborhood of x  
x,x  V  V is a neighborhood of x  
V is open def of open

QED

Lemma A subset of a topological space is open if and only if it is a neighborhood of each of
its points.

Pf.
Let X, be a topological space and U  X.

 ()
Assume U is open
U  U from page 3
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Let u  U
U is a neighborhood of u def neighborhood
U is a neighborhood of each of its points  

 ()
Assume U is a neighborhood of each of its point
Let x  U
U is a neighborhood of x  
x  Ox  U for some open set Ox def neighborhood
x  U,Ox  ,x  Ox  U  
Let y  U
y  Oy  U for some open set Oy def neighborhood
y  xU Ox def indexed union
U  xU Ox
Let z  xU Ox
z  Ot for some t  U def indexed union
Ot  U def Ox above
z  U def 
xU Ox  U def 
U  xU Ox def set 
xU Ox is open def topology
U is open substitution


QED

Lemma Let f : X  Y and A,B  Y. If A  B then f1A  f1B.

Pf.
Let f : X  Y and A,B  Y
Assume A  B
Let x  f1A
fx  A def inverse image
fx  B def 
x  f1B def inverse image
f1A  f1B def 


QED
Lemma A map between topological spaces is continuous if and only if it is continuous at
every point.

Pf.
Let f : X,  Y,  be a map between topological spaces.

 ()
Assume f is continuous
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Let a  X
Let N be a neighborhood of fa
fa  O  N for some open set O    def of neighborhood
f1O  , i.e. its open!! Yay! def of continuous
a  f1O def inverse image
f1O  f1N by Lemma above
f1N is a neighborhood of a def of neighborhood
f is continuous at a def continuous at a point
f is continuous at every point  


 ()
Assume f is continuous at every point
Let U    be an open subset of Y
Let a  f1U
fa  U def inverse image
U  U pg 3
U is a neighborhood of fa def of neighborhood
f is continuous at a  
f1U is a neighborhood of a def continuous at a point
f1U is a neighborhood of each of its points  
f1U is open by the Lemma above
U   , f1U is open  
f is continuous def continuous


QED

Theorem Let X, be a topological space and R and equivalence relation on X. Then the
quotient topology on X/R is the set

   O  X/R : 1O  

Pf.
Let X, be a topological space and R and equivalence relation on X.
Let  : X  X/R be the quotient map.
Define    O  X/R : 1O  
1   by def of inverse image.

  by def of topology.
    by def of  .
1X/R  X by def of inverse image.

  by def of topology.
X/R    by def of  .
Let OiiI be an indexed family of elements of  .
i  I,1Oi   by def of  .

1 
iI
Oi  

iI
1Oi by some result in chapter 1.
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  by def of topology.

iI
Oi    by def of  .

Let O1,O2, ,On   .
i  In,1Oi   by def of  .
1O1  O2 On  1O1  1O2 1On by some result in chapter 1.

  by def of topology.
O1  O2 On    by def of  .
  is a topology.
Let T be a topology on X/R such that  : X,  X/R,T is continuous.
Let U  T.
1U   by definition of continuous.
U    by def of  .
T    by def of .
  is stronger than T by def of strong.
  is stronger than every topology on X/R such that the quotient map is continuous (by for all
plus!).
  is the quotient topology!
QED

Theorem Let X,, Y,  be topological spaces and  the product topology on X  Y. Let
y0  Y and S  x,y0 : x  X. Then X, is homeomorphic to S, where  is the
subspace topology on S.

Pf.
Let X,, Y,  be topological spaces and  the product topology on X  Y.
Let y0  Y, S  x,y0 : x  X, and  the subspace topology on S.
Define h : X  S by hx  x,y0 for all x  X.
We will show h is a homeomorphism

 First we show it is injective
Let a,b  X.
Assume ha  hb.
a,y0  b,y0 by def of h.
a  b by def of ordered pair.


h is injective.

