
Coach Monks’s High School Playbook
This playbook is meant as a training reference for high school math competitions. Students should be familiar
with all material in Coach Monks’s MathCounts Playbook (a 6-8th grade level contest) as a prerequisite to
learning this material. Learn the items marked with a  first. Then once you have mastered them try to learn the
other topics.

Arithmetic!
 In addition to the values memorized for MathCounts, the following facts can also be useful.

n n2

21 441
22 484
23 529
24 576
25 625
26 676
27 729
28 784
29 841
30 900

n n!

1 1
2 2
3 6
4 24
5 120
6 720
7 5040
8 40320
9 362880
10 3628800

n

1  1
2  1.414
3  1.732
4  2
5  2.236
6  2.449
7  2.646

8  2.828
9  3
10  3.162

logn

log1  0
log2  0.301
log3  0.477
log4  0.602
log5  0.699
log6  0.778
log7  0.845
log8  0.903
log9  0.954
log10  1

this is the only value in these tables that was rounded up when rounded to the nearest thousandth
    3.14159265358979 and e  2.7182818284590452
 Prime factorizations of recent, current, and upcoming years:

- 2002  2  7  11  13
- 2003 is prime
- 2004  22  3  167
- 2005  5  401
- 2006  2  17  59
- 2007  32  223
- 2008  23  251
- 2009  72  41
- 2010  2  3  5  67

Combinatorics and Probability
1. Binomial Coefficient Identities

n
k  n!

k!nk!  factorial expansion x  yn  
k0

n
n
k xkynk  binomial theorem

n
k  n

nk  symmetry n
k  

m0

k
n1m
km hockey stick

n
k  n

k
n1
k1 absorption n

k  
m0

nk
n1m
k1 hockey stick

n
k  n1

k1  n1
k  recursion n

k  
m0

k
ns
km

s
m  Vandermonde

convolution
n
m  m

k  n
k

nk
mk trinomial revision

a. Generalized Binomial Coefficients: 
k  12k1

k! is a well defined polynomial in  and
therefore well defined for real (or even complex) values of .
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b. Generalized Binomial Theorem: 1  x  
k0



k xk

2. Multinomial Coefficients: n
k1,k2,,km

is the number of ways of putting n distinct objects into m categories so
that the ith category contains ki objects
a. n

k1,k2,,km
 n!

k1!k2!km!
where k1  k2 km  n

b. n
k1,k2,,km

 n
k1

nk1
k2

nk1k2
k3

 nk1k2km1
km

c. x1  x2   xmn  
k1kmn

n
k1,,km

x1
k1x2

k2xmkm (the multinomial theorem)

3. Catalan Numbers: Cn is the number of triangulations of a convex n  2-gon having no internal vertices. Cn is
also the number of ways to parenthesize x1x2xn completely into binary products.
a. Cn  C0Cn1  C1Cn2   Cn2C1  Cn1C0 for n  1 and C0  1
b. Cn  1

n1
2n
n  for n  0

c. The first few values are 1,1,2,5,14,42,132,429,1430,4862,
4. Stirling Numbers of the first kind: n

k is the number of permutations of a set with n elements having exactly k
distinct cycles.
a. n

0  0, n
1   n  1!, n

n1   n
2 , n

n   1
b. n

k  n  1 n1
k  n1

k1 for n  1 and 1  k  n
c. The first few values of n

k :

k
1 2 3 4 5 6 7

1 1
2 1 1
3 2 3 1
4 6 11 6 1

n 5 24 50 35 10 1
6 120 274 225 85 15 1
7 720 1764 1624 735 175 21 1

5. Stirling Numbers of the second kind: n
k is the number of partitions of a set with n elements into k non-empty

subsets.
a. n

1   1, n
2   2n1  1, n

n1   n
2 , n

n   1
b. n

k  n1
k1  k n1

k for n  1 and 1  k  n
c. The first few values of n

k :

k
1 2 3 4 5 6 7 8

1 1
2 1 1
3 1 3 1
4 1 7 6 1

n 5 1 15 25 10 1
6 1 31 90 65 15 1
7 1 63 301 350 140 21 1
8 1 127 966 1701 1050 266 28 1

d. n
k  1

k! 
i0

k
1i n

k k  in

6. Partition Formula: Let Pn,k  the number of partitions of n having largest summand k. Then
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Pn, 1  Pn,n  1 and
Pn,k  Pn  k,k  Pn  1,k  1

This recursion produces the Pascal-like triangle:

k
1 2 3 4 5 6 7 8 9

1 1
2 1 1
3 1 1 1
4 1 2 1 1

n 5 1 2 2 1 1
6 1 3 3 2 1 1
7 1 3 4 3 2 1 1
8 1 4 5 5 3 2 1 1
9 1 4 7 6 5 3 2 1 1

7.  Pigeonhole Principle: If you have n pigeons in k holes some hole contains at least n
k pigeons and some hole

contains at most n
k pigeons.

8.  Inclusion-Exclusion Principle: Given finite sets A1,A2, ,An and let S1  
i
|Ai |,

S2  
ij
|Ai  Aj |,  ,Sn  |A1  A2   An |. Then

|A1  A2   An |  S1  S2  S3  S4   1n1Sn
9.  Expected Value: Given a sample space S and a function f : S  R the expected value of f on this sample space
is
xS
Pxfx where Px is the probability of x.

10. Van der Waerden’s Theorem: Let n and k be positive integers. Then there exists a positive integer N such that
if the numbers 1,2, . . . ,N are colored in k colors, one color always contains an arithmetic progression of length n.

Graph Theory
1.  Euler paths: traverse every edge in a graph exactly once.

a. A connected graph has an Euler path if and only if the number of odd degree vertices is zero or two. If it is
zero then the path is a cycle, and if it is two the path must begin and end at the odd degree vertices.

2. A simple graph has no edges from a node to itself.
3.  Hamiltonian paths: traverse every vertex in a graph exactly once.

a. Dirac’s Theorem: If every vertex in a simple graph with v vertices has degree at least v/2 then the graph has a
Hamiltonian cycle.

b. Ore’s Theorem: A simple graph with n nodes has an Hamiltonian cycle if whenever two nodes are not
connected by an edge the sum of their degrees is at least n.

