Topology Lecture Notes

© 2007 - Ken Monks
by Ken Monks
Math 460 - Geometry
Department of Mathematics
University of Scranton

This is not a complete set of lecture notes for Math 460, Topology. Additional material will be covered in class and discussed in the textbook.

Logic

In this section we give an informal overview of logic and proofs. For a more formal introduction see any logic textbook.

Variables, Expressions, and Statements

Definition A set is a collection of items called the members (or elements) of the set.
Remark An element is either in a set or it is not in a set, it cannot be in a set more than once.

Definition An expression is an arrangement of symbols which represents an element of a set called the domain (or type) of the expression.

Remark It is not necessary that we know specifically which element of the domain an expression represents, only that it represents some unspecified element in that set.

Definition The element of the domain that the expression represents is called a value of that expression.

Definition a variable is an expression consisting of a single symbol.
Definition A constant is an expression whose domain contains a single element.
Definition A statement (or Boolean expression) is an expression whose domain is \{true, false $\}$.

Remark We do not have to know if a statement is true or false, just that it is either true or false.

Definition The value of a statement is called its truth value.
Definition To solve a statement is to determine the set of all elements for which the statement is true.

Remark More precisely, if a statement contains n variables, $x_{1}, \ldots x_{n}$, then to solve the statement is to find the set of all n-tuples $\left(a_{1}, \ldots, a_{n}\right)$ such that each a_{i} is an element of the domain of x_{i} and the statement becomes true when x_{1}, \ldots, x_{n} are replaced by a_{1}, \ldots, a_{n} respectively. Each such n-tuple is called a solution of the statement.

Definition The set of all solutions of a statement is called the solution set.

Definition An equation is a statement of the form $A=B$ where A and B are expressions.
Definition An inequality is a statement of the form $A \star B$ where A and B are expressions and \star is one of $\leq, \geq,>,<$, or \neq.

Propositional Logic

The Five Logical Operators
Definition Let P, Q be statements. Then the expressions

1. $\sim P$
2. P and Q
3. P or Q
4. $P \Rightarrow Q$
5. $P \Leftrightarrow Q$
are also statements whose truth values are completely determined by the truth values of P and Q as shown in the following table

P	Q	$\sim P$	P and Q	P or Q	$P \Rightarrow Q$	$P \Leftrightarrow Q$
T	T	F	T	T	T	T
T	F	F	F	T	F	F
F	T	T	F	T	T	F
F	F	T	F	F	T	T

Rules of Inference and Proof

Definition A rule of inference is a rule which takes zero or more statements (or other items) as input and returns one or more statements as output.

Notation An expression of the form

represents a rule of inference whose inputs are $P_{1} \ldots P_{k}$ and outputs are Q_{1}, \ldots, Q_{n}.
Notation The rule of inference shown above can also be expressed in recipe notation as

\qquadShow P_{1} \vdots Show P_{k} Conclude Q_{1} \vdots or equivalently, Conclude Q_{n} To show Q_{1}, \ldots, Q_{n} Show P_{1} \vdots Show P_{k}
Definition A formal logic system consists of a set of statements and a set of rules of
inference.
Definition A proof in a formal logic system consists of a finite sequence of statements (and
other inputs to the rules of inference) such that each statement follows from the previous
statements in the sequence by one or more of the rules of inference.
Natural Deduction
Definition The symbol \leftarrow is an abbreviation for "end assumption".
Definition The rules of inference for propositional logic are shown in Table 1.

Table 1: Rules of inference for Propositional Logic	
and + To show W and V 1. Show W 2. Show V	and - and - To show W To show V 1. Show W and V 1. Show W and V
\square To show $W \Rightarrow V$ 1. Assume W 2. Show V 3. \leftarrow	\Rightarrow - (modus ponens) To show V 1. Show W 2. Show $W \Rightarrow V$
To show $W \Leftrightarrow V$ 1. Show $W \Rightarrow V$ 2. Show $V \Rightarrow W$	$\Leftrightarrow-$ $\Leftrightarrow-$ To show $W \Rightarrow V$ To show $V \Rightarrow W$ 1. Show $W \Leftrightarrow V$ 1. Show $W \Leftrightarrow V$
or + or + To show W or V To show W or V 1. Show W 1. Show V	or - (proof by cases) To show U 1. Show W or V 2. Show $W \Rightarrow U$ 3. Show $V \Rightarrow U$
$\sim+$ (proof by contradiction) To show $\sim W$ 1. Assume W 2. Show $\rightarrow \leftarrow$ $3 . \leftarrow$	\sim - (proof by contradiction) To show W 1. Assume ~ W 2. Show $\rightarrow \leftarrow$ $3 . \leftarrow$
$\rightarrow \leftarrow+$ To show $\rightarrow \leftarrow$ 1. Show W 2. Show $\sim W$	

Remark Note that the inputs "Assume -" and " \leftarrow " are not themselves statements but rather inputs to rules of inference that may be inserted into a proof at any time. There is no reason however, to insert such statements unless you intend to use one of the rules of inference that
requires them as inputs.
Remark Precedence: In order to eliminate parentheses we give the operators the following precedence (from highest to lowest):

other math operators $(+,=, \cdot, \cup,-$, etc $)$
\sim
and, or
\Rightarrow
\Leftrightarrow

Example Use Natural Deduction to prove the following tautologies.

1. $\sim \sim P \Leftrightarrow P$
2. $\sim(P$ and $Q) \Leftrightarrow \sim P$ or $\sim Q \quad$ [Hint: Use P or $\sim P$, proven in the homework]

Equality

Definition The equality symbol, $=$, is defined by the two rules of inference given in Table 2.

Table 2: Rules of Inference for Equality	
Reflexive $=$	Substitution
To show $x=x$	To show W with the $n^{\text {th }}$ free occurrence of x replaced by y 1. Show W $2 . S h o w ~$ 2. Shy

Remark Note that in the Reflexive rule there are no inputs, so you can insert a statement of the form $x=x$ into your proof at any time. Note that there is a technical restriction on the Substitution rule that is not listed here (see the Proof Recipes sheet for details). In most situations the restriction is not a concern.

Example Use natural deduction to prove that $x=y \Leftrightarrow y=x$.

Quantifiers

Definition The symbols \forall and \exists are quantifiers. The symbol \forall is called "for all", "for every", or "for each". The symbol \exists is called "for some" or "there exists".

Definition If W is a statement and x is any variable then $\forall x, W$ and $\exists x, W$ are both statements. The rules of inference for these quantifiers are given in Table 3.

Notation If x is a variable, t an expression, and $W(x)$ a statement then $W(t)$ is the statement obtained by replacing every free occurrence of x in $W(x)$ with (t),

Table 3: Rules of Inference for Quantifiers	
$\forall+$	$\forall-$
To show $\forall x, W(x)$ To show $W(t)$ 1. Let s be arbitrary 1. Show $\forall x, W(x)$ 2. Show $W(s)$ $\exists+$ $\exists-$ To show $\exists x, W(x)$ To show $W(t)$ for some t 1. Show $W(t)$ 1. Show $\exists x, W(x)$ \begin{tabular}{l}	
\end{tabular} | |

Remark Note that there are restrictions on the rules of inference for quantifiers which are not listed in Table 3 (see the Proof Recipes sheet for details). In most situations they are not a concern.

Remark Precedence: Quantifiers have a lower precedence than \Leftrightarrow. Thus they quantify the largest statement to their right possible unless specifically limited by parentheses.
Example Prove $(\sim \exists x, P(x)) \Rightarrow \forall x, \sim P(x)$
Example Prove $(\forall x, P(x) \Rightarrow Q(x))$ and $(\forall y, P(y)) \Rightarrow(\forall z, Q(z))$
Definition Let $W(x)$ be a statement and $W(y)$ the statement obtained by replacing every free occurrence of x in $W(x)$ with y. We define

$$
(\exists!x, W(x)) \Leftrightarrow \exists x,(W(x) \text { and } \forall y, W(y) \Rightarrow y=x)
$$

The statement $\exists!x, W(x)$ is read "There exists a unique x such that $W(x)$."

Table 4: Rules of Inference for $\exists!$	
$\exists!+$	$\exists!-$
To show $\exists!x, W(x)$	To show $\exists x, W(x)$ and $\forall y, W(y) \Rightarrow y=x$
1. Show $W(t)$	1. Show $\exists!x, W(x)$
2. Let y be arbitrary	
3. Assume $W(y)$	
4. Show $y=t$	
5. \leftarrow	

Sets, Functions, Numbers

Some Definitions from Set theory

The symbol \in is formally undefined, but it means "is an element of". Many of the definitions below are informal definitions that are sufficient for our purposes.
Set notation and operations

Finite set notation:	$x \in\left\{x_{1}, \ldots, x_{n}\right\} \Leftrightarrow x=x_{1}$ or \cdots or $x=x_{n}$
Set builder notation:	$x \in\{y: P(y)\} \Leftrightarrow P(x)$
Cardinality (see below):	$\# S=$ the number of elements in a finite set S
Subset:	$A \subseteq B \Leftrightarrow \forall x, x \in A \Rightarrow x \in B$
Set equality:	$A=B \Leftrightarrow A \subseteq B$ and $B \subseteq A$
Def. of \notin :	$x \notin A \Leftrightarrow \sim(x \in A)$
Empty set:	$A=\emptyset \Leftrightarrow \forall x, x \notin A$
Relative Complement:	$x \in B-A \Leftrightarrow x \in B$ and $x \notin A$
Intersection:	$x \in A \cap B \Leftrightarrow x \in A$ and $x \in B$
Union:	$x \in A \cup B \Leftrightarrow x \in A$ or $x \in B$
Power Set:	$x \in 2^{A} \Leftrightarrow x \subseteq A$
Indexed Intersection:	$x \in \bigcap_{i \in I} A_{i} \Leftrightarrow \forall i, i \in I \Rightarrow x \in A_{i}$
Indexed Union:	$x \in \bigcup_{i \in I} A_{i} \Leftrightarrow \exists i, i \in I \text { and } x \in A_{i}$
Two convenient abbreviations:	$\begin{aligned} & (\forall x \in A, P(x)) \Leftrightarrow \forall x, x \in A \Rightarrow P(x) \\ & (\exists x \in A, P(x)) \Leftrightarrow \exists x, x \in A \text { and } P(x) \end{aligned}$
Some Famous Sets	
The Natural Numbers	$\mathbb{N}=\{0,1,2,3,4, \ldots\}$
The Integers	$\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$
The Rational Numbers	$\mathbb{Q}=\left\{\frac{a}{b}: a \in \mathbb{Z}, b \in \mathbb{N}, b>0\right.$, and $\left.\operatorname{gcd}(a, b)=1\right\}$
The Real Numbers	$\mathbb{R}=\{x: x$ can be expressed as a decimal number $\}$
The Complex Numbers	$\mathbb{C}=\{x+y i: x, y \in \mathbb{R}\}$ where $i^{2}=-1$
The positive real numbers	$\mathbb{R}^{+}=\{x: x \in \mathbb{R}$ and $x>0\}$
The negative real numbers	$\mathbb{R}^{-}=\{x: x \in \mathbb{R}$ and $x<0\}$
The positive reals in a set A	$A^{+}=A \cap \mathbb{R}^{+}$
The negative reals in a set A	$A^{-}=A \cap \mathbb{R}^{-}$
The first n positive integers	$\mathbb{I}_{n}=\{1,2, \ldots, n\}$
The first $n+1$ natural numbers	$\mathbb{O}_{n}=\{0,1,2, \ldots, n\}$
Cartesian products	

