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This paper contains a collection of 31 theorems, lemmas, and corollaries that help explain some
fundamental properties of polynomials.  The statements of all these theorems can be understood by
students at the precalculus level, even though a few of these theorems do not appear in any precalculus
text.  However, to understand the proofs requires a much more substantial and more mature
mathematical background, including proof by mathematical induction and some simple calculus.  Of
significance are the Division Algorithm and theorems about the sum and product of the roots, two
theorems about the bounds of roots, a theorem about conjugates of irrational roots, a theorem about
integer roots, a theorem about the equality of two polynomials, theorems related to the Euclidean
Algorithm for finding the  of two polynomials, and theorems about the Partial Fraction!"#
Decomposition of a rational function and Descartes's Rule of Signs.  It is rare to find proofs of either of
these last two major theorems in any precalculus text.

1. The Division Algorithm
 If  and  are any two polynomials then there exist unique polynomials  and /$%&' (%&' ) * +%&' ,%&'
 such that   where the degree of  is strictly less than the degree of $%&' - (%&' . +%&' / ,%&' ,%&' (%&'
 when the degree of  or else .(%&' 0 1 ,%&' ) *
 Division Algorithm Proof:
 We apply induction on the degree  of   We let  denote the degree of the divisor 2 $%&'3 4 (%&'3
 We will establish uniqueness after we establish the existence of  and +%&' ,%&'3

 If  then  where  is a constant2 - * $%&' - 5 5 3
  Case : 1 4 - *3
    where  is a constant and since  we know 0.(%&' - 6 6 (%&' ) * 6 78

   In this case choose  and choose +%&' - ,%&' ) *3
5

6
   Then   In this case (%&' . +%&' / ,%&' - 6 . / * - 5 - $%&'3 ,%&' ) *3

5

6
  Case : 9 4 : *3
   In this case let  and let   Then clearly +%&' ) * ,%&' - 53 (%&' . +%&' / ,%&' -
     In this case the degree of  is strictly less(%&' . * / 5 - * / 5 - 5 - $%&'3 ,%&'
   than the degree of (%&'3

 Now assume there exist polynomials  and  such that + %&' , %&' $ %&' - (%&' . + %&' / , %&'1 1 1 1 1

 whenever is any polynomial that has a degree less than or equal to .$ %&' 61

 Let  be a polynomial of degree   We assume $%&' 6 / 13 $%&' - ; & / ; & /</ ; & / ;6 1 6 1 *
6/1 6

+
 where   We must show the theorem statement holds for ; 7 *3 $%&'36/1

  Case : 1 4 - *3
    where  is a constant and since  we know /(%&' - 6 6 (%&' ) * 6 7 *3

   Let  and let +%&' - $%&' ,%&' ) *3
1

6

   Then   In this case 
1

(%&' . +%&' / ,%&' - 6 . $%&' / * - $%&' / * - $%&'3 ,%&' ) *3
6

proof continued on the next page
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  Case : 9 4 : *3

   Let  where   Note that  since both(%&' - ( & /</ ( & / ( ( 7 *3 7 *
;

(
4 1 * 4

4 6/1

4

   constants are nonzero.  Let   Then the subtraction on$ %&' - $%&' = & . (%&'3
;

(
1

6/1

4

6/1=4

   the right cancels the leading term of  so  is a polynomial of degree  or less and$%&' $ %&' 61

   we can apply the induction assumption to  to conclude there exist polynomials$ %&'1

    and  such that   where the degree of  is+ %&' , %&' $ %&' - (%&' . + %&' / , %&' , %&'1 1 1 1 1 1

   strictly less than that of (%&'3

   $ %&' - (%&' . + %&' / , %&' - $%&' = & . (%&'
;

(
1 1 1

6/1

4

6/1=4

   Now we solve the 2nd equation for $%&'3

   $%&' - & . (%&' / (%&' . + %&' / , %&'
;

(
6/1

4

6/1=4
1 1

   $%&' - (%&' . & / + / , %&'3
;

(
! "6/1

4

6/1=4
%&' 11

   So we may let  and let   and+%&' - & / + ,%&' - , %&'
;

(
! "6/1

4

6/1=4
%&' 11

   we have established the theorem holds for  of degree $%&' 6 / 13

 The induction proof that establishes the existence part of the theorem is now complete.