4. Ramsey’s Theorem: Let Na,b be the smallest number such that any group of Na,b people must contain either
a mutual friends or b mutual strangers.
a. Na,b  Nb,a
b. Na, 2  a
c. Na,b  Na  1,b  Na,b  1

5. Turán’s Theorem: Let G be a graph with n nodes which contains no complete subgraph of k nodes. Let tn,k be
the maximum number of edges of such a graph. Then

tn,k  k  2
k  1

n2
2

a. The graph having tn,k edges, n nodes, and no complete k-subgraph is the complete k  1-partite graph
which has the most evenly divided arrangement of nodes, i.e. in which the numbers of nodes each pair of the
k  1 groups differ by at most 1.

Sequences and Series
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1.  Some Sums
a. 12  22  32 . . .n  12  n2  nn12n1

6

b. 13  23  33 . . .n  13  n3  nn1
2

2

c. 1  1!  2  2!  3  3!  4  4! . . . k  k!  k  1!  1
2.  Infinite geometric series:

1  r  r2  r3  1
1  r for  1  r  1

Many other useful series can be derived from this by substitution, differentiation, etc.
3. Generating Functions: Let a0,a1,a2, . . . be a sequence of numbers. The generating function for this sequence is
fx 



n0

 anxn. It can be used to solve recurrences explicitly. Variations such as


n0

 an
n! x

n are sometimes useful.

a. Properties:
i. Addition and multiplication of generating functions are commutative and associative.
ii. The constant functions 0 and 1 are additive and multiplicative identities, respectively.
iii. Every generating function has an additive inverse.

iv. A generating function Ax 


n0

 anxn has a multiplicative inverse Bx 


n0

 bnxn if and only if a0  0.

In this case, Bx is given by the recursion b0  1
a0 and bk 

1
a0

k

i1

 aibki.

b. Manipulating ordinary generating functions: Let Ax 


n0

 anxn and Bx 


n0

 bnxn

i. Ax  Bx if and only if an  bn for all n.

ii. Ax
1x 



n0


n

k0

 ak xn

iii. AxBx 


n0


n

k0

 akbnk xn

iv. xA x 


n0

 nanxn

v. Ax  C 


n1

 an1
n xn

c. Manipulating exponential generating functions: Let Ax 


n0

 an
n! x

n and Bx 


n0

 bn
n! x

n

i. AxBx 


n0




k0

 n
k

akbnk
n! xn

ii. A x 


n0

 an1
n! x

n

Number Theory
Distribution of Primes
1. The Prime Number Theorem: The approximate number of primes less than or equal to a positive integer x
converges to x

ln x as x  .
2. Bertrand’s Postulate: For any n  1, there is always at least one prime between n and 2n.
3. Dirichlet’s Theorem: For any relatively prime natural numbers a, b, the arithmetic sequence a,a  b,a  2b, . . .
contains infinitely many primes.

Continued Fractions
1. Continued Fraction Representation: Every rational number q can be represented uniquely by the sequences

a0,a1, ,an  and a0,a1, ,an  1,1 where
q  a0  1

a1  1
a2
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and a0  q and the ai are positive integers determined by converting the reciprocal of the remainder to a mixed
number iteratively. Irrational numbers have a unique infinite representation of this form.

2. Self-similar expressions: Let X  r
s r

s r
s

. Then X  r
sX which can be solved for X.

Diophantine Equations
1.  Linear Equations: For integers a1, . . . ,an,c, the equation a1x1 . . .anxn  c has integer solutions if and only if
gcda1, . . . ,an  c. (See also: GCDst Theorem in Number Theory - Modular Arithmetic - Other Applications -
#1b below)

2. Sums of Squares
a. For any integer n, the equation x2  y2  n has integer solutions iff any prime factor of n that is congruent to 3

mod 4 occurs to an even power in the prime factorization of n.
b. An odd prime p can be written as the sum of two squares iff p  1 mod 4
c. A positive integer n can be written as the sum of three squares iff n cannot be written in the form 8k  74m
for any nonnegative integers k,m.

d. All positive integers can be written as the sum of four squares.
3. Pell’s Equation: For any non-square positive integer D, the equation x2  Dy2  1 has infinitely many integer
solutions, each of which is of the form xn,yn given by

xn  yn D  x1  y1 D
n

where x1,y1 is the solution with x1, y1  0 and y1 minimal, and n is a nonnegative integer.

Modular Arithmetic
Euler’s  Function (A.K.A. Euler’s totient function)
 Let n  the number of positive integers less than the positive integer n  1 which are relatively prime to n.

1.  pk  pk1p  1
2.  ab  a  b for relatively prime a,b.
3.  Euler’s Theorem: Let a, n be relatively prime integers with n  1. Then an  1modn.
4.  Fermat’s Little Theorem: For any nonzero integer a and positive prime p, ap1  1modp and ap  amodp.
5. Order: If gcda,n  1 then the order of a modulo n is the smallest positive integer k such that ak

n
 1. It has the

following properties:
a. k divides n
b. ai

n
 aj if and only if i

k
 j

6. Primitive roots: If the order of a modulo n is a then a is called a primitive root of n. It has the following
properties:
a. if b is relatively prime to n then b  ak for some k
b. n has a primitive root if and only if n  2,4,pk, or 2pk for some odd prime p and k  0.

Other applications
1. GCD: Let d  gcda,b.

a.  Euclidean Algorithm: For all a,b, gcda,b  gcdb,a mod b. Iterating this formula computes gcda,b
by reducing it to gcdd, 0.

b.  GCDst Theorem: For all a,b  Z there exists integers s, t such that gcda,b  sa  tb. One such pair s, t
can be found by the Euclidean algorithm as follows:

sia  tib si ti
a0  a 1 0
a1  b 0 1
a2 s2 t2
a3 s3 t3
  

gcda,b s t

where ai  ai2 modai1, si  si2  ai2/ai1si1 , and ti  ti2  ai2/ai1ti1. The pair S,T is a solution
of Sa  Tb  d if and only if S,T  s  b

d k, t 
a
d k for some k  Z. (A common situation is when
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d  1).
2.  Base Conversion: To convert a whole number n to a base b let fx  xxmodb

b . Then n, fn, ffn. . . taken
mod b, are the digits of n in base b in reverse order.

3.  Chinese Remainder Theorem: If b0,b1, ,bn are pairwise relatively prime and B  b0b1bn then the system
of congruences:

x
b0
 a0, x

b1
 a1 ,  , x

bn
 an

has unique solution mod B :


i0

n

aiui B
bi

where ui
bi
 B

bi

1
.