Ordered Pairs:	$(x, y)=(u, v) \Leftrightarrow x=u$ and $y=v z$
Ordered n-tuple:	$\left(x_{1}, \ldots, x_{n}\right)=\left(y_{1}, \ldots, y_{n}\right) \Leftrightarrow x_{1}=y_{1}$ and \cdots and $x_{n}=y_{n}$
Cartesian Product:	$x \in A \times B \Leftrightarrow x=(a, b)$ for some $a \in A$ and $b \in B$
Cartesian Product:	$x \in A_{1} \times \cdots \times A_{n} \Leftrightarrow x=\left(x_{1}, \ldots, x_{n}\right)$ for some $x_{1} \in A_{1}$ and \cdots and $x_{n} \in A_{n}$
Power of a Set	$A^{n}=A \times A \times \cdots \times A$ where there are n " A 's" in the Cartesian product
Product of Sets	$x \in \prod_{i=0}^{\infty} A_{i} \Leftrightarrow x=\left(x_{0}, x_{1}, x_{2}, \ldots\right)$ and $\forall i, x_{i} \in A_{i}$ for some x_{0}, x_{1}, \ldots
Functions and Relations	
Def of \neq	$x \neq t \Leftrightarrow \sim(x=t)$
Def of relation:	R is a relation from A to $B \Leftrightarrow R \subseteq A \times B$
Def of function:	$f: A \rightarrow B \Leftrightarrow f \subseteq A \times B$ and $(\forall x, \exists!y,(x, y) \in f)$
Alt. function notation	$X \rightarrow Y \Leftrightarrow f: X \rightarrow Y$
Def of $f(x)$ notation:	$f(x)=y \Leftrightarrow f: A \rightarrow B$ and $(x, y) \in f$
Domain:	Domain $(f)=A \Leftrightarrow f: A \rightarrow B$
Codomain:	Codomain $(f)=B \Leftrightarrow f: A \rightarrow B$
Image (of a set):	$f(S)=\{y: \exists x, x \in S$ and $y=f(x)\}$
Range (or Image of $f):$	Range $(f)=f($ Domain $(f))$
Identity Map:	$i d_{A}: A \rightarrow A$ and $\forall x, i d_{A}(x)=x$
Composition:	$f: A \rightarrow B$ and $g: B \rightarrow C \Rightarrow(g \circ f): A \rightarrow C$ and $\forall x,(g \circ f)(x)=g(f(x))$
Injective (one-to-one): f is injective $\Leftrightarrow \forall x, \forall y, f(x)=f(y) \Rightarrow x=y$	
Surjective (onto):	f is surjective $\Leftrightarrow f: A \rightarrow B$ and $(\forall y, y \in B \Rightarrow \exists x, y=f(x))$
Bijective:	f is bijective $\Leftrightarrow f$ is injective and f is surjective
Inverse:	$f-1: B \rightarrow A \Leftrightarrow f: A \rightarrow B$ and $f \circ f^{-1}=i d_{B}$ and $f^{-1} \circ f=i d_{A}$
Inverse Image:	$f: A \rightarrow B$ and $S \subseteq B \Rightarrow f^{-1}(S)=\{x \in A: f(x) \in S\}$
Constant map:	$f: A \rightarrow B$ is a constant map $\Leftrightarrow \exists c \in B, \forall x \in A, f(x)=c$
Inclusion map:	$i: A \rightarrow B$ is an inclusion map $\Leftrightarrow A \subseteq B$ and $\forall a \in A, i(a)=a$

Example Prove $(A-B) \subseteq(A \cup B)-(A \cap B)$
Example Prove iff $: A \rightarrow B, X \subseteq A$, and $Y \subseteq B$ then $f(X) \subseteq Y \Leftrightarrow X \subseteq f^{-1}(Y)$.

Counting

Definition Two sets have the same cardinality if and only if there is a bijection from one set to the other.

Definition A finite set A has n elements if and only if there is a bijection from $\{1,2,3, \ldots, n\}$ to A.

Remark If two sets have the same cardinality then they are both infinite, or both finite. If they are finite the have the same number of elements.

Equivalence Relations

Definition Let X be a set.

$$
R \text { is a relation on } X \Leftrightarrow R \subseteq X \times X \text {. }
$$

Definition Let X be a set and $R \subseteq X \times X$. For any $x, y \in X$,

$$
x R y \Leftrightarrow(x, y) \in R \quad \text { (infix notation) }
$$

and

$$
R(x, y) \Leftrightarrow(x, y) \in R \quad \text { (prefix notation) }
$$

Definition Let X be a set and $R \subseteq X \times X$.

$$
\begin{array}{lll}
R \text { is an equivalence relation } \Leftrightarrow & \forall x, y, z \in X, \\
& \text { (0) } x R x & \text { (reflexive) } \\
& \text { (1) } x R y \Rightarrow y R x \Rightarrow & \text { (symmetric) } \\
& \text { (2) } x R y \text { and } y R z \Rightarrow x R z & \text { (transitive) }
\end{array}
$$

Definition Let $R \subseteq X \times X$ be an equivalence relation and $a \in X$.

$$
[a]_{R}=\{x: x R a\}
$$

This is called the equivalence class of a (with respect to R).
Notation We often abbreviate $[a]_{R}$ by $[a]$ when the relation R is clear from context.
Theorem (Fundamental Theorem of Equivalence Relations) Let $R \subseteq X \times X$ be an equivalence relation and $a, b \in X$. Then

$$
[a]=[b] \Leftrightarrow a R b .
$$

Corollary (1) Let $R \subseteq X \times X$ be an equivalence relation. Then X is a disjoint union of equivalence classes, i.e.

$$
X=\bigcup_{a \in X}[a]
$$

and

$$
\forall a, b \in X,[a]=[b] \text { or }[a] \cap[b]=\emptyset .
$$

Definition If X is a set and $P=\left\{A_{i}: i \in I\right\}$ is a set of subsets of X such that

$$
X=\bigcup_{i \in I} A_{i}
$$

and

$$
\forall i, j \in I, i \neq j \Rightarrow A_{i} \cap A_{j}=\emptyset
$$

we say that P is a partition of X.

Remark Thus, the set of equivalence classes of an equivalence relation on X is a partition of X.

Definition Let $R \subseteq X \times X$ be an equivalence relation. Then the quotient of X by the relation R is

$$
X / R=\left\{[x]_{R}: x \in X\right\}
$$

In other words X / R is the set of all equivalence classes.
Definition Let $R \subseteq X \times X$ be an equivalence relation. The quotient map is the function $\pi: X \rightarrow X / R$ such that for all $x \in X$

$$
\pi(x)=[x]_{R}
$$

Theorem Every quotient map is onto.

Composition

Theorem Composition of functions is associative.
Theorem The composition of injective functions is injective and the composition of surjective functions is surjective.

Theorem (left cancellation law for injective functions) Let $Y \xrightarrow{f}$ Z. Then fis injective if and only if for all functions $g, h: X \rightarrow Y$

$$
(f \circ g=f \circ h) \Rightarrow g=h
$$

Theorem (right cancellation law for surjective functions) Let $X \xrightarrow{f}$ Yand $|Z|>1$.

Then f is surjective if and only if for all functions $g, h: Y \rightarrow Z$

$$
(g \circ f=h \circ f) \Rightarrow g=h
$$

Inverse Functions

Theorem A function has an inverse function if and only if it is bijective.
Theorem Inverse functions are unique.

Extensions and Restrictions

Definition Let $f: A \rightarrow Y, F: X \rightarrow Y, A \subseteq X$. If $\forall a \in A, f(a)=F(a)$ then we say that f is the restriction of F to A and that F is an extension of f to X. In this situation we write $f=F \mid A$.

Remark In this situation, if $A \xrightarrow{i} X$ is the inclusion map, then $f=F \mid A=$ Fi. In other words the following diagram commutes

Metric Spaces

Definition A metric space is a pair (X, d) where X is a set and $d: X \times X \rightarrow \mathbb{R}$ such that for all $x, y, z \in X$:

1. $d(x, y) \geq 0$
2. $d(x, y)=0 \Leftrightarrow x=y$
3. $d(x, y)=d(y, x)$
4. $d(x, y)+d(y, z) \geq d(x, z)$

In this situation, d is called a metric (or distance function) on X, and the elements of X are called the points in the metric space. The set X is called the underlying set of the metric space.

Remark It is quite common to refer to the metric space (X, d) as simply X.

Examples of Metric Spaces

Example ($\mathbb{R}, d_{\text {Euc }}$) is a metric space where $d_{\text {Euc }}(x, y)=|x-y|$ for all $x, y \in \mathbb{R}$.
Notice this is just a special case of the more general theorem:
Theorem ($\mathbb{R}^{n}, d_{\text {Euc }}$) is a metric space where

$$
d_{\mathrm{Euc}}\left(\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)\right)=\sqrt{\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}}
$$

d_{Euc} is called the Euclidean metric on \mathbb{R}^{n}.

Definition Let $d_{\text {Taxi }}: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ by

$$
d_{\mathrm{Taxi}}\left(\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)\right)=\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|
$$

The map $d_{\text {Taxi }}$ is called the lattice metric, the Manhattan metric, or the taxicab metric.
Definition Let (X, d) be a metric space. Then a circle with center $p \in X$ and radius $r \in \mathbb{R}^{+}$ is

$$
\{x: d(x, p)=r\}
$$

Remark If S is a finite set of real numbers then $\max S$ is the largest number in the set, in other words

$$
m=\max S \Leftrightarrow m \in S \text { and } \forall n \in S, n \leq m
$$

Definition Let $d_{\max }: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ by

$$
d_{\max }\left(\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)\right)=\max \left\{\left|x_{i}-y_{i}\right|: i \in\{1, \ldots, n\}\right\}
$$

The map $d_{\text {max }}$ is called the maximum metric.
Definition The set of 2-adic integers, denoted \mathbb{Z}_{2}, is the set of all infinite sequences of 0 's and 1 's, i.e.

$$
\mathbb{Z}_{2}=\left\{\left(s_{0}, s_{1}, \ldots\right): \forall i \in \mathbb{N}, s_{i} \in\{0,1\}\right\}
$$

or equivalently

$$
\mathbb{Z}_{2}=\{s: s: \mathbb{N} \rightarrow\{0,1\}\}
$$

Definition Let $d_{2}: \mathbb{Z}_{2} \times \mathbb{Z}_{2} \rightarrow \mathbb{R}$ by

$$
d_{2}\left(\left(s_{0}, s_{1}, \ldots\right),\left(t_{0}, t_{1}, \ldots\right)\right)=\frac{1}{2^{k}}
$$

where $k=\min \left\{i: s_{i} \neq t_{i}\right\}$ if $\left(s_{0}, s_{1}, \ldots\right) \neq\left(t_{0}, t_{1}, \ldots\right)$ and

$$
d_{2}\left(\left(s_{0}, s_{1}, \ldots\right),\left(t_{0}, t_{1}, \ldots\right)\right)=0
$$

if $\left(s_{0}, s_{1}, \ldots\right)=\left(t_{0}, t_{1}, \ldots\right)$. The map d_{2} is called the 2-adic metric.
Theorem $\left(\mathbb{R}^{n}, d_{\mathrm{Taxi}}\right),\left(\mathbb{R}^{n}, d_{\max }\right)$, and $\left(\mathbb{Z}_{2}, d_{2}\right)$ are metric spaces.
Remark It is a fact that $\left(\mathbb{Z}_{2}, d_{2}\right)$ cannot be embedded in $\left(\mathbb{R}^{n}, d_{\mathrm{Euc}}\right)$ for any n. The 2-adic metric is simple to compute and work with, but the geometry of $\left(\mathbb{Z}_{2}, d_{2}\right)$ is very strange.

Product metric

Definition Let $\left(X_{1}, d_{1}\right),\left(X_{2}, d_{2}\right), \ldots,\left(X_{n}, d_{n}\right)$ be metric spaces and $X=X_{1} \times X_{2} \times \cdots \times X_{n}$. Define $d_{\max }: X \times X \rightarrow \mathbb{R}$ by

$$
d_{\max }\left(\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)\right)=\max \left\{d_{i}\left(x_{i}, y_{i}\right): i \in\{1, \ldots, n\}\right\}
$$

where $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$. This is called the product metric.
Theorem The product metric is a metric.

Continuity

Maps between metric spaces
Definition A map between metric spaces (X, d) and $\left(Y, d^{\prime}\right)$ is any ordered tuple $\left(f, X, d, Y, d^{\prime}\right)$ where $f: X \rightarrow Y$ and (X, d) and $\left(Y, d^{\prime}\right)$ are metric spaces.

Notation We write $f:(X, d) \rightarrow\left(Y, d^{\prime}\right)$ to mean that $\left(f, X, d, Y, d^{\prime}\right)$ is a map between metric spaces (X, d) and $\left(Y, d^{\prime}\right)$.
Continuous maps
Definition Let $f:(X, d) \rightarrow\left(Y, d^{\prime}\right)$. Then f is continuous at $a \in X$ if and only if

$$
\forall \varepsilon \in \mathbb{R}^{+}, \exists \delta \in \mathbb{R}^{+}, \forall x \in X, d(x, a)<\delta \Rightarrow d^{\prime}(f(x), f(a))<\varepsilon
$$

Definition Let $f:(X, d) \rightarrow\left(Y, d^{\prime}\right)$. Then f is continuous if and only iff is continuous at every point $a \in X$.

Theorem Every constant map is continuous.
Theorem Every identity map from a metric space to itself is continuous.
Theorem The identity map $i:\left(\mathbb{R}^{n}, d_{\max }\right) \rightarrow\left(\mathbb{R}^{n}, d_{\text {Euc }}\right)$ and the identity map $i^{\prime}:\left(\mathbb{R}^{n}, d_{\text {Euc }}\right) \rightarrow\left(\mathbb{R}^{n}, d_{\max }\right)$ are both continuous.
Theorem Iff $:(X, d) \rightarrow\left(Y, d^{\prime}\right)$ is continuous at $a \in X$ and $g:\left(Y, d^{\prime}\right) \rightarrow\left(Z, d^{\prime \prime}\right)$ is continuous at $f(a)$ then $g \circ f:(X, d) \rightarrow\left(Z, d^{\prime \prime}\right)$ is continuous at a.

Corollary The composition of continuous functions is continuous.

Open Balls and Neighborhoods

Definition Let (X, d) be a metric space, $\delta \in \mathbb{R}^{+}$, and $a \in X$. Then

$$
\begin{aligned}
B(a ; \delta) & =\{x \in X \mid d(x, a)<\delta\} \text { and } \\
\bar{B}(a ; \delta) & =\{x \in X \mid d(x, a) \leq \delta\}
\end{aligned}
$$

$B(a ; \delta)$ is called the open ball of radius δ centered at a, and $\bar{B}(a ; \delta)$ is called the closed ball of radius δ centered at a.