 To establish uniqueness, suppose  $%&' - (%&' . + %&' / , %&' - (%&' . + %&' / , %&'31 1 9 9

 Then we have    Call this equation (*).(%&' . + %&' = + %&' - , %&' = , %&'3# $1 9 9 1

 Case 1: 4 - *3
  In this case both remainders must be identically zero and this means , %&' ) , %&'31 9

  In turn, this means , and since  we must have(%&' . > + %&' = + %&' ? ) * (%&' ) *81 9

   which of course implies + %&' = + %&' ) * + %&' ) + %&'31 9 1 9

 Case : 9 4 : *3
If  then we can compute the degrees of the polynomials on both sides of# $+ %&' = + %&' ) *81 9

the (*) equation.  The degree on the left side is greater than or equal to the degree of   But(%&'3
on the right side, both remainders have degrees less than  so their difference has a degree(%&'
that is less than or equal to that of either which is less than the degree of   This is a(%&'3
contradiction.  So we must have  and when this is the case the entire left# $+ %&' = + %&' ) *1 9

side of the (*) equation is identically  and we may add back  from the right side to* , %&'1

conclude that the two remainders are also identically equal.
 Q.E.D.
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2. The Division Check for a Linear Divisor
 Consider dividing the polynomial  by the linear term   Then, the  states$%&' %& = ;'3 Division Check
 that:  $%&' - %& = ;' . +%&' / ,
 Division Check Proof:
 This is just a special case of the Division Algorithm where the divisor is linear.
 Q.E.D.

3. Remainder Theorem
 When any polynomial  is divided by  the remainder is $%&' %& = ;' $%;'3
 Remainder Theorem Proof:
 By the Division Check we have $%&' - %& = ;' . +%&' / ,3
 Now let   This last equation says & - ;3 $%;' - %; = ;' . +%;' / ,
 $%;' - * . +%;' / , - * / , - ,3
 Q.E.D.

4. Factor Theorem
  is a factor of the polynomial  if and only if %& = ;' $%&' $%;' - *3
 Factor Theorem Proof:
 Assume  is a factor of .  Then we know  divides evenly into %& = ;' $%&' %& = ;' $%&'3
 The remainder when  is divided by  must be 0.  By the Remainder Theorem$%&' %& = ;'
 this says   Next, assume   Divide  by   By the Remainder* - , - $%;'3 $%;' - *3 $%&' %& = ;'3
 Theorem, the remainder is   Since the remainder is 0, the division comes out even so that$%;' - *3
  is a factor of %& = ;' $%&'3
 Q.E.D.

5. Maximum Number of Zeros Theorem
 A polynomial cannot have more real zeros than its degree.
 Maximum Number of Zeros Theorem Proof:
 By contradiction.  Suppose  has degree 1, and suppose  are +1 roots of$%&' 2 0 ; @ ; @A @ ; @ ; 21 9 2 2/1

   By the Factor Theorem, since  then there exists a polynomial  of degree one$%&'3 $%; ' - * + %&'1 1

 less than such that   Now since  and since  we must$%&' $%&' - %& = ; ' . + %&'3 $ ; - * ; 7 ; @1 1 9 9 1% &
 have  and again by the Factor Theorem we can write + %; ' - * $%&' - %& = ; ' . %& = ; ' . + %&'1 9 1 9 9

 where  is of degree  less than   Now since  is distinct from  and  we must+ %&' 9 $%&'3 ; ; ;9 B 1 9

 have  and we can continue to factor  where+ %; ' - * $%&' - %& = ; ' . %& = ; ' . %& = ; ' . + %&'9 B 1 9 B B

 the degree of  is of degree  less than   Clearly this argument can be repeated until we+ %&' B $%&'3B

 reach the stage where  and  is of degree  less than $%&' - %& = ; '<%& = ; ' . + %&' + %&' 2 $%&'31 2 2 2

 Since  only had degree  in the first place,  must be of degree 0 making  some$%&' 2 + %&' + %&'2 2

 constant, say   Now  is still a zero of  and since  is distinct from all the+ %&' - 53 ; $%&'@ ;2 2/1 2/1

 other we must have   The only way this can happen is if  and this would; @ + %; ' - *3 5 - *C 2 2/1

 imply a contradiction since we are assuming $%&' ) *@ 2 0 13
 Q.E.D.
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6. Fundamental Theorem of Algebra
 a)  Every polynomial of degree  has at least one zero among the complex numbers.2 0 1
 b)  If  denotes a polynomial of degree  then  has exactly  roots, some of$%&' 2@ $%&' 2
      which may be either irrational numbers or complex numbers.
 Fundamental Theorem of Algebra Proof:
 This is not proved here.  Gauss proved this in 1799 as his Ph.D. doctoral dissertation topic.

7. Product and Sum of the Roots Theorem
 Let 1  be any polynomial with real$%&' - & / ; & /</ ; & / ; & / ; & / ;2 2=1 B 9

2=1 B 9 1 *

 coefficients with a .  Then  is  times the product of allleading coefficient of 1 where 2 0 1 ; %=1'*
2

 the roots of  and  is the opposite of the sum of all the roots of .$%&' - * ; $%&' - *2=1