4. Wilson’s Theorem: For any integer n greater than one, n is prime if and only if n  1!
n
 1.

5. Wolstenholme’s Theorem: For any prime p  5 and any nonnegative integers a and b, p3  ap
bp  a

b .
6. Roots of Unity mod pn: Let p be an odd prime, n  . Then xp  1 mod pn iff x  1 mod pn1 .
7. Quadratic Reciprocity: In the following let p be an odd prime and gcda,p  gcdb,p  1.

a. Quadratic residue: a is a quadratic residue mod p if and only if there is an integer x such that x2
p
 a

b. Legendre Symbol: of a on p is  ap  
1 if a is a quadratic residue mod p
1 otherwise

.

c. Euler’s Criterion:  ap  p
 ap1/2

d. Properties of the Legendre symbol:
i. if a

p
 b then  ap    bp 

ii. a2
p  1

iii.  abp    ap  bp 
iv.  1p   1 and  1p   1p1/2

v.  2p  
1 if p

8
 1 or p

8
 1

1 otherwise

e. Law of Quadratic Reciprocity: If p,q are distinct odd primes then
p
q  1

p1
2

q1
2

q
p

i. Corollary:  pq  
 qp  if p

4
 1 or q

4
 1

 qp  if p
4
 q

4
 3

Algebra
Basics
1. Absolute value:

a.  Geometric interpretation: |x| is the distance x is from the origin.

b.  Algebraic interpretation: |x| 
x if x  0
x if x  0

.

c.  x2  |x|
2.  Adding Proportions: Let a,b,x,y, r be real numbers. Then

x
y  a

b  r  x  a
y  b  x  a

y  b  r

3. Useful Factorizations:
a. For any positive integer n, xn  yn  x  yxn1  xn2y  xn2y2   xyn2  yn1
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b. For odd positive integers n, xn  yn  x  y xn1  xn2y  xn2y2   1n1yn1

c. a2  b2c2  d2  ac  bd2  ad  bc2  ac  bd2  ad  bc2

- Thus the product of two sums of squares is a sum of squares.
d. x4  4y4  x2  2xy  2y2x2  2xy  2y2
- This partially alleviates the problem of not being able to factor sums of squares.

4. Simplifying Nested Radicals: It is sometimes possible to simplify nested radicals with the denesting equation

X  Y  X  X2  Y2
2  X  X2  Y2

2

Number systems
1. Fields: Q,R,C and Zp for a prime p are all examples of fields. These sets with their usual operations of , satisfy
the properties: , are commutative and associative,  is distributive over , there is an additive and multiplicative
identity, every element has an additive inverse and every nonzero element has a multiplicative inverse.

Linear Algebra
1.  Vectors: a real vector is finite sequence of real numbers denoted a1,a2, ,an. The set of all such vectors is
denoted Rn.
a.  Vector addition: a1,a2, ,an  b1,b2, ,bn  a1  b1,a2  b2, ,an  bn
b.  Scalar multiplication: If r is a real number then ra1,a2, ,an  ra1, ra2, , ran
c.  Dot Product: a1,a2, ,an  b1,b2, ,bn  a1b1  a2b2   anbn

d.  Cross Product: a1,a2,a3  b1,b2,b3  e, f,g where e  det
a2 a3
b2 b3

, f  det
a1 a3
b1 b3

,

and g  det
a1 a2
b1 b2

.

e. (See also: Analytic Geometry below)
2. Matrix: An array M consisting of m rows and n columns of complex numbers is called an m  n matrix. The
entry in the ith row and jth column is denoted Mi, j

3. Matrix multiplication: IfM is an m  n matrix and N is an n  p matrix theMN is the m  p matrix such that
MN i, j is the dot product of the ith row ofM with the jth column of N.

4.  Determinant: det
a b
c d

 ad  bc and

det
a b c
d e f
g h i

 adet
e f
h i

 bdet
d f
g i

 cdet
d e
g h

 aei  bfg  cdh  afh  bdi  ceg

5.  Identity matrix: is an nxn matrix In having Ini, j 
1 if i  j
0 otherwise

. For any n  n matrix M we have

MIn  InM  M.
6.  Inverse matrix: Two n  n matricesM,N are inverses if and only ifMN  NM  In. A matrix M has an inverse
if and only if detM  0.

a. Inverse of a 2  2Matrix: Let A 
a b
c d

. Then

A1  1
detA

d b
c a

7.  Systems of linear equations: the system
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a1x  b1y  c1z  d1
a2x  b2y  c2z  d2
a3x  b3y  c3z  d3

has a unique solution x,y, z if and only if det
a1 b1 c1
a2 b2 c2
a3 b3 c3

 0.

8. Cramer’s Rule: If the system of linear equations
a1x  b1y  c1z  d1
a2x  b2y  c2z  d2
a3x  b3y  c3z  d3

has solution x,y, z then

x 

det
d1 b1 c1
d2 b2 c2
d3 b3 c3
D ,y 

det
a1 d1 c1
a2 d2 c2
a3 d3 c3
D , z 

det
a1 b1 d1
a2 b2 d2
a3 b3 d3
D ,

where D  det
a1 b1 c1
a2 b2 c2
a3 b3 c3

. This generalizes to any number of equations and unknowns.

Polynomials
1.  Polynomial: Let F be either a field or Z, and a0,a1, ,an  F. Then px  anxn  an1xn1   a0 with
an  0 is called a polynomial of degree n with coefficients in F. The set of all such polynomials is denoted Fx.

Quotients, Remainders, and Factorization
1.  Division algorithm: Let F be a field and fx,gx  Fx with gx  0. Then there exist unique polynomials
qx, rx such that

fx  qxgx  rx and rx  0 or degrx  deggx .
As with integers qx is called the quotient and rx the remainder when fx is divided by gx.

2.  Euclidean algorithm: the Euclidean algorithm and GCDst theorem can be applied to two polynomials with real
coefficients (see Number Theory - Modular Arithmetic - Other Applications - #1 above)

3.  Remainder Theorem: Let F be a field, px  Fx, and a  F. Then there exists qx  Fx such that
px  x  aqx  pa

i.e. the remainder when px is divided by x  a is pa.
4.  Factor Theorem: Let F be a field, px  Fx, px  0, and a  F. Then x  a is a factor of px if and only
if pa  0.

5.  Fundamental Theorem of Algebra: Let px  anxn  an1xn1 . . .a0  Cx with an  0. Then px factors
uniquely (up to reordering the factors) as:

px  anx  r1x  r2x  rn
for some r1, r2, , rn  C.