Remark This gives us another language for specifying that two elements are close together since

$$
d(x, a)<\delta \Leftrightarrow x \in B(a ; \delta)
$$

Two useful facts

Lemma (subset) Let $f: X \rightarrow Y, U \subseteq X$, and $V \subseteq Y$. Then

$$
U \subseteq f^{-1}(V) \Leftrightarrow f(U) \subseteq V
$$

Lemma (subset) Let $f: X \rightarrow Y, A, B \subseteq X$ and $U, V \subseteq Y$. Then

$$
U \subseteq V \Rightarrow f^{-1}(U) \subseteq f^{-1}(V)
$$

and

$$
A \subseteq B \Rightarrow f(A) \subseteq f(B)
$$

Neighborhoods

Definition Let (X, d) be a metric space, $a \in X$, and $N \subseteq X$. Then N is a neighborhood of a if and only if $\exists \delta \in \mathbb{R}^{+}, B(a ; \delta) \subseteq N$.

Definition Let (X, d) be a metric space and $a \in X$. The set

$$
\mathcal{N}_{a}=\{N: N \text { is a neighborhood of } a\}
$$

is called the complete system of neighborhoods of the point a.
Theorem Every open ball is a neighborhood of all of its points.
Definition Let (X, d) be a metric space and $a \in X$. A set $\mathcal{B}_{a} \subseteq \mathcal{N}_{a}$ is called a basis for the neighborhood system of a if and only if $\forall N \in \mathcal{N}_{a}, \exists B \in \mathcal{B}_{a}, B \subseteq N$.

Example The set of all open balls centered at a is a basis for the neighborhood system at a.

Dementary Properties of Neighborhoods and Neighborhood Systems

Theorem Let (X, d) be a metric space $a \in X$.
N1. a has a neighborhood.
N2. a is an element of each of its neighborhoods.
N3. Every superset of a neighborhood of a is a neighborhood of a.
N4. The intersection of any two neighborhoods of a is a neighborhood of a.
N5. Every neighborhood of a has a subset that is a neighborhood of all of its points.

Open Balls, Neighborhoods, and Continuity

Theorem Let $f:(X, d) \rightarrow\left(Y, d^{\prime}\right)$ and $a \in X$. The following are equivalent.

$$
\begin{aligned}
& \text { 1. } f \text { is continuous at a } \\
& \text { 2. } \forall \varepsilon \in \mathbb{R}^{+}, \exists \delta \in \mathbb{R}^{+}, f(B(a ; \delta)) \subseteq B(f(a) ; \varepsilon) \\
& \text { 3. } \forall \varepsilon \in \mathbb{R}^{+}, \exists \delta \in \mathbb{R}^{+}, B(a ; \delta) \subseteq f^{-1}(B(f(a) ; \varepsilon)) \\
& \text { 4. } \forall N \in \mathcal{N}_{f(a)}, f^{-1}(N) \in \mathcal{N} a
\end{aligned}
$$

Open sets and Continuity

Open sets
Definition Let (X, d) be a metric space and $U \subseteq X$. Then U is open if and only if

$$
\forall x \in U, U \in \mathcal{N}_{x}
$$

Remark In other words, a set is open if and only if it is a neighborhood of all of its points.
Definition Let (X, d) be a metric space and $U \subseteq X$. Then U is closed if and only if $X-U$ is open.

Remark There are sets which are neither open nor closed.

An equivalent definition of continuity

Theorem Let (X, d) and $\left(Y, d^{\prime}\right)$ be metric spaces and $f: X \rightarrow Y$. Then f is continuous with respect to the metrics d and d^{\prime} if and only if

$$
\forall U \subseteq Y, U \text { is open in }\left(Y, d^{\prime}\right) \Rightarrow f^{-1}(U) \text { is open in }(X, d)
$$

Remark In other words a function between metric spaces is continuous if and only if the inverse image of every open set is open.

Properties of the set of all open sets

Theorem Let (X, d) be a metric space.

1. The empty set is open.
2. The set X is open.
3. The union of any collection of open sets is open.
4. The intersection of finitely many open sets is open.

Topology

Topological Spaces

Definition Let X be a set and τ a set of subsets of X such that

1. $\emptyset \in \tau$
2. $X \in \tau$
3. The union of any collection of elements of τ is an element of τ
4. The intersection of finitely elements of τ is an element of τ

Then the pair (X, τ) is called a topological space, and τ is called a topology on the set X. An element of τ is called an open set.

Remark So τ is by definition the set of open subsets of X.
Corollary Let (X, d) be any metric space and τ the set of all open (in the metric space)
subsets of X. Then (X, τ) is a topological space.
Definition The topology τ given in the previous corollary is called the topology induced by the metric d. The topological space (X, τ) is called the associated topological space for the metric space (X, d).

Remark Just as we often refer to a metric space (X, d) by X, we also sometimes refer to a topological space (X, τ) by X, and we will often identify a metric space with it's associated topological space.

Remark Note that while every metric space has a unique associated topological space, more than one metric space might have the same associated topological space.
Definition A topological space that is the associated topological space for some metric space is said to be metrizable.
Definition Let (X, τ) be a topological space. A subset of X is closed if and only if its complement is open.

Neighborhoods, Interior, Boundary, Closure

Definition Let (X, τ) be a topological space, $x \in X$, and $N \subseteq X$. Then N is said to be a neighborhood of x if and only if $x \in \mathcal{O} \subseteq N$ for some open set $\mathcal{O} \in \tau$.

Remark In other words a neighborhood of a point in topological space is a set that has an open subset that contains the point.

Definition Let (X, τ) be a topological space and $A \subseteq X$. Then A is closed if and only if $X-A$ is open.

Definition Let (X, τ) be a topological space, $x \in X$, and $A \subseteq X$. Then x is in the closure of A if and only if every neighborhood of x contains an element of A. The set of all points in the closure of A is called the closure of A and is denoted \bar{A}.
Definition Let (X, τ) be a topological space, $x \in X$, and $A \subseteq X$. Then x is in the interior of A if and only if A is a neighborhood of x. The set of all points in the interior of A is called the interior of A and is denoted $\operatorname{Int}(A)$ or A°.
Definition Let (X, τ) be a topological space, $x \in X$, and $A \subseteq X$. Then x is in the boundary of A if and only every neighborhood of x contains an element of A and an element of $X-A$. The set of all points in the boundary of A is called the boundary of A and is denoted $\mathrm{Bdry}(A)$.
Theorem (Elementary Properties) Let (X, τ) be a topological space, $x \in X$, and $A \subseteq X$. 1. The intersection of any collection of closed sets is closed.
2. The union of finitely many closed sets is closed.
3. $A \subseteq \bar{A}$
4. The closure of A is the smallest closed set containing A.
5. $\overline{\bar{A}}=\bar{A}$.
6. $A^{\circ} \subseteq A$
7. The interior of a set is the largest open subset of A.
8. $\operatorname{Bdry}(A)=\bar{A} \cap \overline{X-A}$
9. $\operatorname{Bdry}(A)$ is closed.

Applications to metric spaces

Definition Let (X, d) be a metric space, $x \in X$, and $A \subseteq X$. Then the distance from x to A is

$$
d(x, A)=\inf \{d(x, a): a \in A\}
$$

Definition A topological space (X, τ) is said to be Hausdorff if and only if for every $x, y \in X$ with $x \neq y$, there exists neighborhoods A, B of x, y respectively such that $A \cap B=\emptyset$.
Theorem Every metrizable topological space is Hausdorff.

Functions, Continuity, Homeomorphism

Functions
Definition A map between topological spaces (X, τ) and $\left(Y, \tau^{\prime}\right)$ is an ordered tuple $\left(f, X, \tau, Y, \tau^{\prime}\right)$ where $f: X \rightarrow Y$ and (X, τ) and $\left(Y, \tau^{\prime}\right)$ are topological spaces.

Notation We write $f:(X, \tau) \rightarrow\left(Y, \tau^{\prime}\right)$ to mean that $\left(f, X, \tau, Y, \tau^{\prime}\right)$ is a map between topological spaces (X, τ) and $\left(Y, \tau^{\prime}\right)$.

Continuity

Definition A map of topological spaces $f:(X, \tau) \rightarrow\left(Y, \tau^{\prime}\right)$ is continuous at $a \in X$ if and only if the inverse image of every neighborhood of $f(a)$ in $\left(Y, \tau^{\prime}\right)$ is a neighborhood of a in (X, τ), i.e. $\forall N \in \mathcal{N}_{f(a)}, f^{-1}(N) \in \mathcal{N}_{a}$.

Definition A map of topological spaces $f:(X, \tau) \rightarrow\left(Y, \tau^{\prime}\right)$ is continuous if and only if the inverse image of every open set is open, i.e. $\forall \mathcal{O} \in \tau^{\prime}, f^{-1}(\mathcal{O}) \in \tau$.
Lemma A map between topological spaces is continuous if and only if it is continuous at every point.
Theorem The composition of continuous maps between topological spaces is continuous.

Homeomorhisms

Definition A map of topological spaces $h:(X, \tau) \rightarrow\left(Y, \tau^{\prime}\right)$ is called a homeomorphism if and only if it is a continuous bijection with a continuous inverse.
Definition If there exists a homeomorphism between topological spaces (X, τ) and $\left(Y, \tau^{\prime}\right)$ we say that these topological spaces are homeomorphic.
Remark Homeomorphic topological spaces are the same topological spaces in disguise!

Subspaces

Definition Let (X, τ) be a topological space and $S \subseteq X$. The subspace topology on S is $\tau^{\prime}=\{S \cap \mathcal{O}: \mathcal{O} \in \tau\}$.

Theorem A subspace topology is a topology.
Definition Let (X, τ) be a topological space, $S \subseteq X$, and τ^{\prime} the subspace topology on S. We say that τ^{\prime} is the topology on S induced by τ. The topological space $\left(S, \tau^{\prime}\right)$ is called a subspace of (X, τ). An open set $\mathcal{O}^{\prime} \in \tau^{\prime}$ is said to be relatively open and the neighborhoods
in $\left(S, \tau^{\prime}\right)$ are said to be relative neighborhoods.
Theorem Let $\left(S, \tau^{\prime}\right)$ be a subspace of (X, τ), and $F \subseteq S$. Then F is closed in $\left(S, \tau^{\prime}\right)$ if and only if $F=S \cap F^{\prime}$ for some closed set F^{\prime} in (X, τ).

Theorem Let $\left(S, \tau^{\prime}\right)$ be a subspace of (X, τ), and $x \in N \subseteq S$. Then N is neighborhood of x in (S, τ^{\prime}) if and only if $N=S \cap N^{\prime}$ for some neighborhood N^{\prime} of x in (X, τ).

Theorem Let $\left(S, \tau^{\prime}\right)$ be a subspace of (X, τ) and $i: S \rightarrow X$ be the inclusion map. Then i is continuous.
Weak vs Strong topologies
Definition Let τ and ρ be topologies on X. We say τ is weaker than ρ if and only if $\tau \subseteq \rho$. If τ is weaker than ρ we say ρ is stronger than τ.

Remark If a map $f:(X, \tau) \rightarrow\left(Y, \tau^{\prime}\right)$ is continuous then it will still be continuous if we replace τ with a stronger topology or τ^{\prime} with a weaker one.

Theorem

1. Let $f: X \rightarrow Y$ and τ^{\prime} a topology on Y. The is a unique topology τ on X that is the weakest topology for which f is continuous (namely $\tau=\left\{f^{-1}(\mathcal{O}): \mathcal{O} \in \tau^{\prime}\right\}$).
2. Let $f: X \rightarrow Y$ and τ a topology on X. The is a unique topology τ^{\prime} on Y that is the strongest topology for which f is continuous (namely $\tau^{\prime}=\left\{\mathcal{O} \subseteq Y: f^{-1}(\mathcal{O}) \in \tau\right\}$).

Theorem The subspace topology is the weakest topology on S for which the inclusion map is continuous.

Product Topologies

Definition Given an indexed family of topological spaces $\left\{\left(X_{i}, \tau_{i}\right)\right\}_{i \in I}$ we defined the product topology on $\prod_{i \in I} X_{i}$ to be the weakest topology such that all of the projection maps $p_{i}: \prod_{i \in I} X_{i} \rightarrow X_{i}$ are continuous.

Remark Therefore product topology is the smallest topology that contains all sets of the form $p_{i}^{-1}\left(\mathcal{O}_{i}\right)$ such that $\mathcal{O}_{i} \in \tau_{i}$.

Theorem The product topology τ on $\prod_{i \in I} X_{i}$ is the set of all unions of sets which are themselves the intersection of finitely many sets of the form $p_{i}^{-1}\left(\mathcal{O}_{i}\right)$ where $\mathcal{O}_{i} \in \tau_{i}$.