 Product and Sum of the Roots Theorem Proof:
 By the Fundamental Theorem of Algebra we know  has  roots which may be denoted by$%&' 2
    Now form the product of the  factors associated with these roots.  Let , @ , @ , @A @ , 3 2 +%&' -1 9 B 2

  and multiply out all these terms.  Then inspect the coefficient%& = , '%& = , '%& = , '<%& = , '1 9 B 2

 on  and inspect the constant term.&2=1

 This can also be formally proved by using induction on .  When  we have  and2 2 - 1 $%&' - & / ;*
 in this case the only root of  is   Since  is the only root,  is itself the product of all$%&' , - =; 3 , ,1 * 1 1

 the roots.  But then   So this establishes the part about the constant%=1' ; - %=1' ; - =; - , 32 1
* * * 1

 term.  Note again that since  is the only root,  is itself the sum of all the roots and the 2nd, ,1 1

 leading coefficient is the opposite of the sum of all the roots since  ; - =% , '3* 1

 It is probably more instructive to manually look at the case when  before setting up the2 - 9
 induction step.  Note that   In this case it is%& = , '%& = , ' - & / %=, / =, '& / , , 31 9 1 9 1 9

9

 immediately apparent that the 2nd leading coefficient is the opposite of the sum of all the roots and
 the constant term is product of all the roots.  Because  is quadratic, in this case  so$%&' 2 - 9
 ( 1) ( 1)= - = - 132 9

 Now lets assume the result is true whenever we have  roots and let  be a polynomial with6 $%&'
  roots, say   Now consider that we may write6 / 1 $%&' - %& = , '%& = , '<%& = , '31 9 6/1

 .  Let $%&' - %& = , '%& = , '<%& = , ' %& = , ' +%&' - %& = , '%& = , '<%& = , ' 3' ( ' (1 9 6 6/1 1 9 6

 Then  has degree  and we may apply the induction hypothesis to .  If we write+%&' 6 +%&'

  then we know  and we know+%&' - & / ; & /</ ; & / ; ; - = ,6 6=1
6=1 1 * 6=1 C

C-1

6) *+
 .; - %=1' . ,* C

6

C-1

6) *,
 Now $%&' - +%&' . %& = , ' - %& = , ' . & / ; & /</ ; & / ;6/1 6/1 6=1 1 *

6 6=1- .

proof continued on the next page
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 - & / ; & /</ ; & / ; & /- .6/1 6 9
6=1 1 *

  - .%=, '& / %=, '; & /</ %=, '; & / %=, ';6/1 6/1 6=1 6/1 1 6/1 *
6 6=1

 .- & / D; / %=, 'E& /</ %; = , . ; '& / %=, ' . ;6/1 6
6=1 6/1 * 6/1 1 6/1 *

 Clearly   and  ; / %=, ' - = , / %=, ' - = , %=, ' . ; -6=1 6/1 6 6/1 C 6/1 *
C-1 C-1

6 6/1) * ) *+ +

  which are what we needed to establish.%=, ' . %=1' . , - %=1' . ,6/1 C C
6 6/1

C-1 C-1

6 6/1) * ) *, ,
 Q.E.D.

8. Rational Roots Theorem
 Let  be any polynomial$%&' - ; & / ; & /</ ; & / ; & / ; & / ;2 2=1 B 9 1 *

2 2=1 B 9

 with integer coefficients. If the rational number is a root of  then  must be a factor
5

(
$%&' - * 5

 of  and  must be a factor of ; ( ; 3* 2

 Rational Roots Theorem Proof.
 Let +%&' - & / & / & /</ & / & / & / 3

; ; ; ; ; ;

; ; ; ; ; ;
2

2=1 2=9 B 9 1 *

2 2 2 2 2 2

2=1 2=9 B 9

 By the Product of the Roots Theorem, we know the product of the roots of this
 polynomial is the fraction   Thus if  is a root,  must be a factor of  and  must%=1' . 3 5 ; (

; 5

; (
2 *

2
*

 be a factor of ; 32
 Q.E.D.

9.  Integer Roots Theorem
 Let  be any polynomial$%&' - & / ; & /</ ; & / ; & / ; & / ;2 2=1 B 9

2=1 B 9 1 *

 with integer coefficients and .  If  has any rational zeros,with a leading coefficient of 1 $%&'
 then those zeros must all be integers.
 Integer Roots Theorem Proof:
 By the Rational Roots Theorem we know the denominator of any rational zero must divide into the
 leading coefficient which in this case is 1.  Thus any denominator must be 1 making the rationalF
 zero into a pure integer.
 Q.E.D.
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10. Upper and Lower Bounds Theorem
 Let  be any polynomial with $%&' real coefficients and a positive leading coefficient.
 ( )  If  and  and if in applying synthetic substitution to compute  allUpper Bound ; : * $%;' : * $%;'
  numbers in the 3rd row are positive, then  is an upper bound for all the roots of .; $%&' - *
 ( )  If  and  and if in applying synthetic substitution to compute  allLower Bound ; G * $%;' 7 * $%;'
  the numbers in the 3rd row alternate in sign then  is a lower bound for all the roots of .; $%&' - *
 [ In either bound case, we can allow any number of zeros in any positions in the 3rd row except in
   the first and last positions.  The first number is assumed to be positive and the last number is
   .  For upper bounds, we can state alternatively and more precisely that no negatives are$%;' 7 *
   allowed in the 3rd row.  In the lower bound case the alternating sign requirement is not strict either,
   as any 0 value can assume either sign as required.  In practice you may rarely see any zeros in the
   3rd row.  However, a slightly stronger and more precise statement is that the bounds still hold even
   when zeros are present anywhere as interior entries in the 3rd row.]