6.  Irreducible Polynomials: Every polynomial with real coefficients factors as a product of irreducible linear and
quadratic polyomials.

7. Gauss’s Theorem: If px  Zx and px can be factored over the rationals, then it can be factored over the
integers.

Synthetic Division and Substitution
1.  Synthetic Division/Substitution: To compute the quotient and remainder when px  anxn  an1xn1 . . .a0
is divided by x  r we can use synthetic substitution:

r an an1 an2  a0
an anr  an1 anr  an1r  an2  pr
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2. Upper and Lower Bounds Theorem: If the numbers in the second row of the synthetic division all have the same
sign or are zero then r is an upper bound for the roots of p. If the numbers in the second row of the synthetic
division have alternating signs then r is a lower bound for the roots of p.

Symmetric Polyonomials
1.  Coefficients vs. Roots: Let px  xn  an1xn1 . . .a0  Cx and r1, r2, , rn its (not necessarily distinct)
roots. Then for all 0  i  n

ai  
1k1kin

1nirk1rk2rki

In particular, a0  1nr1r2rn and an1  r1  r2   rn.
2. Reduction Algorithm for Symmetric Polynomials: Define spx1, ,xn  1k1kpn

xk1xk2xkp to be the
elementary symmetric polynomial in n variables of degree p (and define spx1, ,xn  0 if p  n). These form a
basis for the algebra of all symmetric polynomials. Define the height of a monomial x1

e1x2
e2xnen to be

e1  2e2   nen and the height of a polynomial to be the maximum height of any of its monomial terms and
zero for the zero polynomial. If f is a symmetric polynomial whose maximal height term is cx1

e1x2
e2xnen , then the

polynomial g  f  cs1
enen1s2

en1en2sn1
e2e1sne1 has strictly lower height than f so that iterating gives an expression

for f as a polynomial in the elementary symmetric polynomials.
3. Newton-Girard Identities: Define

Nps1, , sp  det

s1 1 0 0  0
2s2 s1 1 0  0
3s3 s2 s1 1  0
4s4 s3 s2 s1  0
     1
psp sp1 sp2 sp3  s1

where si are the elemetary symmetric polynomials in x1,x2, ,xn then expanding N gives
Np  x1

p  x2
p   xnp

The first few values of Np are
N1  s1
N2  s12  2s2
N3  s13  3s1s2  3s3
N4  s14  4s12s2  2s22  4s1s3  4s4

These satisfy the recurrence
Nn  s1Nn1  s2Nn2  s3Nn3   1n1snN0

Roots
1.  Descartes’s Rule of Signs: If px  Rx then the number of positive roots of px is equal to N  2k for some
k  Z, where N is the number of sign changes in the sequence a0,a1, ,an. The number of negative roots of px
equals the number of positive roots of px.

2.  Rational Root Theorem: If px  anxn  an1xn1   a0  Zx and r
s (in reduced form) is a rational root

of px, then r divides a0 and s divides an.
3.  Complex Conjugate Roots: If px  Rx and a  bi is a complex root of p then so is a  bi.
4.  Irrational Conjugate Roots: If px  Qx and a  b c is a root of p where a,b,c  Q and c  R  Q,
then a  b c is also a root of p.

5. Eisenstein’s Irreducibility Criterion: If px  Zx and if there exists a prime q that divides each of the
coefficients except an and q2 does not divide a0, then px is irreducible over the rationals.

6. Lagrange Interpolation: Let xi,yi i0n be a set of points. Then the n th-degree polynomial

px 
i0

n

yi
ji

x  xj
xi  xj

is the unique polynomial of degree at most n passing through each of the points.
Partial Fractions
1.  Equality of Polynomial functions: If px,qx  Rx then the functions p and q are equal if and only if the
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polynomials px and qx have the same degree and their corresponding coefficients are equal.
2. Partial Fraction Decomposition: If px  Rx has degree less than k  2m and l1xlkx  Rx are
irreducible linear polynomials and q1xqmx  Rx are irreducible quadratic polynomials then there exist real
numbers A1, ,Ak,B1, ,Bk,C1, ,Ck such that

px
l1xlkxq1xqmx

 A1
l1x

  Ak
lkx

 B1x  C1q1x
  Bmx  Cmqmx

Synthetic Geometry
Terminology and Common Notation
1. Definitions: The following notation is somewhat standard and will be used in this document.

a.  Cevian: Any segment from a vertex of a triangle to a point on the opposite side
b. Median: A cevian which bisects the opposite side
c.  Altitude: The perpendicular from a vertex to the opposite side of a triangle
d.  Centroid (G): The point of intersection of the medians of a triangle (they are concurrent)
e.  Orthocenter (H): The point of intersection of the altitudes of a triangle (they are concurrent)
f.  Circumcircle, Circumcenter (O), Circumradius (R): Every triangle can be circumscribed by a unique
circle whose center is the intersection of the perpendicular bisectors of the three sides.

g.  Incircle, Incenter (I), Inradius (r): Every triangle circumscribes a unique circle whose center is the
intersection of the angle bisectors.

h.  Excircles, Excenters (IA, IB, IC), Exradii (rA, rB, rC): Any of the three centers of the excircles (tangent to
one side and the extensions of the other two) of a triangle; also the intersection of the external bisectors.

i.  Semiperimeter (s): half of the perimeter
j. Medial Triangle: The triangle whose vertices are the midpoints of the sides of a given triangle. It
subdivides the triangle into four congruent sub-triangles.

k.  Orthic Triangle: The triangle whose vertices are the feet of the altitudes of a given triangle. It is the
triangle with minimum perimeter of all triangles whose vertices are on the three sides.

l. Euler Line: the line containing the orthocenter, centroid, and circumcenter of a triangle (HGO). In any
triangle |HG |  2|GO| and 9OH2  a2  b2  c2 where a, b, c are the sides of the triangle.

m. Gergonne Point: the point of intersection of the cevians through the points of tangency of the incircle to the
sides of a triangle

n. Nagle Point: the point of intersection of the cevians through the points of tangency of the excircles to the
sides of a triangle

o. Fermat Point: the point F in an acute triangle ABC for which |FA|  |FB|  |FC| is minimal. In any acute
triangleAFB  BFC  CFA  120°.

Triangles
 In ABC we define a  |BC|, b  |AC|, c  |AB|, and abbreviate the three angles asA, B, andC.