The Finite Case

Definition A collection of open subsets $\mathcal{B}=\left\{\mathcal{O}_{i}\right\}_{i \in I}$ of a topological space (X, τ) is a basis for the topology τ, if every open subset of X is a union of elements of \mathcal{B}.
Theorem Let n be a positive integer and $\left(X_{1}, \tau_{1}\right),\left(X_{2}, \tau_{2}\right), \ldots,\left(X_{n}, \tau_{n}\right)$ topological spaces. Then

$$
\left\{O_{1} \times O_{2} \times \cdots \times O_{n}: O_{1} \in \tau_{1}, \ldots, O_{n} \in \tau_{n}\right\}
$$

is a basis for the product topology τ on $X_{1} \times X_{2} \times \cdots \times X_{n}$.
Example Let $(X, \tau),\left(Y, \tau^{\prime}\right)$ be topological spaces. Then \mathcal{O} is open in $X \times Y$ (with the product
topology) if and only if $\mathcal{O}=\bigcup_{i \in I}\left(\mathcal{O}_{\alpha_{i}} \times \mathcal{O}_{\beta_{i}}\right)$ for some open sets $\left\{\mathcal{O}_{\alpha_{i}}\right\}_{i \in I}$ in X and $\left\{\mathcal{O}_{\beta_{i}}\right\}_{i \in I}$ in Y.

Quotient Topology

Definition Let (X, τ) be a topological space and R and equivalence relation on X. Then the quotient topology (or identification topology) is the strongest topology on X / R for which the quotient map continuous.

Theorem Let (X, τ) be a topological space and R and equivalence relation on X. Then the quotient topology on X / R is the set

$$
\tau^{\prime}=\left\{\mathcal{O} \subseteq X / R: \pi^{-1}(\mathcal{O}) \in \tau\right\}
$$

Example Let (X, τ) be a topological space and $f: X \rightarrow Y$ any surjective function and let τ^{\prime} be the strongest topology on Y for which f is continuous. Define an equivalence relation \sim_{f} on X by $a \sim f b$ if and only if $f(a)=f(b)$. Then $\left(X / \sim_{f}, \tau^{\prime \prime}\right)$ is homeomorphic to $\left(Y, \tau^{\prime}\right)$ where $\tau^{\prime \prime}$ is the quotient topology.
Remark Since in the previous example, $\left(Y, \tau^{\prime}\right)$ is homeomorphic to $\left(X / R, \tau^{\prime \prime}\right)$ we sometimes refer to τ^{\prime} as a quotient or identification topology as well.

Connectedness

Definition A topological space is connected if an only if the only subsets of it that are both open and closed are the empty set and the space itself. A space that is not connected is said to be disconnected.

Remark Hence a subspace of a topological space is connected if and only if the only subsets of it that are both relatively open and relatively closed are the empty set and the subspace itself.

Theorem A topological space is disconnected if and only if it is a disjoint union of two nonempty open sets.

Lemma Let X be a set and A, B nonempty subsets of X. Then X is a disjoint union of A and B if and only if $B=A^{c}$ (and $A=B^{c}$).

Theorem The continuous image of a connected is connected.
Remark Here by "continuous image" we mean the image by a continuous function, and to say that the image is connected means that it is a connected topological space when considered as a subspace of the codomain.
Corollary A quotient space of a connected space is connected.
Definition A property of a topological space is a topological property if and only if it is preserved by homeomorphisms, i.e. homeomorphic spaces either both have the property or both do not have the property.

Corollary Connectedness is a topological property.
Lemma Let $Y=\{0,1\}$ and τ^{\prime} the discrete topology on Y. Then (X, τ) is connected if and
only if the only continuous map $f:(X, \tau) \rightarrow\left(Y, \tau^{\prime}\right)$ is a constant map.
Theorem If $(X, \tau),\left(Y, \tau^{\prime}\right)$ are connected, then so is $X \times Y$ with the product topology.
Theorem In general, the product of connected spaces is connected.

Applications of Connectedness
 Connected Subsets of \mathbb{R}

Definition A subset S of \mathbb{R} is an interval if and only if whenever $a, b \in S$ and $a \leq c \leq b$ then $c \in S$, i.e. an interval is a set which contains all of the points between any two of its points.

Theorem The only connected subsets of \mathbb{R} are intervals.

Intermediate Value Theorem

Theorem Let $f:[a \ldots b] \rightarrow \mathbb{R}$ be continuous and L any number between $f(a)$ and $f(b)$ inclusive. Then there exists $c \in[a \ldots b]$ such that $f(c)=L$.
Corollary Iff $:[a \ldots b] \rightarrow \mathbb{R}$ is continuous and changes signs in the interval $[a \ldots b]$ then f has a root in $[a \ldots b]$.

Fixed point theorems

Definition Let $f: X \rightarrow X$ and $a \in X$. Then a is called a fixed point of f if and only if $f(a)=a$.

Definition A topological space has the fixed point property if and only if every continuous map from the space to itself has a fixed point.
Theorem The fixed point property is a topological property.
Theorem The n-disk $D_{n}=\left\{z \in \mathbb{R}^{n}:|z| \leq 1\right\}$ has the fixed point property.
Example When $n=1$ this is just a corollary of the intermediate value theorem.
Theorem (Borsuk-Ulam) For every continous map $f: S^{n} \rightarrow \mathbb{R}^{n}$ there exist antipodal points $z,-z \in S^{n}$ such that $f(z)=f(-z)$.

Theorem (Ham Sandwich) Any three subsets of \mathbb{R}^{3} having finite volume in \mathbb{R}^{3} can be simultaneously bisected by a single plane.

Components and Local Connectedness

Connected Components

Definition Let (X, τ) be a topological space and $a \in X$. Define $\operatorname{Cmp}(a)$ to be the union of all connected subsets of X which contain a, i.e. $\operatorname{Cmp}(a)=\cup_{U \in \mathcal{P}} U$ where $\mathcal{P}=\{U \subseteq X: a \in U$ and U is connected $\}$. The set $\mathrm{Cmp}(a)$ is called the connected component of X containing a.

Theorem Cmp (a) is connected.
Remark In other words, $\operatorname{Cmp}(a)$ is the largest connected subset of X containing a.
Lemma $a \in \operatorname{Cmp}(a)$
Lemma $b \in \operatorname{Cmp}(a)$ if and only if $\operatorname{Cmp}(b)=\operatorname{Cmp}(a)$.
Theorem Let (X, τ) be a topological space and define \sim on X by $a \sim b \Leftrightarrow b \in \operatorname{Cmp}(a)$. Then \sim is an equivalence relation on X.

Theorem If A is connected then so is \bar{A}.
Theorem Every connected component of a topological space is closed.
Remark But they are not all open!

Local Connectedness

Definition A topological space (X, τ) is locally connected at $a \in X$ if every neighborhood of a contains a connected neighborhood of a. The space X is locally connected if it is locally connected at every point.

Theorem Local connectedness is a topological property.
(proof is a homework problem)
Theorem If (X, τ) is locally connected then every connected component is open.
Remark Is a locally connected space necessarily connected?
Remark Is a connected space necessarily locally connected?

Path Connectedness

Definition Let (X, τ) be a topological space. A continous function $f:[0 . .1] \rightarrow X$ is called a path in X. The points $f(0)$ and $f(1)$ are called the initial and terminal points, respectively, of the path.

Remark We say that such a path f connects or joins its initial point to its terminal point, or that it is a path from its initial point to its terminal point, or that it is a path between its initial point and its terminal point.

Definition A path f is called a loop if $f(0)=f(1)$.
Definition A topological space is path connected if and only if there exists a path connecting any two of its points.

Remark A subspace of a space is path connected if and only if it is path connected as a topological space with the subspace topology.

Theorem The continous image of a path connected space is path connected.
Corollary Path connectedness is a topological property.
Corollary Any quotient space of a path connected space is path connected.

Theorem Every path connected space is connected.

Categories

The Grand Unified Theory of Mathematics!

Definition A category consists of

1. a collection of objects in the category
2. for each ordered pair (X, Y) of objects in the category a set $\operatorname{Hom}(X, Y)$
3. there is a rule called \circ which associates to each $f \in \operatorname{Hom}(X, Y)$ and $g \in \operatorname{Hom}(Y, Z)$ an element $g \circ f \in \operatorname{Hom}(X, Z)$
4. \circ is associative
5. for each object X there is an element $1_{X} \in \operatorname{Hom}(X, X)$
6. for all $f \in \operatorname{Hom}(X, Y), f \circ 1_{X}=f$ and for all $g \in \operatorname{Hom}(Y, X), 1_{X} \circ g=g$

Definition In the previous definition, the elements of $\operatorname{Hom}(X, Y)$ are called maps (or morphisms) from X to Y. The map 1_{X} is called the identity map on X. The operator \circ is called composition.

Remark These definitions of the terms map, identity map, and composition are new definitions that are unrelated to the definitions given previously for functions between sets. In particular, maps in a category do not have to be ordinary functions, nor do the objects have to be ordinary sets.
Examples: Most branches of mathematics are examples of categories!

Subject	Objects	Maps
Set Theory	sets	functions
Topology	topological spaces	continuous functions
Metric Space	metric spaces	continuous functions
Linear Algebra	vector spaces	linear transformations
Group Theory	groups	group homomorphisms
Ring Theory	rings	ring homomorphisms
Geometry	underlying space	geometric transformations
Analysis	real numbers	differentiable functions

For those of you who haven't had group theory yet:

Definition A group is a pair (G, \cdot) where G is a set and $\cdot: G \times G \rightarrow G$ such that

1. • is associative
2. there exists $e \in G$ such that for all $g \in G, g \cdot e=e \cdot g=g$
3. for all $g \in G$ there exists $h \in G$ such that $g \cdot h=h \cdot g=e$

Remark e is called the identity element of the group, and h is called the inverse of g.

Definition A group homomorphism is a map $f:(G, \bullet) \rightarrow(X, *)$ such that for all $g, h \in G$, $f(g \cdot h)=f(g) * f(h)$.

Example: A single group itself is an entire category if we define $\operatorname{Hom}(G, G)$ to be the elements of G and \circ to be the group operation.

Example: Let the integers in $\mathbb{I}_{12}=\{1,2, \ldots, 12\}$ be the objects and for each $A, B \in \mathbb{I}_{12}$ define $\operatorname{Hom}(A, B)=\{(A, B)\}$ if $A \mid B$ and \emptyset otherwise. How can we define composition to turn this into a category? What is 1_{5} ?

Example:

Theorem In any category iff has a left inverse g and a right inverse g^{\prime} then $g=g^{\prime}$.

Functors

Definition Let $\mathcal{C}, \mathcal{C}^{\prime}$ be categories and A, A^{\prime} their respective collections of objects. A covariant functor, $F: \mathcal{C} \rightarrow \mathcal{C}^{\prime}$ is a pair of functions F_{1}, F_{2} such that

1. $F_{1}: A \rightarrow A^{\prime}$
2. for each $X, Y \in A, F_{2}: \operatorname{Hom}(X, Y) \rightarrow \operatorname{Hom}\left(F_{1}(X), F_{1}(Y)\right)$ such that
(a). $F_{2}\left(1_{x}\right)=1_{F_{1}(X)}$
(b). $F_{2}(g \circ f)=F_{2}(g) \circ F_{2}(f)$ for all $f \in \operatorname{Hom}(X, Y)$ and $g \in \operatorname{Hom}(Y, Z)$

Example The forgetful functor from $\mathcal{C}_{\text {Top }}$ to $\mathcal{C}_{\text {Set }}$.
Example The associated space functor from $\mathcal{C}_{\text {Met }}$ to $\mathcal{C}_{\text {Top }}$.

Homotopy

Definition Let (X, τ) be a topological space and f, g paths from a to b in X. A homotopy between f and g is a continous function $H:[0 \ldots 1] \times[0 \ldots 1] \rightarrow X$ such that for all $x, t \in[0 \ldots 1]$

1. $H(x, 0)=f(x)$
2. $H(x, 1)=g(x)$
3. $H(0, t)=a$
4. $H(1, t)=b$

If there exists a homotopy between f and g we say the paths f and g are homotopic.
Definition Define a relation on the set of paths from a to b in a topological space (X, τ) by $f \cong g$ if and only iff and g are homotopic.
Theorem \cong is an equivalence relation.
Lemma Let $(X, \tau),\left(Y, \tau^{\prime}\right)$ be a topologial spaces and A, B closed subsets of X. Let $f: A \rightarrow Y$ and $g: B \rightarrow Y$ be continous maps which agree on $A \cap B$. Then the map $h: A \cup B \rightarrow Y$ by

$$
h(x)= \begin{cases}f(x) & \text { if } x \in A \\ g(x) & \text { otherwise }\end{cases}
$$

is continous.

Remark As usual, we will denot the equivalence class of a path f as $[f]$.

The Fundamental Group

Definition Let (X, τ) be a topological space and $a \in X$. The set of all equivalence classes of paths from a to a (i.e. loops) in X is denoted $\pi(X, a)$.

Definition Let (X, τ) be a topological space and f, g paths from a to a in X. The product (or concatenation) off and g is the path $f \cdot g$ from a to a in X defined by

$$
f \cdot g(t)= \begin{cases}f(2 t) & \text { if } 0 \leq t \leq \frac{1}{2} \\ g(2 t-1) & \text { if } \frac{1}{2}<t \leq 1\end{cases}
$$

Theorem Let (X, τ) be a topologial spaces $f, g, f^{\prime}, g^{\prime}$ paths from a to a in X. Iff $\cong f^{\prime}$ and $g \cong g^{\prime}$ then $f \cdot g \cong f^{\prime} \cdot g^{\prime}$.