 Upper and Lower Bounds Theorem Proof:
 (Upper Bound).  Let  be any root of the equation   Must show H $%&' - *3 H G ;3
 If , then clearly  since  is positive in this case.  So we assume .H - * H G ; ; H 7 *
 If the constant term of  is , then we could factor  or a pure power of  from  and just$%&' * & & $%&'
 operate on the resulting polynomial that is then guaranteed to have a nonzero constant term.  So we
 can implicitly assume   The last number in the third row of the synthetic substitution$%*' 7 *3
 process is positive and it is   Since  is a root, we know by the Factor Theorem that$%;'3 H
  where  is the quotient polynomial.  The leading coefficient of  is also$%&' - %& = H' . +%&' +%&' $%&'
 the leading coefficient of  and since all of 's remaining coefficients are positive, and+%&' +%&'
 since , we must have   Finally,   Since , we may; : * +%;' : *3 $%;' - %; = H' . +%;'3 +%;' : *

 divide by  and get   Now since  and  are both positive, +%;' %; = H' - 3 $%;' +%;' %; = H' : *
$%;'

+%;'
 which implies   Note that since the leading coefficient of  is positive and since , weH G ;3 +%&' ; : *
 don't really need all positive numbers in the last row.  As long as 's remaining coefficients are+%&'
 nonnegative we can guarantee that +%;' : *3

 (Lower Bound).  Let  be any root of the equation   Must show H $%&' - *3 ; G H3
 As in the above Upper Bound proof, we can easily dispense with the case when   ClearlyH - *3
  when  because  is negative.  We can further implicitly assume no pure power of  is a; G H H - * ; &
 factor of  and this also allows us to assume   Since  by the Factor Theorem$%&' $%*' 7 *3 $%H' - *
 we may write .  Substituting  we have   Since$%&' - %& = H' . +%&' & - ; $%;' - %; = H' . +%;'3

  we know   So we can divide by  to get $%;' 7 * +%;' 7 *3 +%;' %; = H' - 3
$%;'

+%;'

 Now  is either positive or negative.  Because  and the leading term in  has a positive+%;' ; G * +%&'
 coefficient, the constant term in  has the same sign as .  This fact can be established by+%&' +%;'
 considering the two cases of the even or odd degrees that  must have.+%&'

proof continued on the next page
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 For examples:
 +%&' - 1& = 9& / B& = I& / J& = K3J I B 9

 With  and  and s constant term agree in sign.; G *@ +%;' G * +%;' +%&'L

 or
 .+%&' - 1& = 9& / B& = I& / JI B 9

 With ,  and again  and s constant term agree in sign.; G * +%;' : * +%;' +%&'L

 We might note that in these examples, it would make no difference if any of the interior coefficients
 were 0.  This is because the first term has a positive coefficient, and all the remaining terms just add
 fuel to the fire with the same sign as the first term.  The presence of an interior zero just means you
 might not get as big a fire, but the first term guarantees there is a flame!

 Another note is that  and since we are assuming we can divide this$%*' - %=H' . +%*'@ H 7 *@
 equation by  to conclude that  when   So assuming neither  nor the constant=H +%*' 7 * $%*' 7 *3 H
 term in  are zero guarantees that the constant term in  must be strictly positive or strictly$%&' +%&'
 negative.  Since the numbers in the third row alternate in sign,  differs in sign from the constant$%;'
 term in   But since the constant term in  has the same sign as  we know  and +%&'3 +%&' +%;' $%;' +%;'

 differ in sign.  So   %; = H' - G *3 ; G H3
$%;'

+%;'
 Q.E.D.

11. Intermediate Value Theorem
 If  is any polynomial with , and if  and  then$%&' $%;' : * $%H' G *real coefficients
 there is at least one real number  between  and  such that 5 ; H $%5' - *3
 Intermediate Value Theorem Proof:
 This result depends on the continuity of all polynomials and is a special case of the Intermediate
 Value Theorem that normally appears in a calculus class.