1.  Pythagorean triples: A right triangle has relatively prime integer length sides if and only if it has legs 2uv and
u2  v2 and hypotenuse u2  v2 for some relatively prime, opposite parity, positive integers u,v with u  v.

2.  Area: Let |ABC| denote the area of ABC. Then
|ABC|  rs

 rAs  a  rBs  b  rCs  c

 abc
4R

 1
2 ab sinC  1

2 bc sinA  1
2 ac sinB

 ss  as  bs  c

a. Area from coordinates: Suppose A,B,C are vectors in R2. Define u  u1,u2  A  C and
v  v1,v2  B  C. Then
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|ABC|  1
2 det

u1 v1
u2 v2

 1
2 |u  v|

i.  Shoelace Theorem: If x1,y1, , xn,yn are the vertices of an n-gon, the area of the n-gon is

Area  1
2

x1 y1
x2 y2
 

xn1 yn1
xn yn

 1
2 xny1 

k1

n1

xkyk1  x1yn 
k1

n1

xk1yk

b. (See also: Pick’s Theorem in Geometry - Polygons - #1 below)
3. Euler’s Theorem: Let d be the distance between the incenter I and circumcenter O of triangle ABC

d2  RR  2r

a. Corollary: d2  R2  2rR is the power of the point I with respect to the circumcircle (see also Geometry -
Circles - #2 below)

b. Euler’s Inequality: In any triangle R  2r.
Similarity
1.  Basic proportionality: A segment connecting points on two sides of a triangle is parallel to the third side if and
only if the segments it cuts off are proportional to the sides. (see also Algebra - Basics - #2 above)

Cevians
1.  Angle Bisector Theorem: If D is the point where the angle bisector ofA in ABC meets BC then

|BD|
|BA| 

|CD|
|CA|

θ
θ

D

C

A B

2. Ceva’s Theorem: Three cevians AX,BY,CZ of ABC are concurrent if and only if
|BX|
|XC|

|CY |
|YA|

|AZ|
|ZB|  1

Z

X
Y

AB

C

3. Menelaus Theorem: Let D,E,F be three points on, respectively, the lines BC, AC, and AB containing the sides of
ABC. Then D,E,F are collinear if and only if

AF
BF

BD
CD

CE
AE  1

where XY is the signed length of the directed segment XY.
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C

F

DB

A

E

4. Stewart’s Theorem: Let ABC be a triangle with cevian AX of length p and let m  XB and n  XC. Then
ap2  mn  b2m  c2n.

bc

nm

p

B

A

CX

5. Inradius in terms of altitudes: Let ha, hb, hc be the lengths of the altitudes and r be the inradius of ABC. Then
1
r  1

ha
 1
hb

 1
hc

6. Nine Point Circle: The circle whose center is the midpoint of the Euler Line (N) of ABC with radius R
2 passes

through the feet of the altitudes, the midpoints of the sides, and the midpoints of HA, HB, and HC.

O

H

A

B C

7. Feuerbach’s Theorem: The nine point circle of a triangle is tangent to the incircle and to the three excircles.
8. Brocard Points: There is exactly one point P in ABC such that   |PAB|  |PBC|  |PCA| which is the
point where the circle through A tangent to BC at B intersects the circle through C tangent to AB at A. This point
and its isogonal conjugate P  (the point making   |PBA|  |PCB|  |PAC|) are called the Brocard
points of the triangle. Since  is always equal to , this angle is called the Brocard angle of the triangle. It is
given by the formula:

cot  cotA  cotB  cotC

Trigonometry
1. Triangle solvers: Assume a triangle with angles A, B, and C, that respectively intercept sides a, b, and c, having
circumradius R.
a.  Extended Law of Sines:

a
sinA  b

sinB  c
sinC  2R

b.  Law of Cosines:
a2  b2  c2  2bccosA
b2  a2  c2  2accosB
c2  a2  b2  2abcosC

c. Law of Tangents:
a  b
tan AB

2

 a  b
tan AB

2

2. Identities:
a.  Pythagorean Identity: sin2x  cos2x  1
b.  Angle Addition:

i. sinx  y  sinxcosy  cosx siny
ii. cosx  y  cosxcosy  sinx siny
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iii. tanx  y  tanxtany
1tanx tany

c.  Double Angle:
i. sin2x  2sinxcosx
ii. cos2x  cos2x  sin2x
iii. tan2x  2 tanx

1tan2x

d.  Triple Angle:
i. sin3x  4sin3x  3sinx
ii. cos3x  4cos3x  3cosx

e.  Half Angle:
i. sin2 x2  

1cosx
2

ii. cos2 x2  
1cosx

2

iii. tan2 x2  
1cosx
1cosx

iv. tan x2  
sinx
1cosx  1cosx

sinx

f. Sum to Product:
i. sinx  siny  2sin xy

2 cos xy
2

ii. cosx  cosy  2cos xy2 cos xy2 

iii. cosx  cosy  2sin xy2  sin xy2 

iv. tanx  tany  sinxy
cosxcosy

g.  Product to Sum:
i. sinxcosy  sinxysinxy

2

ii. cosxcosy  cosxycosxy
2

iii. sinx siny   cosxycosxy
2

iv. tanx tany  cosxycosxy
cosxycosxy

h. In ABC:
i. tan A2  

|ABC|
ssa  sbsc

ssa

ii. tanA  tanB  tanC  tanA tanB tanC
iii. c  acosB  bcosA

i. Miscellaneous:
i. Difference of two squares for sine: sin2x  sin2y  sinx  y sinx  y
ii. cosx  sinx  2 cos 4  x
iii. sin15  1

4 6  2 and cos15  1
4 6  2

Quadrilaterals
1.  Ptolemy’s Theorem

A

B

C

D

In any cyclic quadrilateral ABCD, AB  CD  BC  AD  AC  BD.
i.e. The sum of the products of the opposite sides of a cyclic quadrilateral is equal to the product of the diagonals.

2. Ptolemy’s inequality: In any quadrilateral ABCD, AB  CD  BC  AD  AC  BD.
i.e. The sum of the products of the opposite sides of any quadrilateral is greater than or equal to the product of the
diagonals.

3. Inscribed circle: A quadrilateral ABCD has an inscribed circle if and only if AB  CD  AC  BD.
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4. Midline of diagonals: In a quadrilateral with side lengths a, b, c, and d and diagonals e and f, let X and Y be the
midpoints of the diagonals. Then

4|XY|2  a2  b2  c2  d2  e2  f2

a. Corollary: In a parallelogram, the sum of the squares of the sides is equal to the sum of the squares of the
diagonals.