Definition Let (X, τ) be a topologial spaces f, g paths from a to a in X. Define a product $\cdot: \pi(X, a) \times \pi(X, a) \rightarrow \pi(X, a)$ by $[f] \cdot[g]=[f \cdot g]$.

Theorem $(\pi(X, a), \cdot)$ is a group!
Remark $\pi(X, a)$ is often denoted $\pi_{1}(X, a)$. For path connected spaces, the same (isomorphic) group is obtained no matter what base point is selected, so for path connected spaces $\pi(X, a)$ is often abbreviated as $\pi(X)$ or $\pi_{1}(X)$.

Theorem π is a functor from the category of topological spaces with a point to the category of groups.

Simple Connectedness

Definition Any one element group is called a trivial group.

Remark All trivial groups are isomorphic. For example, they are all isomorphic to $(\{0\},+)$ where $+i$ is the ordinary addition of integers.

Definition A topological space is simply connected if and only if its fundamental group is the trivial group at every base point.

Remark In other words every loop is homotopic to every other loop at the same point in a simply connected space.

Theorem A path connected topological space is simply connected if and only if its fundamental group is the trivial group at some base point.
For the proof of this we require some notation.
Definition Iff $:[0 . .1] \rightarrow X$ is a path in topological space (X, τ) then \overleftarrow{f} is the path $\overleftarrow{f}:[0.1] \rightarrow X$ by $\overleftarrow{f}(t)=f(1-t)$. We will call \overleftarrow{f} the reverse of f.

Remark The book refers uses f^{-1} to represent \overleftarrow{f}, because, hey, you just can't have too many completely different simultaneous definitions for the symbol f^{-1} !

Definition Iff is a path from a to b in topological space (X, τ), and g is a path from b to b
then g_{f} is the path from a to a defined by

$$
g_{f}(t)= \begin{cases}f(3 t) & \text { if } 0 \leq t \leq \frac{1}{3} \\ g(3 t-1) & \text { if } \frac{1}{3} \leq t \leq \frac{2}{3} \\ \overleftarrow{f}(3 t-2) & \text { if } \frac{2}{3} \leq t \leq 1\end{cases}
$$

Definition Iff is a path from a to b in path connected topological space (X, τ), define $\alpha_{f}: \pi(X, b) \rightarrow \pi(X, a)$ by $\alpha_{f}([g])=\left[g_{f}\right]$.

Theorem α_{f} is a group isomorphism.

Compactness

Covers
Definition Let S be a subset of a set X. An indexed family of sets $\left\{A_{i}\right\}_{i \in I}$ is a cover of S if and only if $S \subseteq \cup_{i \in I} A_{i}$. If I is finite then this cover is said to be a finite cover of S. If (X, τ) is a topological space and A_{i} is an open set for all $i \in I$ then this cover is said to be an open cover.

Definition A cover $\left\{B_{j}\right\}_{j \in J}$ of S is a subcover of $\left\{A_{i}\right\}_{i \in I}$ if and only if $\left\{B_{j}: j \in J\right\} \subseteq\left\{A_{i}: i \in I\right\}$. We say $\left\{A_{i}\right\}_{i \in I}$ contains the subcover $\left\{B_{j}\right\}_{j \in J}$ if $J \subseteq I$.

Definition of Compactness

Definition A topological space is said to be compact if and only if every open cover contains a finite subcover.

Remark A subset of a topological space is said compact if it is a compact topological space with the subspace topology. The following shows that for subsets of a topological space we can consider open covers in the larger space instead of those in the subset itself (i.e. an open cover vs a relatively open cover).

Theorem A subset S of a topological space is compact if and only if every open cover of S with open sets of X contains a subcover of S with open sets of X.

Continuity and Compactness

Theorem The continuous image of a compact set is compact.
Corollary Compactness is a topological property.

Characterizing Compactness

Theorem A closed subset of a compact space is compact.
Theorem Every compact subset of a Hausdorff space is closed.
Corollary In a compact Hausdorff space, a subset is compact if and only if it is closed.

The Heine-Borel Theorem

Definition A subset of \mathbb{R}^{n} is bounded if and only if it is a subset of some closed ball

centered at the origin.

Theorem A compact subset of \mathbb{R}^{n} is closed and bounded.
Theorem The unit interval $[0 \ldots 1]$ is compact.
Corollary The closed interval $[a \ldots b]$ is compact.
Theorem (Heine-Borel) A subset of \mathbb{R} is compact if and only if it is closed and bounded.

Products of Compact Spaces

Lemma Let (X, τ) be a topological space, \mathcal{B} a basis for τ, and $S \subseteq X$. If every open cover of S with elements of \mathcal{B} contains a finite subcover, then S is compact.

Theorem If $(X, \tau),\left(Y, \tau^{\prime}\right)$ are compact then so is $X \times Y$ (with the product topology).
Corollary If $\left(X_{1}, \tau_{1}\right),\left(X_{2}, \tau_{2}\right), \ldots\left(X_{n}, \tau_{n}\right)$ are compact then so is $X_{1} \times X_{2} \times \cdots \times X_{n}$ (with the product topology).

Corollary The n-dimensional unit hypercube, $[0 \ldots 1]^{n}$ is compact.
Corollary (n-dimensional Heine-Borel) A subset of \mathbb{R}^{n} is compact if and only if it is closed and bounded.

Proofs

Theorem (Fundamental Theorem of Equivalence Relations) Let $R \subseteq X \times X$ be an equivalence relation and $a, b \in X$. Then

$$
[a]=[b] \Leftrightarrow a R b .
$$

Pf.

1. Let $R \subseteq X \times X$ be an equivalence relation

Given
2. Let $a, b \in X$ Given
$\star(\Rightarrow)$
3. Assume $[a]=[b]$
4. $a R a$ reflexive; 1,2
5. $a \in[a]$
6. $a \in[b]$
7. $a R b$ substitution; 3,5
8. \leftarrow
9. $[a]=[b] \Rightarrow a R b$
$\Rightarrow+; 3,7,8$
$\star(\Leftarrow)$
10. Assume $a R b$
11. Let $x \in[a]$
12. $x R a$
13. $x R b$
def of []
transitivity; $1,10,12$
14. $x \in[b]$
def of []
15. $[a] \subseteq[b]$
def of \subseteq
16. Let $y \in[b]$
17. $y R b$
def of []
18. $b R a$
19. $y R a$
symmetry; 1,10
20. $y \in[a]$
transitivity; $1,17,18$
21. $[b] \subseteq[a]$
def of []
22. $[a]=[b]$
def of \subseteq
def set $=$
23. \leftarrow

$$
\begin{aligned}
& \Rightarrow+ \\
& \Leftrightarrow+
\end{aligned}
$$

24. $a R b \Rightarrow[a]=[b]$
25. $[a]=[b] \Leftrightarrow a R b$

QED

Corollary (1) Let $R \subseteq X \times X$ be an equivalence relation. Then X is a disjoint union of equivalence classes, i.e.

$$
X=\bigcup_{a \in X}[a]
$$

and

$$
\forall a, b \in X,[a]=[b] \text { or }[a] \cap[b]=\emptyset
$$

Pf

1. Let $R \subseteq X \times X$ be an equivalence relation.

$$
\star \text { show } X \subseteq \bigcup_{a \in X}[a]
$$

2. Let $x \in X$
3. $x R x$
4. $x \in[x]$
5. $x \in[\alpha]$ for some $\alpha \in X$
reflexive; 1,2
def of []
6. $x \in \bigcup_{a \in X}[a]$
\star show $\bigcup_{a \in X}[a] \subseteq X$
7. Let $y \in \bigcup_{a \in X}[a]$
8. $y \in[\beta]$ for some $\beta \in X$
def indexed \cup
9. $y R b$
10. $y \in X$

$$
\star \text { conclude the sets are equal }
$$

11. $X=\bigcup_{a \in X}[a]$
def of [] def equiv reln; 1,9
def set $=; 2,6,7,10$

$$
\star \text { now show } \forall a, b \in X,[a]=[b] \text { or }[a] \cap[b]=\emptyset
$$

12. Let $a, b \in X$
13. $a R b$ or not $a R b$

$$
P \text { or } \sim P \text { tautology }
$$

* Case 1:

14. Assume $a R b$
15. $[a]=[b]$

Fund Thm of Equiv Relns; 1, 12, 14
16. $[a]=[b]$ or $[a] \cap[b]=\emptyset$
17. \leftarrow

* Case 2:

18. Assume not $a R b$
19. Assume $[a] \cap[b] \neq \emptyset$
20. $t \in[a] \cap[b]$ for some $t \quad \operatorname{def} \emptyset$
21. $t \in[a]$ and $t \in[b] \quad \operatorname{def} \cap$
22. $t R a$ and $t R b \quad \operatorname{def}[$]
23. aRt symmetry; 1,22
24. $a R b$ transitivity; $1,22,23$
25. $\rightarrow \leftarrow \quad \rightarrow \leftarrow+$
26. \leftarrow
27. $[a] \cap[b]=\emptyset$
pf by contradiction; 19,25,26
28. $[a]=[b]$ or $[a] \cap[b]=\emptyset$
29. \leftarrow
30. $[a]=[b]$ or $[a] \cap[b]=\emptyset$
pf by cases; $13,14,16,18,28$
31. $\forall a, b \in X,[a]=[b]$ or $[a] \cap[b]=\emptyset$

QED

Theorem Every projection map is onto.

Pf.

1. Let $R \subseteq X \times X$ be an equivalence relation.
2. Let $\pi: X \rightarrow X / R$ be the projection map
3. $\forall x \in X, \pi(x)=[x]$
def of projection map
4. Let $q \in X / R$
5. $q=[a]$ for some $a \in X \quad$ def of quotient set
6. $=\pi(a)$
7. π is onto
8. Every projection map is onto $\forall-; 3$
def of onto

QED

Theorem Composition of functions is associative.

Pf.

1. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ and $h: C \rightarrow D$

2．Domain $((h \circ g) \circ f)=$ Domain (f)
def of
def of
def of
def of
def of 。
def of 。
8．Let $x \in A$
9．$((h \circ g) \circ f)(x)=(h \circ g)(f(x))$
def of
10．$\quad=h(g(f(x)))$
11．$\quad=h((g \circ f)(x))$
12．$=(h \circ(g \circ f))(x)$
13．$(h \circ g) \circ f=h \circ(g \circ f)$
14．Composition of functions is associative．
def of。
def of \circ
def of
def function $=; 2-4,5-7,8,9-12$ QED

Theorem（right cancellation law for surjective functions）Let $X \xrightarrow{f} Y$ and $|Z|>1$ ．
Then f is surjective if and only iffor all functions $g, h: Y \rightarrow Z$

$$
(g \circ f=h \circ f) \Rightarrow g=h
$$

Pf．
1．Let $X \xrightarrow{f} Y$ and $|Z|>1$
Given
$\star(\Rightarrow)$
2．Assume f is surjective
3．Let $g, h: Y \rightarrow Z$
4．Assume $g \circ f=h \circ f$
5．Let $y \in Y$
6．$y=f(x)$ for some $x \in X$
7．$\quad g(y)=g(f(x))$
def surjective； $1,2,5$

8．$=(g \circ f)(x)$ substitution；6

9．$=(h \circ f)(x)$
10．$=h(f(x))$
11．$=h(y)$
substitution；6
12．$g=h$ def function $=; 3,5,7-11$
13．\leftarrow
14．$(g \circ f=h \circ f) \Rightarrow g=h$

$$
\Rightarrow+; 4,12,13
$$

15．$\forall g, h: Y \rightarrow Z,(g \circ f=h \circ f) \Rightarrow g=h$ $\forall+; 3,14$
16.