12. Single Bound Theorem
 Let  be any polynomial with$%&' - & / ; & / ; & /</ ; & / ; & / ; & / ;2 2=1 2=9 B 9

2=1 2=9 B 9 1 *

 real coefficients and a leading coefficient of 1.  Let  andM - 1 /4;&D ; @ ; @ ; @A @ ; E1 * 1 9 2=1/ / / / / / / /
 let .  Finally let .  Then everyM - 4;&D1@ ; / ; / ; /A / ; E M - 4C2DM @M E9 * 1 9 2=1 1 9/ / / / / / / /
 zero of  lies between  and .$%&' =M M
 Single Bound Theorem Proof:
 We need to show  is an Upper Bound and we need to show  is a Lower Bound.M =M

  Case 1: M - M 31

 Then we know for  that This implies two things.  First,  and* N C N 2 = 1 M 0 1 / ; 3 M 0 1/ /C
 second,   These two inequalities are crucial and further imply that  andM = ; 0 13 =M N =1/ /C
 =M / ; N =13/ /C

proof continued on the next page
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 To show  is an Upper Bound, consider the synthetic substitution calculation of M $%M'3
 We will label the second and remaining coefficients in the second row as  values.HC
 We will label the second and remaining coefficients in the third row as  values.5C

 M
1 ; ; ; < ; ;

M H H < H H
1 5 5 5 < 5 5

2=1 2=9 2=B 1 *

2=9 2=B 1 *

2=1 2=9 2=B 1 *

 We claim that each  value is not only positive, we claim each   Similarly we claim each5 5 0 13C C

   We will establish these two claims by working from left to right across the columns in theH 0 M3C

 synthetic substitution table, one column at a time.

 First note that 5 - ; /M 0 = ; /M - M = ; 0 132=1 2=1 2=1 2=1/ / / /
 We are done with the 2nd column.

 Now we will argue about the 3rd column in the above table.
 Having established in the 2nd column that  multiply both sides of this inequality by  to5 0 1@ M2=1

 obtain:  H - 5 . M 0 M32=9 2=1

 Now we basically repeat the above argument to establish the size of 5 - ; / H 32=9 2=9 2=9

 Here we use the fact that .  So H 0 M 0 1 / ; H = ; 0 132=9 2=9 2=9 2=9/ / / /
 So 5 - ; / H 0 = ; / H - H = ; 0 132=9 2=9 2=9 2=9 2=9 2=9 2=9/ / / /
 We are now done with the 3rd column in the table.  Each next column is handled like the 3rd
 column.

 Just to make sure you get the idea we will establish our claims for the 4th column.
 Since , we can multiply across this inequality by  to get 5 0 1 M 5 . M 0 M32=9 2=9

 H - 5 . M 0 M32=B 2=9

 5 - ; / H 0 = ; / H - H = ; 0 M = ; 0 132=B 2=B 2=B 2=B 2=B 2=B 2=B 2=B/ / / / / /
 Clearly we can continue working across the columns of the above table, one column at a time.
 Since all the  coefficients are positive we know  is an Upper Bound for the zeros of 5 M $%&'3C

 Next, to show  is a Lower Bound, consider the synthetic substitution calculation of =M $%=M'3

 
a

=M
1 ; ; < ; ;

=M H H < H H
1 5 5 5 < 5 5

2=1 2=9 2=B 1 *

2=9 2=B 1 *

2=1 2=9 2=B 1 *

proof continued on the next page
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 We claim that the coefficients in the 3rd row alternate in sign.  Obviously the first coefficient is
 1 : *3
 We claim not only that the  alternate in sign, we claim that when  then   We also5 5 G * 5 N =13C C C

 claim that when  then 5 : * 5 0 13C C

 In the 2nd column of the table we have 5 - ; =M N ; =M - =M / ; N =132=1 2=1 2=1 2=1/ / / /
 So we have established our claim within the 2nd column.

 Moving over to the 3rd column we note that  and since both of the numbers inH - 5 . =M2=9 2=1 % &
 this product are negative, we have   In fact when we start with the inequality thatH : *32=9

   and multiply across by the negative number  we get   But5 N =1 =M 5 . =M 0 M32=1 2=9 % &
  so we know that   Now lets compute H - 5 . =M H 0 M3 5 32=9 2=9 2=9 2=9% &
 5 - ; / H 0 ; /M 0 = ; /M - M = ; 0 132=9 2=9 2=9 2=9 2=9 2=9/ / / /
 Next, consider what happens in the 4th column of the above table.  We just established that
 5 0 132=9

 Multiplying across this inequality by  we get   But  so=M 5 . =M N =M3 H - 5 . =M2=9 2=B 2=9% & % &
 we know   Now lets compute H N =M3 5 32=B 2=B

 5 - ; / H N ; =M N ; =M - =M / ; N =132=B 2=B 2=B 2=B 2=B 2=B/ / / /
 Clearly the above arguments may be repeated as we move across the columns of the above table.
 Each time we multiply by  to compute the next  value we have a sign change.  This is=M HC
 primarily why the  values alternate in sign.5C

 In any case, the values in the 3rd row alternate in sign and since  we know  is a lower=M G * =M
 bound for any zero of the equation $%&' - *3

 Case 2: ! " !#3

    and Subcase 1: M - 1 ; / ; / ; /</ ; G 13/ / / / / / / /* 1 9 2=1

  In particular, for each  where  we know C * N C N 2 = 1 * N ; G 1 - M3/ /C
  Then = ; /M - 1 = ; : *3/ / / /C C