5. Ways to prove a quadrilateral is cyclic:
a.  The converse of Ptolemy’s Theorem is true.
b.  If a pair of opposite angles of a quadrilateral are supplementary, the quadrilateral is cyclic.
c.  If one side of the quadrilateral subtends equal angles with the other two vertices, the quadrilateral is cyclic.
(see Circles, 1b)

Polygons
1.  Pick’s Theorem: The area of any closed polygon whose vertices have integer coordinates is i  b/2  1 where i
is the number of points with integer coordinates in the interior of the figure and b is the number of points on the
boundary of the figure.

Circles
1. Angles on a circle

a.  Star Trek Lemma: An inscribed angle has one half as many degrees as the intercepted arc (Cor: Any angle
that intercepts a diameter is a right angle).

θ

2

θ θ

θ

2

θ

2

θ

b.  Different inscribed angles intercepting the same arcs are equal.

θ

θ

c.  An angle formed by two chords intersecting within a circle has one-half as many degrees as the sum of the
intercepted arcs.

θ+γ
2

θ

γ

d.  Any angle formed by two secants, a secant and a tangent, or two tangents is equal to half the difference of
the intercepted arcs.
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γ

θ

θ-γ

2

γ-θ

2

γ

θ

180-θ

θ

e.  An angle formed by a chord and a tangent to a circle has one-half as many degrees as the intercepted arc.
 12 arcAT ATB

θ

θ/2

2. Power of a Point:
a.  In both of the following: PA  PB  PX  PY

B

P

Y

A

X

P

X

Y

A
B

b.  Assuming PA is a secant and PT is a tangent, PA  PB  PT  PT

A

B

T

P

c. Using Euler’s Theorem, we find that the power of the incenter I of a triangle with respect to the circumcircle
is 2rR

3. The Radical Axis
a. The Radical Axis of two circles is the locus of points with equal power to both circles.
b. The Radical Axis is a straight line, perpendicular to the line connecting the centers of the circles. If the circles
intersect, it passes through the two points of intersection. If the circles are tangent to each other, the axis is
their common tangent.

c. Given three circles, either the three radical axes between each pair are parallel, or they are concurrent.
4. Other circle facts:
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a. The Butterfly: Given a circle and a chord AB of the circle whose midpoint isM, let XY and ZW be two
chords passing through M, and let XW and YZ intersect AB at P and Q, respectively. ThenM is also the
midpoint of PQ.

b. The formula for the graph of a circle centered at h,k with radius r is:
x  h2  y  k2  r2

c. Brahmagupta’s Formula: The area of a quadrilateral inscribed in a circle with side lengths a,b,c,d is
s  as  bs  cs  d

where s  abcd
2 .

d. The coordinates of the center of a circle that is inscribed in a triangle whose legs are on the positive x and y
axes are a,a where a  xyz

2 given that x and y are the lengths of the legs and z is the length of the
hypothenuse.

Transformational Geometry
(See also: Complex Transformations in Complex Numbers)

Inversive
1.  Definitions and Notation:

a. Inversive plane: P2  2  P where P  R2 is called the point at infinity.
b. Figure: in the inversive plane is a set of points F  P2.
c. Cline: A figure that is either a circle in 2 or a figure l  P where l is a line in 2.
d. Inverse: Given any point A and any circle  with center O and radius k, the inverse of A with respect to  is
the point B on ray OA satisfying OA  OB  k2. The inverse of A with respect to a line l is the reflection of A
about l.

e. The inverse of a point A is denoted A. Similarly, the inverse image of a figure F is denoted F .
2.  Properties of Inversion:

a. O   P and P  O, where O is the center of the circle of inversion.
b. For any point or figure A, A   A.
c. Clines invert to clines

i.   , where  is the circle of inversion.
ii. For any circle  passing through O,   is the radical axis of  and .
iii. For any circle  not passing through O,   is a circle.
iv. For any line l passing through O, l  l.
v. For any line l not passing through O, l is a circle passing through O.

d. Conformal (angle-preserving): If two clines  and  intersect at an angle , then   and  intersect at an
angle .

3. Inversive Distance Formula: Let A, B be two points in the inversive plane. Then
A B   k2  AB

OA  OB

Projective
1. Definitions:

a. Pencil
i. A pencil of parallel lines is the set of all lines in R2 parallel to a given line, together with the line itself.
ii. A pencil of concurrent lines is the set of all lines passing through a given point.

b. Projective plane: 2  l where l consists of an infinite set of points, one for each pencil of parallel lines in
2.

c. Perspective from a point: Triangles A1A2A3 and B1B2B3 are perspective from point C iff the lines A1B1,
A2B2, A3B3 are concurrent at C.

d. Perspective from a line: Triangles A1A2A3 and B1B2B3 are perspective from line l iff the points
A1A2  B1B2, A2A3  B2B3, and A3A1  B3B1 lie on l.

2. Duality of projective theorems: If P is a theorem about the projective plane, then the dual of P is the statement
obtained by interchanging "point" with "line", "collinear" with "concurrent", etc. The dual of P is always a
theorem as well.
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3. Desargues’s Theorem: If two triangles are perspective from a point, then they are perspective from a line.

4. Pappus’s Theorem: If A1, A2, and A3 are collinear and B1, B2, and B3 are collinear, then A1B1  A3B2,
A2B1  A3B3, and A2B2  A1B3 are collinear.

A1 A3

B1
B3

A2

B2

5. Pascal’s Theorem (Dual of Brianchon): If a hexagon is inscribed in a conic, the points of intersection of pairs of
opposite sides are collinear.

6. Brianchon’s Theorem (Dual of Pascal): If a hexagon is circumscribed about a conic, its three diagonals (joining
pairs of opposite vertices) are concurrent.

Analytic Geometry
Basics
1. Distance Formula: If P1  x1,x2, ,xn and P2  y1,y2, ,yn then
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|P1P2 |  
i1

n

yi  xi2

Lines
1. Midpoint Formula: The midpoint of a segment whose endpoints are x1,x2, ,xn and y1,y2, ,yn is given
by  x1y12 , x2y22 , , xnyn2 .