17．f is surjective $\Rightarrow \forall g, h: Y \rightarrow Z,(g \circ f=h \circ f) \Rightarrow g=h$ $\Rightarrow+; 2,15$ $\star(\Leftarrow)$

18． Assume $(\forall g, h: Y \rightarrow Z,(g \circ f=h \circ f) \Rightarrow g=h)$
19．Let $s \in Y$
20．\quad Assume $\sim \exists t \in X, f(t)=s$
21．$\forall t \in X, f(t) \neq s$
DeMorgan
22．Let $g: Y \rightarrow Z$ be any function
23．$u \neq g(s)$ for some $u \in Z \quad$ def cardinality； 1
24．Define $h: Y \rightarrow Z$ by $\forall y \in Y, h(y)= \begin{cases}g(y) & \text { if } y \neq s \\ u & \text { if } y=s\end{cases}$
25．$h(s)=u$
26．$\neq g(s)$
27．$h \neq g$
28．$g \circ f: X \rightarrow Z$ and $h \circ f: X \rightarrow Z$
def of h
copy；23
def function $=; 25,26$

29．Let $r \in X$
30．$f(r) \neq s$

$$
\forall-; 21
$$

31．$(g \circ f)(r)=g(f(r))$
32．$=h(f(r))$
33．$=(h \circ f)(r)$
def。
def of h
def。
34．$g \circ f=h \circ f$
35．$(g \circ f=h \circ f) \Rightarrow g=h$
36．$g=h$
37．$\rightarrow \leftarrow$ def。

8．\leftarrow
39．$\exists t \in X, f(t)=s$
～－；20，37
40．f is surjective def surjective；19，39
41．\leftarrow
42．$(\forall g, h: Y \rightarrow Z,(g \circ f=h \circ f) \Rightarrow g=h) \Rightarrow f$ is surjective $\quad \Rightarrow+; 18,40$
43．f is surjective $\Leftrightarrow \forall g, h: Y \rightarrow Z,(g \circ f=h \circ f) \Rightarrow g=h \quad \Leftrightarrow+$ ； QED

Theorem A function has an inverse function if and only if it is bijective．

Pf．
1．Let $f: X \rightarrow Y$
$\star(\Rightarrow)$
2．Assume f has an inverse
3．$\exists g: Y \rightarrow X, g \circ f=i d_{X}$ and $f \circ g=i d_{Y}$
def inverse function
$\exists-$ \star show it is injective
5．Let $x, y \in X$
6. \quad Assume $f(x)=f(y)$
7. $x=i d_{X}(x)$
def identity map
8. $\quad=(g \circ f)(x)$ substitution; 4
9. $\quad=g(f(x))$
10. $\quad=g(f(y))$
11. $=(g \circ f)(y)$
12. $=i d_{X}(y)$
13. $=y$
def。
plug in; 6
def。
substitution; 4
def identity map
14. \leftarrow
15. f is one to one
def one to one;5,6,7-13

$$
\star \text { show it is onto }
$$

16. Let $z \in Y$
17. $g(z) \in X$
def function;4,16
18. Define $q=g(z)$
19. $f(q)=f(g(z))$ substitution
20. $\quad=(f \circ g)(z)$
21. $\quad=i d_{Y}(z)$
22. $=z$ substitution; 4
23. $\exists q \in X, f(q)=z$
24. f is onto
$\exists+; 17,19-22$

* so it is bijective
def onto; 16,23

25. f is bijective def bijective; 15,24
26. \leftarrow
27. f has an inverse $\Rightarrow f$ is bijective $\Rightarrow+; 2,25$
$\star(\Leftarrow)$
28. Assume f is bijective
29. f is one to one
def bijective
30. f is onto
\star it is easier to prove that a relation is a function than to try
\star to make an inverse function directly, so we switch to ordered pair
\star notation.
31. $f \subseteq X \times Y$
def function; 1
32. $\forall x, y \in X, \forall z \in Y,(x, z) \in f$ and $(y, z) \in f \Rightarrow x=y$
33. $\forall z \in Y, \exists x \in X,(x, z) \in f$
def one to one; 29
\star we define g to be the set of ordered pairs in f with the
\star coordinates reversed
34. Define $g=\{(z, x):(x, z) \in f\}$
\star first we prove g is a function
\star show its a relation
35. Let $w \in g$
36. $w=(z, x)$ and $(x, z) \in f$ for some $x \in X$ and $z \in Y$

$$
\operatorname{def} g, f ; 31,34
$$

37. $w \in Y \times X$
def \times
38. $g \subseteq Y \times X$ $\operatorname{def} \subseteq ; 35,37$
\star show it maps everything in the domain to something
39. Let $t \in Y$
40. $\exists x \in X,(x, t) \in f$

$$
\forall-; 33
$$

41. $(s, t) \in f$ for some $s \in X$
42. $(t, s) \in g$
def $g ; 34$
43. $\forall t \in Y, \exists s \in X,(t, s) \in g$
$\forall+, \exists+; 39,42$
\star show that it doesn't map anything to two different places
44. Let $u, v \in X$
45. \quad Assume $(t, u) \in g$ and $(t, v) \in g$
46. $(u, t) \in f$ and $(v, t) \in f \quad \operatorname{def} g ; 34$
47. $u=v$
$\forall-, \Rightarrow-; 32$
48. \leftarrow
49. $\forall t \in Y, \forall u, v \in X,(t, u) \in g$ and $(t, v) \in g \Rightarrow u=v \quad \Rightarrow+, \forall+; 45,47,44,39$
\star so it's a function
50. $g: Y \rightarrow X$
51. $f \circ g: Y \rightarrow Y$ and $g \circ f: X \rightarrow X$
def function; $38,43,49$
52. $i d_{Y}: Y \rightarrow Y$ and $i d_{X}: X \rightarrow X$
def identity map
\star now that we know g is a function we can return to
\star using function notation to show it's f^{-1}
53. $(f \circ g)(t)=f(g(t))$
def。
54. $\quad=f(s)$
55. $=t$
56. $\quad=i d_{Y}(t)$
57. $f \circ g=i d_{Y}$
58. $(u, f(u)) \in f$
59. $\quad(f(u), u) \in g$
60. $g(f(u))=u$
61. $(g \circ f)(u)=g(f(u))$
62. $=u$
63. $\quad=i d_{X}(u)$
64. $g \circ f=i d_{X}$
def function $=; 51,52,44,61-63$
65. $\exists g: Y \rightarrow X, g \circ f=i d_{X}$ and $f \circ g=i d_{Y}$
and,$+ \exists+; 57,64$
66. f has an inverse
def inverse function
67. \leftarrow
68. f is bijective $\Rightarrow f$ has an inverse
$\Rightarrow+; 28,66$
69. f has an inverse $\Leftrightarrow f$ is bijective
$\Leftrightarrow+; 27,68$

QED

Theorem The product metric is a metric.

Pf

1. Let $\left(X_{1}, d_{1}\right),\left(X_{2}, d_{2}\right), \ldots,\left(X_{n}, d_{n}\right)$ be metric spaces and $X=X_{1} \times X_{2} \times \cdots \times X_{n}$.
2. Define $d_{\max }: X \times X \rightarrow \mathbb{R}$ by

$$
d_{\max }\left(\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)\right)=\max \left\{d_{i}\left(x_{i}, y_{i}\right): i \in\{1, \ldots, n\}\right\}
$$

where $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$
3. Let $x, y, z \in X$
4. $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ for some $x_{1} \in X_{1}$ and \cdots and $x_{n} \in X_{n} \operatorname{def} \times$
5. $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ for some $y_{1} \in X_{1}$ and \cdots and $y_{n} \in X_{n} \operatorname{def} \times$
6. $z=\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ for some $z_{1} \in X_{1}$ and \cdots and $z_{n} \in X_{n} \operatorname{def} \times$ * show it's nonnegative
7. $d_{\max }(x, y)=d_{\max }\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right)$
substitution
8. $=\max \left\{d_{i}\left(x_{i}, y_{i}\right): i \in\{1, \ldots, n\}\right\} \quad \operatorname{def} d_{\text {max }} ; 2$
9. $=d_{k}\left(x_{k}, y_{k}\right)$ for some $k \in \mathbb{I}_{n}$ def max
10. ≥ 0
def metric; 1
\star show it's symmetric

$$
\star \text { first show that } d_{k}\left(y_{k}, x_{k}\right)=\left\{d_{i}\left(y_{i}, x_{i}\right): i \in\{1, \ldots, n\}\right\}
$$

11. $d_{k}\left(y_{k}, x_{k}\right) \in\left\{d_{i}\left(y_{i}, x_{i}\right): i \in\{1, \ldots, n\}\right\}$ set builder
12. Let $\alpha \in\left\{d_{i}\left(y_{i}, x_{i}\right): i \in\{1, \ldots, n\}\right\}$
13. $\alpha=d_{j}\left(y_{j}, x_{j}\right)$ for some $j \in\{1, \ldots, n\}$
14. $d_{j}\left(y_{j}, x_{j}\right)=d_{j}\left(x_{j}, y_{j}\right)$ def metric
15. $\leq d_{k}\left(x_{k}, y_{k}\right)$ def max;8-9
16. $\quad=d_{k}\left(y_{k}, x_{k}\right)$
17. $d_{k}\left(y_{k}, x_{k}\right)=\max \left\{d_{i}\left(y_{i}, x_{i}\right): i \in\{1, \ldots, n\}\right\}$
def metric; 1
18. $d_{\max }(x, y)=d_{k}\left(x_{k}, y_{k}\right)$
19. $=d_{k}\left(y_{k}, x_{k}\right)$
20. $=\max \left\{d_{i}\left(y_{i}, x_{i}\right): i \in\{1, \ldots, n\}\right\}$
21. $=d_{\max }(y, x)$
substitution; 17
$\operatorname{def} d_{\text {max }} ; 2$
\star prove the triangle inequality
22. $d_{\text {max }}(x, z)=d_{\text {max }}\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(z_{1}, z_{2}, \ldots, z_{n}\right)\right)$
23. $=\max \left\{d_{i}\left(x_{i}, z_{i}\right): i \in\{1, \ldots, n\}\right\}$
24. $=d_{l}\left(x_{l}, z_{l}\right)$ for some $l \in \mathbb{I}_{n}$
25. $d_{\text {max }}(y, z)=d_{\text {max }}\left(\left(y_{1}, y_{2}, \ldots, y_{n}\right),\left(z_{1}, z_{2}, \ldots, z_{n}\right)\right)$
26. $=\max \left\{d_{i}\left(y_{i}, z_{i}\right): i \in\{1, \ldots, n\}\right\}$
substitution
$\operatorname{def} d_{\text {max }} ; 2$
def max
substitution
$\operatorname{def} d_{\text {max }} ; 2$
27. $\quad=d_{m}\left(y_{m}, z_{m}\right)$ for some $m \in \mathbb{I}_{n}$
28. $d_{\text {max }}(x, y)+d_{\text {max }}(y, z)=d_{k}\left(x_{k}, y_{k}\right)+d_{m}\left(y_{m}, z_{m}\right)$
def max
29.

$$
\geq d_{l}\left(x_{l}, y_{l}\right)+d_{l}\left(y_{l}, z_{l}\right)
$$

substitution;7-9,25-27
def max;8-9,26-27
30.
31. $=d_{\text {max }}(x, z)$ $\geq d_{l}\left(x_{l}, z_{l}\right)$
def metric; 1
$\star \operatorname{show} d(x, x)=0$
32
33. $=\max \left\{d_{i}\left(x_{i}, x_{i}\right): i \in\{1, \ldots, n\}\right\}$
34. $=\max \{0: i \in\{1, \ldots, n\}\}$
35. $=0$

$$
\star \operatorname{show} d(x, y)=0 \Rightarrow x=y
$$

36. Assume $d_{\text {max }}(x, y)=0$
37. $d_{k}\left(x_{k}, y_{k}\right)=0$
38. Let $i \in \mathbb{I}_{n}$
39. $0 \leq d_{i}\left(x_{i}, y_{i}\right)$
40. $\leq d_{k}\left(x_{k}, y_{k}\right)$
41. $=0$
42. $d_{i}\left(x_{i}, y_{i}\right)=0$
43. $x_{i}=y_{i}$
44. $\forall i \in \mathbb{N}, x_{i}=y_{i}$
45. $\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$
46. $x=y$
47. \leftarrow
48. $d_{\text {max }}$ is a metric
def metric;2,3,7-10,18-21,28-31,32-35,36,46

Note: as we make the transition from semi-formal to informal word-wrapped style proofs we will slowly add additional shortcuts to our proofs. One common shortcut is that in most word wrapped textbook style proofs they do not name the specific rules of logic used for dealing with the five propositional operators and the two quantifiers. Instead they either just say "Hence" or "Thus" or "So" or "Therefore" or "It follows that" as a catch-all phrase to cover all logical rules of inference. Another way they get around that is to say "by (2)" to indicate that the statement they just gave followed from some rule of logic using the line labeled (2) as an input. This is the style we will use in the next proof.

Theorem Suppose $f:(X, d) \rightarrow\left(Y, d^{\prime}\right)$ is continuous at $a \in X$ and $g:\left(Y, d^{\prime}\right) \rightarrow\left(Z, d^{\prime \prime}\right)$ is continuous at $f(a)$. Then $g \circ f:(X, d) \rightarrow\left(Z, d^{\prime \prime}\right)$ is continuous at a.

Pf.