  Since , the Synthetic Substitution table takes on a particularly simple form.M - 1
  Note how the 2nd row elements are the same as the 3rd row elements shifted over
  one column.
  

a
1

1 ; ; ; < ; ;
1 5 5 5 < 5 5

1 5 5 5 5 < 5 5

2=1 2=9 2=B 2=I 1 *

2=1 2=9 2=B 9 1

2=1 2=9 2=B 2=I 1 *

  We claim that all the  values are positive.5C
  Starting in the 2nd column, 5 - ; / 1 0 = ; / 1 - 1 = ; : *32=1 2=1 2=1 2=1/ / / /

proof continued on the next page
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  Now consider the 3rd column.  5 - ; / 5 - ; / ; / 1 02=9 2=9 2=1 2=9 2=1

  = ; /= ; / 1 - = ; / ; / 1 : *3/ / / / % &/ / / /2=9 2=1 2=9 2=1

  Next consider the 4th column.  c2=B 2=B 2=9 2=B 2=9 2=1- ; / 5 - ; / ; / ; / 1 0
    = ; /= ; /= ; / 1 - = ; / ; / ; / 1 : *3/ / / / / / % &/ / / / / /2=B 2=9 2=1 2=B 2=9 2=1

  Clearly we can continue to accumulate the sums of more and more terms and still apply
  the main inequality that appears in the Subcase 1: statement.  So all the elements in the
  last row are positive and  is an upper bound for all the roots of  by1 - M $%&' - *
  applying the Upper/Lower Bounds Theorem.

  To establish that 1 is a lower bound we compute synthetic substitution with = =M - = 13

  
a

=1
1 ; ; ; < ; ;

=1 =5 =5 =5 < =5 =5
1 5 5 5 5 < 5 5

2=1 2=9 2=B 2=I 1 *

2=1 2=9 2=B 9 1

2=1 2=9 2=B 2=I 1 *

  Now we must establish that the  values in the last row alternate in sign.5C
  Starting in the 2nd column, 5 - ; / %=1' N ; / =1 G *32=1 2=1 2=1/ / % &
  In the 3rd column, 5 - ; / = 5 - ; = ; / 1 02=9 2=9 2=1 2=9 2=1% &
  = ; /= ; / 1 - = ; / ; / 1 : *3/ / / / % &/ / / /2=9 2=1 2=9 2=1

  In the 4th column, 5 - ; / =5 - ; = ; / ; = 1 N2=B 2=B 2=9 2=B 2=9 2=1% &
  / / / / / /; / ; / ; = 1 G *32=B 2=9 2=1

  Clearly this argument may be repeated to establish that the coefficients in the 3rd
  row really do alternate in sign.  So  is a lower bound by the Upper/Lower BoundsM - =1
  Theorem.

      and Subcase :# M - ; / ; / ; /</ ; M 0 13/ / / / / / / /* 1 9 2=1

  To establish that  is an upper bound, we consider the synthetic substitution table forM
  computing  and we will show that all the values in the last row are nonnegative.$%M'

  M
1 ; ; ; < ; ;

M H H < H H
1 5 5 5 < 5 5

2=1 2=9 2=B 1 *

2=9 2=B 1 *

2=1 2=9 2=B 1 *

proof continued on the next page
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  Now consider the 2nd column in the above table.
  5 - ; /M 0 = ; /M - ; / ; / ; /</ ; 0 *32=1 2=1 2=1 * 1 9 2=9/ / / / / / / / / /
  Next consider the 3rd column in the above table.
  Since    But  so M 0 1@ 5 . M 0 5 3 H - 5 . M H 0 5 32=1 2=1 2=9 2=1 2=9 2=1

  Next, 5 - ; / H 0 ; / 5 - ; / ; /M 02=9 2=9 2=9 2=9 2=1 2=9 2=1

  = ; /= ; /M - ; / ; / ; /</ ; 0 *3/ / / / / / / / / / / /2=9 2=1 * 1 9 2=B

  We continue to argue in the same manner for the 4th column.
  Since    But  so M 0 1@ 5 . M 0 5 3 H - 5 . M H 0 5 32= 2= 2= 2= 2= 2=2 2 3 2 3 2
  Next, 5 - ; / H 0 ; / 5 0 ; / ; / ; /M 02= 2=B 2=B 2=B 2=9 2=B 2=9 2=13
  = ; /= ; /= ; /M - ; / ; / ; /</ ; 0 *3/ / / / / / / / / / / / / /2=B 2=9 2=1 * 1 9 2=I

  This argument may be repeated across the columns in the above table to establish that all the
  numbers in the last row are nonnegative.  So by the Upper/Lower Bounds Theorem,  is anM
  upper bound for all the roots of $%&' - *3

  Finally, consider the synthetic substitution table for computing $%=M'3

  =M
1 ; ; ; ; < ; ;

=M H H H < H H
1 5 5 5 5 < 5 5

2=1 2=9 2=B 2=I 1 *

2=9 2=B 2=I 1 *

2=1 2=9 2=B 2=I 1 *

  We claim the nonnegative numbers in the 3rd row of this table alternate in sign.  In the first
  column the number is 1 so we know we are starting with a positive value.