2. Forms of Lines:
a.  Point-Slope: y  y1  mx  x1
b.  Slope-Intercept: y  mx  b
c.  General: Ax  By  C  0, where A2  B2  0

3.  Slope Formula: m  y2y1
x2x1

4.  Perpendicular lines: Two nonvertical lines are perpendicular if and only if the product of their slopes is 1.
5. Distance from a Point to a Line: the distance from point p,q to the line ax  by  c where a2  b2  1 (which
can always be obtained by dividing both sides of the equation by a2  b2 if necessary) is

|ap  bq  c|

Conic Sections
Standard Equations
1.  Circle: a circle is the set of all points a fixed distance r from a point a,b called the center.

x  a2  y  b2  r2

2.  Parabolas: a parabola is the set of points equidistant from a given point (the focus) and a given line (the
directrix). For focus 0,p and directrix y  p

x2  4py

3.  Ellipses: an ellipse is the set of all points such that the sum of the distances to two fixed foci is constant. For foci
c, 0 and c, 0 and semimajor axis a and semiminor axis b with a  b

x2
a2

 y
2

b2
 1

Note that b2  c2  a2.
a. The area of an ellipse is ab, where a and b are the semimajor and semiminor axes.

4.  Hyperbolas: a hyperbola is the set of all points such that the difference of the distances to two fixed foci is
constant. For foci c, 0 and c, 0 and x-intercepts a and a

x2
a2
 y

2

b2
 1

where a2  b2  c2.
General Equations
1. General Equations for conic sections: can be obtained from the standard equations by applying the appropriate
transformations
a. Translation by h,k: x  x  h and y  y  k
b. Rotation about the origin by angle : x  xcos  y sin and y  x sin  ycos
c. Reflection across the x-Axes: x  x and y  y
d. (See also: Transformation in Complex Numbers - Complex Transformations - #1a,b,c)

2. Removal of xy-term: The xy-term can be removed from Ax2  Bxy  Cy2  Dx  Ey  F  0, B  0 by a rotation
of the axes if  is selected so that cot2  AC

B .

Other Representations
1.  Polar-Rectangular Relations:

x  rcos, y  r sin

r2  x2  y2, tan  y
x

2.  Parametric Equations: The set of equations x  ft, y  gt are parametric equations of the relation
x,y : x  ft and y  gt and t is in the intersection of the domains of f and g .
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Vector Geometry
In the following if v  R2 then v  v1,v2.

1. Equal Vectors: two vectors are equal if and only if their corresponding coordinates are equal.
2. Vector Addition: a  b  a1  b1,a2  b2
3. Length: v  v12  v22 (a unit vector has length one)
4. Direction of Vector: the unit vector in the direction of v is

u  v
v

 v1
v
, v2
v

 cos, sin

where   arctan v2v1  is the angle between u and the positive x-axis in standard position
5. Multiplication by Scalar: kv  kv1,kv2 for any k  R
6. Dot Product: a  b  a1b1  a2b2  a b cos   where ,  are the direction angles for a ,b respectively.

a. two vectors are perpendicular if and only if their dot product is zero
b. a  b is the length of the projection of a onto the line containing b if b is a unit vector

Analysis
Real Analysis
Inequalities
1. The Arithmetic-Geometric-Harmonic Mean Theorem

a.  For all nonnegative real numbers x1, . . . ,xn,
n

1
x1 

1
x2 . . .

1
xn
 n x1x2. . .xn  x1  x2 . . .xn

n
x1x2...xn

n is called the Arithmetic Mean, or average, of x1, . . . ,xn.
n x1x2. . .xn is called the Geometric Mean of x1, . . . ,xn.

n
1
x1
 1
x2
... 1

xn
is called the Harmonic Mean of x1, . . . ,xn.

b. (Weighted) Power Mean Theorem: For all nonnegative real numbers x1, . . . ,xn, 1, . . . ,n with

1  2 . . .n  1, and all real numbers p  0 define mp  
i1

n
 ixi

p
1/p

and m0  lim
p0
mp. Then

i. For all real numbers r, s with r  s we have mr  ms (this is the generalization of the AM-GM-HM
theorem)

ii. An important special case is 1  2 . . . n  1
n ; in this case m0 is the geometric mean, m1 is the

arithmetic mean, and m1 is the harmonic mean. In general, mp is called the pth power mean.
iii. m0  x11x22 . . .xnn is the weighted geometric mean.

2.  Triangle Inequality: For all real or complex numbers x1, . . . ,xn,
|x1  x2 . . .xn |  |x1 |  |x2 | . . .|xn |

a. Minkowski’s Inequality: is the generalization of the triangle inequality to higher dimensions. Given real
numbers a1,a2, ,an and b1,b2, ,bn


i1

n

ai  bi2  
i1

n

ai2  
i1

n

bi2

3.  Geometric Mean Machine: If AC is a diameter of a circle through point B, and D is the foot of the
perpendicular through B to AC then BD is the geometric mean of AD and DC.
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xy

yx DA

B

C

a. Symmetry-Product Principle: As the distance between two positive numbers decreases their product
increases if their sum remains constant.

4.  Cauchy-Schwartz Inequality: For any two sequences of real numbers x1, . . . ,xn and y1, . . . ,yn,
x1y1  x2y2 . . .xnyn2  x12 . . .xn2y12 . . .yn2

5. Rearrangement: For any sequences of real numbers a1  a2    an and b1  b2    bn and any
permutation  of 1,2, . . . ,n,

a1bn  a2bn1 . . .anb1  a1b1  a2b2 . . .anbn  a1b1  a2b2 . . .anbn
6. Chebyshev’s Inequality: For any sequences of real numbers a1  a2    an and b1  b2    bn,

1
n 

k1

n

akbnk1  1
n 

k1

n

ak 1
n 

k1

n

bk  1
n 

k1

n

akbk

7. Jensen’s Inequality: If f is a continuous real valued function that is concave upwards on the closed interval a. .b
(e.g. fx  x2) then for all 1,2, ,n in 0. . 1 such that 1  2   n  1 and for all
x1,x2, ,xn  a. .b

f1x1  2x2   nxn  1fx1  2fx2   nfxn
If the function is concave downwards the inequality is reversed. An important special case is where each k  1

n .
8. Hölder’s Inequality

a. Let a11, . . . ,a1n , a21, . . . ,a2n , , ak1, . . . ,akn be sequences of nonnegative real numbers and 1, ,k
nonnegative reals satisfying 1   k  1. Then
a11
1a21

2ak1
k  a12

1a22
2ak2

k   a1n
1a2n

2akn
k  a11   a1n 1a21   a2n2ak1   aknk

i.e. given a matrix of nonnegative real numbers

a11  a1n
a21  a2n
 

ak1  akn

the arithmetic mean of the (weighted) geometric means of the columns is less than or equal to the (weighted)
geometric mean of the arithmetic means of the rows.

b. (Generalized Minkowski’s and Hölder’s) In the matrix above, for any reals r  s, the sth power mean of the
rth power means of the columns is less than or equal to the rth power means of of the sth power means of the
rows.