1. $f:(X, d) \rightarrow\left(Y, d^{\prime}\right)$ is continuous at $a \in X$
2. $g:\left(Y, d^{\prime}\right) \rightarrow\left(Z, d^{\prime \prime}\right)$ is continuous at $f(a)$ Given
3. $\forall \varepsilon \in \mathbb{R}^{+}, \exists \delta \in \mathbb{R}^{+}, \forall x \in X, d(x, a)<\delta \Rightarrow d^{\prime}(f(x), f(a))<\varepsilon$ def continuous; 1
4. $\forall \varepsilon \in \mathbb{R}^{+}, \exists \delta \in \mathbb{R}^{+}, \forall y \in Y, d^{\prime}(y, f(a))<\delta \Rightarrow d^{\prime \prime}(g(y), g(f(a)))<\varepsilon$ def continuous;2
5. Let $\varepsilon \in \mathbb{R}^{+}$
6. $\exists \delta \in \mathbb{R}^{+}, \forall y \in Y, d^{\prime}(y, f(a))<\delta \Rightarrow d^{\prime \prime}(g(y), g(f(a)))<\varepsilon$
7. $\forall y \in Y, d^{\prime}(y, f(a))<\delta_{1} \Rightarrow d^{\prime \prime}(g(y), g(f(a)))<\varepsilon$ for some $\delta_{1} \in \mathbb{R}^{+}$
8. $\exists \delta \in \mathbb{R}^{+}, \forall x \in X, d(x, a)<\delta \Rightarrow d^{\prime}(f(x), f(a))<\delta_{1}$
9. $\forall x \in X, d(x, a)<\delta_{2} \Rightarrow d^{\prime}(f(x), f(a))<\delta_{1}$ for some $\delta_{2} \in \mathbb{R}^{+}$
10. Define $\delta=\delta_{2}$
11. $\delta \in \mathbb{R}^{+}$
substitution; 10,9
12. Let $x \in X$
13. Assume $d(x, a)<\delta$
14. $=\delta_{2}$
substitution;10
15. $d^{\prime}(f(x), f(a))<\delta_{1}$
by (9),(13-14)
16. $d^{\prime \prime}(g(f(x)), g(f(a)))<\varepsilon$
by (7),(16)
17. $d^{\prime \prime}(g \circ f(x), g \circ f(a))<\varepsilon$
def。
18. \leftarrow
19. $g \circ f:(X, d) \rightarrow\left(Z, d^{\prime \prime}\right)$ is continuous at a
def of continuous;5,11,12,13,17 QED

In the following proof we are only numbering lines that are referred to specifically in the reason of some future statement rather than numbering every line in the proof. This is similar to the way proofs in textbooks and articles are numbered... only essential lines that need to be referred to later on in the proof are given equation or line numbers. Because of the lack of line numbers, instead of using the abbreviation "by (n)" for reasons that are rules of logic, we are just giving the name of the rule of logic with no line numbers, the hope being that the reader can determine what lines satisfy the inputs. This is the next step in making a proof that is more like the word wrapped informal proofs found in your book.

Theorem Let (X, d) and $\left(Y, d^{\prime}\right)$ be metric spaces and $f: X \rightarrow Y$. Then f is continuous with respect to the metrics d and d^{\prime} if and only if

$$
\forall U \subseteq Y, U \text { is open in }\left(Y, d^{\prime}\right) \Rightarrow f^{-1}(U) \text { is open in }(X, d)
$$

Pf.

1. Let (X, d) and $\left(Y, d^{\prime}\right)$ be metric spaces and $f: X \rightarrow Y$.

$$
\star(\Rightarrow)
$$

2. Assume f is continuous Let $U \subseteq Y$
```
Assume \(U\) is open in \(\left(Y, d^{\prime}\right)\)
Let \(a \in f^{-1}(U)\)
\(U\) is a neighborhood of \(f(a)\)
\(\exists \varepsilon \in \mathbb{R}^{+}, B(f(a) ; \varepsilon) \subseteq U\)
\(B(f(a) ; \varepsilon) \subseteq U\) for some \(\varepsilon \in \mathbb{R}^{+}\)
\(\exists \delta \in \mathbb{R}^{+}, \forall x \in X, d(x, a)<\delta \Rightarrow d^{\prime}(f(x), f(a))<\varepsilon\)
```

$f(a) \in U \quad$ def of inverse image
def continuous; 1
3. $\forall x \in X, d(x, a)<\delta \Rightarrow d^{\prime}(f(x), f(a))<\varepsilon$ for some $\delta \in \mathbb{R}^{+}$
4. Let $y \in B(a ; \delta)$
$y \in X$ and $d(y, a)<\delta \quad$ def of open ball
$d^{\prime}(f(y), f(a))<\varepsilon \quad \forall-, \Rightarrow-; 2$
$f(y) \in B(f(a) ; \varepsilon) \quad$ def open ball
5. $y \in f^{-1}(B(f(a) ; \varepsilon))$ def inverse image $\operatorname{def} \subseteq ; 3-4$
$B(a ; \delta) \subseteq f^{-1}(U)$
$\exists \delta \in \mathbb{R}^{+}, B(a ; \delta) \subseteq f^{-1}(U)$
$f^{-1}(U) \in \mathcal{N}_{a}$
$\forall a \in f^{-1}(U), f^{-1}(U) \in \mathcal{N}_{a}$
$f^{-1}(U)$ is open in (X, d)
$\exists+$
def of neighborhood
$\forall+$
def of open
\leftarrow
U is open in $\left(Y, d^{\prime}\right) \Rightarrow f^{-1}(U)$ is open in (X, d)
$\Rightarrow+$
$\forall U \subseteq Y, U$ is open in $\left(Y, d^{\prime}\right) \Rightarrow f^{-1}(U)$ is open in $(X, d) \quad \forall+$
$\star(\Leftarrow)$
Assume $\forall U \subseteq Y, U$ is open in $\left(Y, d^{\prime}\right) \Rightarrow f^{-1}(U)$ is open in (X, d)
Let $b \in X$
Let $\varepsilon \in \mathbb{R}^{+}$
6. Define $\mathcal{U}=B(f(b) ; \varepsilon)$
$\mathcal{U} \subseteq Y$
def of open ball
\mathcal{U} is open in $\left(Y, d^{\prime}\right)$ Thm: open balls are open;5
7. $f^{-1}(\mathcal{U})$ is open in (X, d)

$$
\forall-; \Rightarrow-
$$

$f(b) \in \mathcal{U} \quad$ Lemma: every open ball contains its center; 5
$b \in f^{-1}(\mathcal{U})$
$f^{-1}(\mathcal{U})$ is a neighborhood of b def inverse image
def open set; 6
$\exists \delta \in \mathbb{R}^{+}, B(b ; \delta) \subseteq f^{-1}(\mathcal{U})$
def neighborhood
8. $B(b ; \delta) \subseteq f^{-1}(\mathcal{U})$ for some $\delta \in \mathbb{R}^{+}$

Let $z \in X$
Assume $d(z, b)<\delta$

$z \in B(b ; \delta)$	def open ball
$z \in f^{-1}(\mathcal{U})$	$\operatorname{def} \subseteq ; 7$
$f(z) \in \mathcal{U}$	def inverse image
$f(z) \in B(f(b) ; \varepsilon)$	substitution; 5
$d^{\prime}(f(z), f(b))<\varepsilon$	def open ball

$d(z, b)<\delta \Rightarrow d^{\prime}(f(z), f(b))<\varepsilon$

$$
\begin{array}{r}
\Rightarrow+ \\
\forall+, \exists+, \forall+
\end{array}
$$

$\forall \varepsilon \in \mathbb{R}^{+}, \exists \delta \in \mathbb{R}^{+}, \forall x \in X, d(x, b)<\delta \Rightarrow d^{\prime}(f(x), f(b))<\varepsilon$
f is continuous at b
$\forall x \in X, f$ is continuous at x
f is continuous
$\forall+$
def continuous

QED

Theorem Let (X, d) be a metric space.

1. The empty set is open.
2. The set X is open.
3. The union of any collection of open sets is open.
4. The intersection of finitely many open sets is open.

Pf

1. Let (X, d) be a metric space.

Let x be arbitrary

* Show (1)

Assume $x \in \emptyset$
$x \notin \emptyset \quad$ by def of empty set
$\rightarrow \leftarrow$
\emptyset is a neighborhood of x
\leftarrow
$x \in \emptyset \Rightarrow \emptyset$ is a neighborhood of x
$\forall x, x \in \emptyset \Rightarrow \emptyset$ is a neighborhood of x
\emptyset is open
Thm: $\rightarrow \leftarrow$ anything
$\Rightarrow+$
$\forall+$
def of open

* Show (2)

Assume $x \in X$
$B(x ; \pi) \subseteq X$
def open ball
$\pi \in \mathbb{R}^{+}$
$\exists \delta \in \mathbb{R}^{+}, B(x ; \delta) \subseteq X$
X is a neighborhood of x
\leftarrow
$x \in X \Rightarrow X$ is a neighborhood of x
$\Rightarrow+$
$\forall x, x \in X \Rightarrow X$ is a neighborhood of x
X is open
$\forall+$
def of open

* Show (3)

2. Let I be a set and $\left\{O_{i}\right\}_{i \in I}$ an indexed family of open subsets of X

Define $U=\cup_{i \in I} O_{i}$
Assume $x \in U$
$x \in O_{k}$ for some $k \in I$
def union
O_{k} is open
$\forall y \in O_{k}, O_{k}$ is a neighborhood of y

```
        Ok
\(\forall-\)
Exercise 1.4.1.a
Thm N3
\(U\) is a neighborhood of \(x\)
\(\leftarrow\)
\(x \in U \Rightarrow U\) is a neighborhood of \(x\)
\(\forall x, x \in U \Rightarrow U\) is a neighborhood of \(x\)
\(U\) is open
* Show (4)
3. Let \(n\) be a positive integer and \(V_{1}, V_{2}, \ldots, V_{n}\) by open subsets of \(X\)
Define \(V=V_{1} \cap V_{2} \cap \ldots \cap V_{n}\)
Assume \(x \in V\)
\(\forall k \in \mathbb{I}_{n}, x \in V_{k} \quad\) def intersection
\(\forall k \in \mathbb{I}_{n}, \exists \delta_{k} \in \mathbb{R}^{+}, B\left(x ; \delta_{k}\right) \subseteq V_{k} \quad\) def open;2
\(B\left(x ; \delta_{k}\right) \subseteq V_{k}\) for some \(\delta_{1}, \delta_{2}, \ldots, \delta_{n} \in \mathbb{R}^{+} \quad \exists-\)
Define \(\delta=\min \left\{\delta_{1}, \delta_{2}, \ldots, \delta_{n}\right\}\)
Let \(k \in \mathbb{I}_{n}\)
Let \(z \in B(x ; \delta)\)
\(d(z, x)<\delta \quad\) def open ball \(\leq \delta_{k}\)
\(z \in B\left(x ; \delta_{k}\right)\)
\(B(x ; \delta) \subseteq B\left(x ; \delta_{k}\right)\) \(\subseteq V_{k}\)
\(\forall k \in \mathbb{I}_{n}, B(x ; \delta) \subseteq V_{k}\)
\(B(x ; \delta) \subseteq \cap_{k \in \mathbb{I}_{n}} V_{k}\)
\(=V\)
\(V\) is a neighborhood of \(x\)
\(\leftarrow\)
\(x \in V \Rightarrow V\) is a neighborhood of \(x\)
\(\forall x, x \in V \Rightarrow V\) is a neighborhood of \(x\)
\(V\) is open
QED
```


Lemma A subset of a topological space is open if and only if it is a neighborhood of each of its points.

Pf.
Let (X, τ) be a topological space and $U \subseteq X$.
\star (\Rightarrow)
Assume U is open
$U \subseteq U$

Let $u \in U$
U is a neighborhood of u
def neighborhood
U is a neighborhood of each of its points
\leftarrow
$\star(\Leftarrow)$
Assume U is a neighborhood of each of its point
Let $x \in U$
U is a neighborhood of x
$x \in \mathcal{O}_{x} \subseteq U$ for some open set \mathcal{O}_{x}
$\forall x \in U, \exists \mathcal{O}_{x} \in \tau, x \in \mathcal{O}_{x} \subseteq U$
def neighborhood
Let $y \in U$
$y \in \mathcal{O}_{y} \subseteq U$ for some open set \mathcal{O}_{y}
def neighborhood
$y \in \cup_{x \in U} \mathcal{O}_{x}$
def indexed union
$U \subseteq \cup_{x \in U} \mathcal{O}_{x}$
Let $z \in \cup_{x \in U} \mathcal{O}_{x}$
$z \in \mathcal{O}_{t}$ for some $t \in U \quad$ def indexed union
$\mathcal{O}_{t} \subseteq U$
$z \in U$
$\cup_{x \in U} \mathcal{O}_{x} \subseteq U$
$U=\cup_{x \in U} \mathcal{O}_{x}$
$\cup_{x \in U} \mathcal{O}_{x}$ is open
U is open def \mathcal{O}_{x} above $\operatorname{def} \subseteq$ $\operatorname{def} \subseteq$ def set $=$ def topology
\leftarrow
QED

```
Lemma Let f:X }->\mathrm{ Y and }A,B\subseteqY. If A\subseteqB then f-1 (A)\subseteqf, (B)
```

Pf.
Let $f: X \rightarrow Y$ and $A, B \subseteq Y$
Assume $A \subseteq B$
Let $x \in f^{-1}(A)$
$f(x) \in A \quad$ def inverse image
$f(x) \in B \quad \operatorname{def} \subseteq$
$x \in f^{-1}(B)$
$f^{-1}(A) \subseteq f^{-1}(B)$
def inverse image
$\operatorname{def} \subseteq$

QED
Lemma A map between topological spaces is continuous if and only if it is continuous at every point.