 Now we show it is surjective
Let s  S.
s  t,y0 for some t  X by def of S.
 ht by def of h.

h is surjective.

 so it is both injective and surjective
h is bijective.
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 now we show that h is continuous by showing the inverse image of an arbitrary open set is
open
Let O be an open subset of S,.
O  U   S for some open set U  in X  Y, by def of subspace topology.
U   iI Ai  Bi for some open sets AiiI of X and open sets BiiI of Y by the definition
of product topology.
 in order for this to work, we need to "trim" our set U  a little by throwing away any of the

basis elements which do not intersect S.
Let I  i  I : y0  Bi.
Define U  iI Ai  Bi.
U  U  by problem 1.3.b.
Let r  U  S
r  U and r  S by def of .
r  U  and r  S by def subset.
r  U   S by def of .
U  S  U   S by def of subset.

 O by substitution.
Let q  O

 U   S by substitution.
q  U  and q  S by def of .
q  iI Ai  Bi by substitution.
q  A   B  for some   I by def of union.
q  q1,q2 for some q1  A  and q2  B  by def of Cartesian product.
q  a0,y0 for some a0  X by def of S.
q1,q2  a0,y0 by substitution.
q1  a0 and q2  y0 by def of ordered pair.
y0  B  by substitution.
  I by definition of I.
q  iI Ai  Bi by definition of union.
 U by substitution.

q  U  S by def .
O  U  S by def of subset.
O  U  S by def of set equality.

 we will now show that h1O  iI Ai and therefore is open in X
 to do this we have to show that two sets are equal
 first we show h1O  iI Ai

Let x  h1O
 h1U  S by substitution,
 h1iI Ai  Bi  S by substitution.

hx  iI Ai  Bi  S by def of inverse image.
hx  iI Ai  Bi and hx  S by def .
hx  A  B for some   I by def of union.
hx  a,b for some a  A,b  B by def of Cartesian product.
hx  x,y0 by def of h.
x,y0  a,b by substitution.
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x  a and b  y0 by def of ordered pair.
x  A by substitution.
x  iI Ai by def of union.
h1O  iI Ai by def of subset.
 now we show iI Ai  h1O

Let z  iI Ai.
z  A for some   I by def of union.
hz  z,y0 by def of h.

 S by def of S.
hz  A  B by def of I.

 iI Ai  Bi by def of union
 U by substitution.

hz  U  S by def of .
 O by substitution.

z  h1O
iI Ai  h1O by def of subset.

h1O  iI Ai by def of set equality.

iI Ai is open in X by def of topology since all Ai are open.
h1O is open by substitution.
h is continuous by def of continuous.

 now we define the inverse function of h
Let g : S  X by gx,y0  x.
Let w  S.
w  w1,y0 for some w1  X by def of S.
h  gw  h  gw1,y0 by substitution.

 hgw1,y0 by def of .
 hw1 by def of g.
 w1,y0 by def of h.
 w by substitution.

Let v  X.
g  hv  ghv by def of .

 gv,y0 by def of h.
 v by def of g.

So g and h are inverse functions.

 and finally we show the inverse function is continuous... but not by brute force like we did
above
Let i : S  X  Y be the inclusion map and p1 : X  Y  X the projection map onto the first
component.
i is continuous by Thm 6.6.
p1 is continuous by the definition of product topology.
p1  i is continuous by the corollary to Thm 5.6.
Let u  S.
u  u1,y0 for some u1  X by def of S.
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p1  iu  p1  iu1,y0 by substitution.
 p1iu1,y0 by def of 
 p1u1,y0 by def of i
 u1 by def of p1
 gu1,y0 by def of g
 gu by substitution.

g  p1  i by def of function equality.
g is continuous by substitution.

h is a homeomorphism by def of homeomorphism (it is a continuous bijection with a
continuous inverse).

X, is homeomorphic to S, by def of homeomorphic.
QED

Remark Note that in this proof we showed that the projection map restricted to a subset of
its domain is still continuous by composing it with the inclusion map. This proof works in
general, namely, if we have any continuous function f : X  Y and A  X, then the function
obtained by restricting the domain of f to A is still continuous (with the subspace topology on
A from X).
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