9. Bernoulli’s Inequality: For any nonzero real number x  1 and integer n  1
1  nx  1  xn

10. Nesbitt’s Inequality: For all positive reals a,b,c
3
2 

a
b  c  b

a  c  c
a  b

11. Schur’s Inequality: Given positive real numbers a,b,c and any real number r
0  ara  ba  c  brb  ab  c  crc  ac  b

12. Muirhead’s Inequality: Let 0  s1    sn and 0  t1    tn be real numbers such that
i1

n
si  

i1

n
ti

and 
i1

k
si  

i1

k
ti (k  1,,n  1). Then for any nonnegative numbers x1,,xn,
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


x1
t1xn

tn  


x1
s1xn

sn

where the sums run over all permutations  of 1,2,,n.
13. (See also: Euler’s Inequality in Geometry - Triangles - #3b; Ptolemy’s Inequality in Geometry - Quadrilaterals
- #2)

Logarithms
If b  0, b  1, and x  0 then

1.  logbx  logby  logbxy for y  0
2.  logbxy  y logbx for all y
3.  logyx 

logbx
logby

for y  0 and y  1

4. For any functions f and g, f lng  g lnf

Note: ln  loge where e  n0
 1

n! .
Cauchy’s Functional Equations
1. If f is a continuous function from R to R then

a. If fx  y  fx  fy for every x,y then fx  mx for some m.

Complex Numbers
Basics
Let C  R2. For each x,y  C we formally write x,y  x  yi.
Let x  yi,a  bi  C, then:

1.  Complex conjugate: x  yi  x  yi
2.  Complex norm: |x  yi|  x2  y2

3.  Argument: Argx  yi  the angle in 02 of x,y in polar form (not defined for x  y  0)
4.  Real part: Rex  yi  x
5.  Imaginary part: Imx  yi  y
6.  Addition: x  yi  a  bi  x  a  y  bi
7. Multiplication: x  yia  bi  xa  yb  ya  xbi
8.  Complex exponential: Let   R. Then ei  cos  isin
9.  Standard polar form: of x  yi is rei where r  |x  yi| and   Argx  yi
10.  Distance: between complex numbers z,w is |z  w|
Properties
1.  ei  1  0
2.  Let ,  R

a. eiei  ei
b. |ei |  1
c. ei  ei

3.  Let z, z1, z2  C. Then:
a. |z1z2 |  |z1 ||z2 |
b. z1z2  z1 z2
c. z1  z2  z1  z2
d. z z  |z|2
e. |z|  | z |
f. If z  rei in polar form, then z  rei

Complex Transformations
1. Transformation: of a set S is a bijection from S to S. (a.k.a. a permutation of S)
Let w  C and ,k  R.
a. Translation by w: Tz  z  w
b. Rotation by  radians counterclockwise about the origin: Tz  eiz
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c. Reflection across the x-axis: Tz  z
d. Homothety by positive factor k with respect to the origin: Tz  kz
e. Inversion* with respect to the unit circle: Tz  1

z (
*Inversion is a transformation of the extended

complex plane C  C  with 1
0   and 1

  0.)

Strategies & Tactics
General
Paul Zietz, in his book The Art and Craft of Problem Solving suggests the following strategies and tactics for
approaching any problem.

1. Get oriented.
2. Consider the penultimate step.
3. Get your hands dirty.
4. Impose or look for symmetry.
5. Use wishful thinking.
6. Consider a simpler case.
7. Use peripheral vision.
8. Consider the extreme cases.
9. Find an invariant.
10. Draw a picture.
Arithmetic
1. Be careful!
Combinatorics and Probability
1. Use combinatorial arguments to solve binomial coefficient identities.
2. Make a bijection and count something easier, or count the complement.
3. Try recursion - to solve the recursion explicitly:

a. Conjecture and induct
b. Use generating functions
c. Algebraic manipulation

4. Ways to think of binomial coefficients
a. Coefficients of x  yn
b. The number of ways to choose k things from n things
c. The elements of Pascal’s triangle

5. Use inclusion-exclusion.
Number Theory
Melanie Wood suggested the following ways to approach a number theory problem in her 2005 MOP lectures
and notes.

1. Plug in simple values. (See also Strategies & Tactics - General #3 and #6)
2. Check values modulo m, where m is carefully chosen.
3. Divide the problem into multiple cases.
4. Consider the orders of values modulo some integer.
5. Don’t be afraid to use the quadratic formula.
6. Use infinite descent.
7. Build large numbers with the properties you want, for example using the Chinese Remainder Theorem.
8. Keep in mind that

a. Consecutive numbers are relatively prime.
b. If p  a and p  b, then p  a  b.
c. a  b mod n if and only if n  a  b.

9. Ways to tell that a number is an integer:
a. It is rational and the root of a monic polynomial with integer coefficients.
b. It is the answer to a counting problem.
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c. It is a term in a recursive sequence with integer initial values and a recursion that is closed for integer values.
Algebra
1. Factor!
2. Make a substitution.
3. Find a telescoping sum.
4. Every polynomial can be thought of

a. as a function.
b. in terms of its coefficients.
c. in terms of its roots.

Geometry
1. Draw very accurate and large diagrams.
2. Make cyclic quadrilaterals and parallel lines.
3. Melanie Wood suggested in her 2005 MOP notes that a problem solver should consider using inversion when the
problem contains:
a. circles.
b. a busy point (with many circles and lines passing through it).
c. weird angle conditions.
d. products of lengths.
e. reciprocals of lengths.
f. tangencies and orthogonalities.

4. Use trigonometry for both angle-chasing and side-chasing.
5. Find a useful transformation.
6. Consider area.
7. Collinearity and Concurrency:

a. Find the special point of intersection or line of concurrence (e.g. orthocenter, Euler line, etc.)
b. Proof by contradiction.
c. Try to use Menelaus, Ceva, all projective theorems.
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