Pf.
Let $f:(X, \tau) \rightarrow\left(Y, \tau^{\prime}\right)$ be a map between topological spaces.
$\star(\Rightarrow)$
Assume f is continuous

Let $a \in X$
Let N be a neighborhood of $f(a)$
$f(a) \in \mathcal{O} \subseteq N$ for some open set $\mathcal{O} \in \tau^{\prime} \quad$ def of neighborhood
$f^{-1}(\mathcal{O}) \in \tau$, i.e. its open!! Yay!
$a \in f^{-1}(\mathcal{O})$
$f^{-1}(\mathcal{O}) \subseteq f^{-1}(N)$
$f^{-1}(N)$ is a neighborhood of a
f is continuous at a
f is continuous at every point
\leftarrow

$$
\star(\Leftarrow)
$$

Assume f is continuous at every point
Let $U \in \tau^{\prime}$ be an open subset of Y
Let $a \in f^{-1}(U)$
$f(a) \in U \quad$ def inverse image
$U \subseteq U$
U is a neighborhood of $f(a)$
f is continuous at a
$f^{-1}(U)$ is a neighborhood of a
$f^{-1}(U)$ is a neighborhood of each of its points
$f^{-1}(U)$ is open
$\forall U \in \tau^{\prime}, f^{-1}(U)$ is open
f is continuous
pg 3 def of neighborhood
def of continuous def inverse image by Lemma above
def of neighborhood
def continuous at a point

$$
\forall+
$$ $\forall-$ def continuous at a point

def continuous

QED

Theorem Let (X, τ) be a topological space and R and equivalence relation on X. Then the quotient topology on X / R is the set

$$
\tau^{\prime}=\left\{\mathcal{O} \subseteq X / R: \pi^{-1}(\mathcal{O}) \in \tau\right\}
$$

Pf.
Let (X, τ) be a topological space and R and equivalence relation on X.
Let $\pi: X \rightarrow X / R$ be the quotient map.
Define $\tau^{\prime}=\left\{\mathcal{O} \subseteq X / R: \pi^{-1}(\mathcal{O}) \in \tau\right\}$
$\pi^{-1}(\emptyset)=\emptyset$ by def of inverse image.
$\in \tau$ by def of topology.
$\emptyset \in \tau^{\prime}$ by def of τ^{\prime}.
$\pi^{-1}(X / R)=X$ by def of inverse image. $\in \tau$ by def of topology.
$X / R \in \tau^{\prime}$ by def of τ^{\prime}.
Let $\left\{\mathcal{O}_{i}\right\}_{i \in I}$ be an indexed family of elements of τ^{\prime}.
$\forall i \in I, \pi^{-1}\left(\mathcal{O}_{i}\right) \in \tau$ by def of τ^{\prime}.
$\pi^{-1}\left(\bigcup_{i \in I} \mathcal{O}_{i}\right)=\bigcup_{i \in I} \pi^{-1}\left(\mathcal{O}_{i}\right)$ by some result in chapter 1 .
$\in \tau$ by def of topology.
$\bigcup_{i \in I} \mathcal{O}_{i} \in \tau^{\prime}$ by def of τ^{\prime}.
Let $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots, \mathcal{O}_{n} \in \tau^{\prime}$.
$\forall i \in \mathbb{I}_{n}, \pi^{-1}\left(\mathcal{O}_{i}\right) \in \tau$ by def of τ^{\prime}.
$\pi^{-1}\left(\mathcal{O}_{1} \cap \mathcal{O}_{2} \cap \ldots \cap \mathcal{O}_{n}\right)=\pi^{-1}\left(\mathcal{O}_{1}\right) \cap \pi^{-1}\left(\mathcal{O}_{2}\right) \cap \ldots \cap \pi^{-1}\left(\mathcal{O}_{n}\right)$ by some result in chapter 1.

$$
\in \tau \text { by def of topology. }
$$

$\mathcal{O}_{1} \cap \mathcal{O}_{2} \cap \ldots \cap \mathcal{O}_{n} \in \tau^{\prime}$ by def of τ^{\prime}.
τ^{\prime} is a topology.
Let T be a topology on X / R such that $\pi:(X, \tau) \rightarrow(X / R, T)$ is continuous.
Let $U \in T$.
$\pi^{-1}(U) \in \tau$ by definition of continuous.
$U \in \tau^{\prime}$ by def of τ^{\prime}.
$T \subseteq \tau^{\prime}$ by def of \subseteq.
τ^{\prime} is stronger than T by def of strong.
τ^{\prime} is stronger than every topology on X / R such that the quotient map is continuous (by for all plus!).
τ^{\prime} is the quotient topology!
QED

Theorem Let $(X, \tau),\left(Y, \tau^{\prime}\right)$ be topological spaces and ρ the product topology on $X \times Y$. Let $y_{0} \in Y$ and $S=\left\{\left(x, y_{0}\right): x \in X\right\}$. Then (X, τ) is homeomorphic to $\left(S, \rho^{\prime}\right)$ where ρ^{\prime} is the subspace topology on S.

Pf.

Let $(X, \tau),\left(Y, \tau^{\prime}\right)$ be topological spaces and ρ the product topology on $X \times Y$.
Let $y_{0} \in Y, S=\left\{\left(x, y_{0}\right): x \in X\right\}$, and ρ^{\prime} the subspace topology on S.
Define $h: X \rightarrow S$ by $h(x)=\left(x, y_{0}\right)$ for all $x \in X$.
\star We will show h is a homeomorphism
\star First we show it is injective
Let $a, b \in X$.
Assume $h(a)=h(b)$.
$\left(a, y_{0}\right)=\left(b, y_{0}\right)$ by def of h.
$a=b$ by def of ordered pair.
\leftarrow
h is injective.
\star Now we show it is surjective
Let $s \in S$.
$s=\left(t, y_{0}\right)$ for some $t \in X$ by def of S.
$=h(t)$ by def of h.
h is surjective.
\star so it is both injective and surjective
h is bijective.
\star now we show that h is continuous by showing the inverse image of an arbitrary open set is open
Let \mathcal{O} be an open subset of $\left(S, \rho^{\prime}\right)$.
$\mathcal{O}=\mathcal{U}^{\prime} \cap S$ for some open $\operatorname{set} \mathcal{U}^{\prime}$ in $(X \times Y, \rho)$ by def of subspace topology.
$\mathcal{U}^{\prime}=\cup_{i \in I^{\prime}} A_{i} \times B_{i}$ for some open sets $\left\{A_{i}\right\}_{i \in I^{\prime}}$ of X and open sets $\left\{B_{i}\right\}_{i \in I^{\prime}}$ of Y by the definition
of product topology.

* in order for this to work, we need to "trim" our set \mathcal{U} ' a little by throwing away any of the basis elements which do not intersect S.
Let $I=\left\{i \in I^{\prime}: y_{0} \in B_{i}\right\}$.
Define $\mathcal{U}=\cup_{i \in I} A_{i} \times B_{i}$.
$\mathcal{U} \subseteq \mathcal{U}^{\prime}$ by problem 1.3.b.
Let $r \in \mathcal{U} \cap S$
$r \in \mathcal{U}$ and $r \in S$ by def of \cap.
$r \in \mathcal{U}^{\prime}$ and $r \in S$ by def subset.
$r \in \mathcal{U}^{\prime} \cap S$ by def of \cap.
$\mathcal{U} \cap S \subseteq \mathcal{U}^{\prime} \cap S$ by def of subset.
$=\mathcal{O}$ by substitution.
Let $q \in \mathcal{O}$
$=\mathcal{U}^{\prime} \cap S$ by substitution.
$q \in \mathcal{U}^{\prime}$ and $q \in S$ by def of \cap.
$q \in \cup_{i \in I^{\prime}} A_{i} \times B_{i}$ by substitution.
$q \in A_{\imath} \times B_{\imath}$ for some $t \in I^{\prime}$ by def of union.
$q=\left(q_{1}, q_{2}\right)$ for some $q_{1} \in A_{\imath}$ and $q_{2} \in B_{\imath}$ by def of Cartesian product.
$q=\left(a_{0}, y_{0}\right)$ for some $a_{0} \in X$ by def of S.
$\left(q_{1}, q_{2}\right)=\left(a_{0}, y_{0}\right)$ by substitution.
$q_{1}=a_{0}$ and $q_{2}=y_{0}$ by def of ordered pair.
$y_{0} \in B_{l}$ by substitution.
$l \in I$ by definition of I.
$q \in \cup_{i \in I} A_{i} \times B_{i}$ by definition of union.
$=\mathcal{U}$ by substitution.
$q \in \mathcal{U} \cap S$ by $\operatorname{def} \cap$.
$\mathcal{O} \subseteq \mathcal{U} \cap S$ by def of subset.
$\mathcal{O}=\mathcal{U} \cap S$ by def of set equality.

```
    \(\star\) we will now show that \(h^{-1}(\mathcal{O})=\cup_{i \in I} A_{i}\) and therefore is open in \(X\)
    \(\star\) to do this we have to show that two sets are equal
    \(\star\) first we show \(h^{-1}(\mathcal{O}) \subseteq \cup_{i \in I} A_{i}\)
Let \(x \in h^{-1}(\mathcal{O})\)
    \(=h^{-1}(\mathcal{U} \cap S)\) by substitution,
    \(=h^{-1}\left(\left(\cup_{i \in I} A_{i} \times B_{i}\right) \cap S\right)\) by substitution.
\(h(x) \in\left(\cup_{i \in I} A_{i} \times B_{i}\right) \cap S\) by def of inverse image.
\(h(x) \in\left(\cup_{i \in I} A_{i} \times B_{i}\right)\) and \(h(x) \in S\) by def \(\cap\).
\(h(x) \in A_{\alpha} \times B_{\alpha}\) for some \(\alpha \in I\) by def of union.
\(h(x)=\left(a_{\alpha}, b_{\alpha}\right)\) for some \(a_{\alpha} \in A_{\alpha}, b_{\alpha} \in B_{\alpha}\) by def of Cartesian product.
\(h(x)=\left(x, y_{0}\right)\) by def of \(h\).
\(\left(x, y_{0}\right)=\left(a_{\alpha}, b_{\alpha}\right)\) by substitution.
```

$x=a_{\alpha}$ and $b_{\alpha}=y_{0}$ by def of ordered pair.
$x \in A_{\alpha}$ by substitution.
$x \in \cup_{i \in I} A_{i}$ by def of union.
$h^{-1}(\mathcal{O}) \subseteq \cup_{i \in I} A_{i}$ by def of subset.
\star now we show $\cup_{i \in I} A_{i} \subseteq h^{-1}(\mathcal{O})$
Let $z \in \cup_{i \in I} A_{i}$.
$z \in A_{\gamma}$ for some $\gamma \in I$ by def of union.
$h(z)=\left(z, y_{0}\right)$ by def of h.
$\in S$ by def of S.
$h(z) \in A_{\gamma} \times B_{\gamma}$ by def of I.
$=\cup_{i \in I} A_{i} \times B_{i}$ by def of union
$=\mathcal{U}$ by substitution.
$h(z) \in \mathcal{U} \cap S$ by def of \cap.
$=\mathcal{O}$ by substitution.
$z \in h^{-1}(\mathcal{O})$
$\cup_{i \in I} A_{i} \subseteq h^{-1}(\mathcal{O})$ by def of subset.
$h^{-1}(\mathcal{O})=\cup_{i \in I} A_{i}$ by def of set equality.
$\cup_{i \in I} A_{i}$ is open in X by def of topology since all A_{i} are open.
$h^{-1}(\mathcal{O})$ is open by substitution.
h is continuous by def of continuous.

* now we define the inverse function of h

Let $g: S \rightarrow X$ by $g\left(x, y_{0}\right)=x$.
Let $w \in S$.
$w=\left(w_{1}, y_{0}\right)$ for some $w_{1} \in X$ by def of S.
$(h \circ g)(w)=(h \circ g)\left(w_{1}, y_{0}\right)$ by substitution.
$=h\left(g\left(w_{1}, y_{0}\right)\right)$ by def of \circ.
$=h\left(w_{1}\right)$ by def of g.
$=\left(w_{1}, y_{0}\right)$ by def of h.
$=w$ by substitution.
Let $v \in X$.
$(g \circ h)(v)=g(h(v))$ by def of \circ.
$=g\left(v, y_{0}\right)$ by def of h.
$=v$ by def of g.
So g and h are inverse functions.

* and finally we show the inverse function is continuous... but not by brute force like we did above
Let $i: S \rightarrow X \times Y$ be the inclusion map and $p_{1}: X \times Y \rightarrow X$ the projection map onto the first component.
i is continuous by Thm 6.6.
p_{1} is continuous by the definition of product topology.
$p_{1} \circ i$ is continuous by the corollary to Thm 5.6.
Let $u \in S$.
$u=\left(u_{1}, y_{0}\right)$ for some $u_{1} \in X$ by def of S.
$\left(p_{1} \circ i\right)(u)=\left(p_{1} \circ i\right)\left(u_{1}, y_{0}\right)$ by substitution.
$=p_{1}\left(i\left(u_{1}, y_{0}\right)\right)$ by def of \circ
$=p_{1}\left(u_{1}, y_{0}\right)$ by def of i
$=u_{1}$ by def of p_{1}
$=g\left(u_{1}, y_{0}\right)$ by def of g
$=g(u)$ by substitution.
$g=p_{1} \circ i$ by def of function equality.
g is continuous by substitution.
h is a homeomorphism by def of homeomorphism (it is a continuous bijection with a continuous inverse).
(X, τ) is homeomorphic to $\left(S, \rho^{\prime}\right)$ by def of homeomorphic.
QED
Remark Note that in this proof we showed that the projection map restricted to a subset of its domain is still continuous by composing it with the inclusion map. This proof works in general, namely, if we have any continuous function $f: X \rightarrow Y$ and $A \subseteq X$, then the function obtained by restricting the domain of fo A is still continuous (with the subspace topology on A from X).