  Now look at  in the 2nd column5 32=1

  5 - ; / =M - ; / = ; /= ; /= ; /</= ; -2=1 2=1 2=1 * 1 9 2=1% & ' (/ / / / / / / /
  ; / = ; / = ; /= ; /= ; /</= ; 32=1 2=1 * 1 9 2=9/ / ' (/ / / / / / / /
  Now the last term in the above expression is obviously less than or equal to zero,
  and the first two terms either make  or make  so the whole expression* =9 . ;/ /2=1

  is less than or equal to 0.

  Now consider the 3rd column.  We must show .5 0 *2=9

  We take the worst case from  assuming this has the smallest absolute value where52=1

  5 - = ; / = ; /= ; /</= ; 32=1 * 1 9 2=9' (/ / / / / / / /
  Then 5 - ; / = ; / = ; /= ; /</= ; . =M -2=9 2=9 * 1 9 2=9' ( % &/ / / / / / / /
  ; /M . ; / = ; / = ; /= ; /</= ; . =M 02=9 2=9 * 1 9 2=B/ / ' ( % &/ / / / / / / /
  ; / ; / = ; /= ; /= ; /</= ; . =M 0 *2=9 2=9 * 1 9 2=B/ / ' ( % &/ / / / / / / /
  since the third term is nonnegative and the first two terms make either 0 or 9 . ; 3/ /2=9

proof continued on the next page
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  Now consider the 4th column.  We must show 5 N *32=B

  We take the worst case from  assuming  has the smallest absolute value where5 52=9 2=9

  5 - = ; / = ; /= ; /</= ; . =M 32=9 * 1 9 2=B' ( % &/ / / / / / / /
  Then 5 - ; / = ; / = ; /= ; /</= ; . M -2=B 2=B * 1 9 2=B

9' ( % &/ / / / / / / /
  ; =M . ; / = ; / = ; /= ; /</= ; . M N2=B 2=B * 1 9 2=I

9 9/ / ' ( % &/ / / / / / / /
  ; = ; / = ; /= ; /= ; /</= ; . M N *2=B 2=B * 1 9 2=I

9/ / ' ( % &/ / / / / / / /
  since the third term is negative and the first two terms make either  or * =9 . ; 3/ /2=B

  Just to make sure you get the idea we will continue with the 5th column.  We must show
    We take the worst case from  assuming  has the smallest absolute5 0 *3 5 52=I 2=B 2=B

  value where  5 - = ; / = ; /= ; /</= ; . M 32=B * 1 9 2=I
9' ( % &/ / / / / / / /

  Then  5 - ; / = ; / = ; /= ; /</= ; . =M -2=I 2=I * 1 9 2=I
B' ( % &/ / / / / / / /

   ; /M . ; / = ; / = ; /= ; /</= ; . =M 02=I 2=I * 1 9 2=J
B B/ / ' ( % &/ / / / / / / /

   ; / ; / = ; /= ; /= ; /</= ; . =M 0 *2=I 2=I * 1 9 2=J
B/ / ' ( % &/ / / / / / / /

  since the third term is nonnegative and the first two terms make either 0 or 9 . ; 3/ /2=I

  This argument may be repeated across the columns of the above table to conclude that the
  nonnegative terms in the last row alternate in sign.  By the Upper/Lower Bounds Theorem
  we know  is a lower bound for all the zeros of =M $%&' - *3
 Q.E.D.

13. Odd Degree Real Root Theorem
 If  has real coefficients and has a degree that is odd then it has at least one real root.$%&'
 Odd Degree Real Root Theorem Proof:
 Without loss of generality we assume the leading coefficient of  is positive.  Otherwise we can$%&'
 factor  from  apply the theorem to the polynomial that is the other factor.=1 $%&'
 By choosing  sufficiently large we can establish that  and M : * $%M' : * $%=M' G *3
 For example, see the above Single Bound Theorem.  Now apply the Intermediate Value Theorem.
 There exists a number  such that  and    is real and is a root of ; =M G ; G M $%;' - *3 ; $%&'3
 Q.E.D.
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14. Complex Conjugate Roots Theorem
 If  is any polynomial with , and if  is a complex root of$%&' ; / HCreal coefficients
 the equation , then another complex root is its conjugate $%&' - * ; = HC3
 (Complex number roots appear in conjugate pairs)
 Complex Conjugate Roots Theorem.
 This proof just depends on properties of the conjugate operator denoted by bars below.
 If  then$%&' - ; & / ; & /</ ; & / ; & / ; & / ; - *2 2=1 B 9 1 *

2 2=1 B 9

 .; & / ; & /</ ; & / ; & / ; & / ; - *2 2=1 B 9 1 *
2 2=1 B 9

 .; & / ; & /</ ; & / ; & / ; & / ; - *2 2=1 B 9 1 *
2 2=1 B 9

 .; & / ; & /</ ; & / ; & / ; & / ; - *2 2=1 B 9 1 *
2 2=1 B

 .  This shows ; & / ; & /</ ; & / ; & / ; & / ; - * $%&' - *32 2=1 B 9 1 *
2 2=1 B

 Q.E.D.

15. Linear and Irreducible Quadratic Factors Theorem
 Any polynomial  with real coefficients may be written as a product of linear factors and$%&'
 irreducible quadratic factors.  The sum of all the degrees of these component factors is the degree of
 $%&'3
 Linear and Irreducible Quadratic Factors Theorem Proof:
 By the Fundamental Theorem of Algebra, $%&' - 5%& = , '%& = , '%& = , '<%& = , '1 9 B 2

 where the  denote the  roots of   The constant  is simply 's leading coefficient., 2 $%&'3 5 $%&'6

 If all the  roots are real then  is a product of linear real factors only.  However, if any  value, $%&' ,6 6

 is a complex number then it can be paired with some other  value which is its complex conjugate.,O
 If we assume  then   Note that since  is complex, we must have , - ; / HC , - ; = HC3 , H 7 *36 O 6

 Next we note that  and  and we compute, / , - 9; , . , - ; / H6 O 6 O
9 9

 (   That this& = , '%& = , ' - & = %, / , '& / , , - & = %9;'& / %; / H '36 O 6 O 6 O
9 9 9 9

 last expression is an irreducible quadratic factor follows by computing its discriminant that is
  since %=9;' = I . 1 . %; / H ' - I; = I; = IH - =IH G * H 7 *39 9 9 9 9 9 9

 If we re-order or rename the indices of the roots so that  and  were the last two roots then we can, ,6 O

 assume that  now takes the form in which we put the irreducible quadratic just found at the end.$%&'
 $%&' - 5%& = , '%& = , '<%& = , ' %& = 9;& / ; / H ' 31 9 2=B

9 9 9' (
 Now if any two of the preceding linear factors form complex -value conjugate roots, we treat them,
 just like we did with the pair  and .  This produces another irreducible quadratic factor which we, ,6 O

 also place as the last rightmost factor.  Clearly this process can be continued until only real linear
 factors remain at the beginning and only irreducible quadratic factors are at the end.  There may be
 no linear factors at the beginning and only irreducible quadratic factors, or there may be no
 irreducible quadratic factors at the end and only linear factors at the beginning.  It all depends on the
 nature of the roots  and how many of these roots are real and how many are complex.,C
 Q.E.D.
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16. Irrational Conjugate Roots Theorem
 Let  be any polynomial with  real coefficients.  If  is a root of the$%&' ; / H 5rational 0
 equation  where  is irrational and  and  are rational, then another root is $%&' - * 5 ; H ; = H 5 30 0
 (Like complex roots, irrational real roots appear in conjugate pairs, but only when the polynomial
 has rational coefficients.)
 Irrational Conjugate Roots Theorem Proof:
 Assume  is one root.  Must show  is also a root.  If  we are done, so assume; / H 5 ; = H 5 H - *0 0
   Let   Then  is aH 7 *3 P%&' - & = ; / H 5 . & = ; = H 5 - & = ; = H 53 P%&'1 2 1 21 2 1 20 0 % &9 9

 quadratic polynomial with rational coefficients.  Next, consider dividing  by   By the$%&' P%&'3
 Division Algorithm, there is a quotient polynomial  and there exists a remainder polynomial+%&'
  such that   where the degree of  is 1 or 0.,%&' $%&' - P%&' . +%&' / ,%&' ,%&'
 If we assume  then  and  must be rational.  In fact, since  and  have only,%&' - "& /# " # $%&' P%&'
 rational coefficients, both  and  must have only rational coefficients.+%&' ,%&'
 So we may write  and when we substitute   we conclude$%&' - P%&' . +%&' / "& /# & - ; / H 50
 that  from which we can further conclude that * - " ; / H 5 / # " - # - *31 20
 So we really have   Finally we substitute  in this last equation to$%&' - P%&' . +%&'3 & - ; = H 50
 conclude that  which is what we needed to show.$ ; = H 5 - *1 20
 Q.E.D.

17. Descartes's Rule of Signs Lemma 1.
 If  has real coefficients, and if  where  then  has at least one more sign$%&' $%;' - * ; : *@ $%&'
 variation than the quotient polynomial  has sign variations where +%&' $%&' - %& = ;'+%&'3
 [When the difference in the number of sign variations is greater than 1, the difference is always an
   odd number.]
 Descartes's Rule of Signs Lemma 1 Proof:
  The following particular example shows that  may indeed have fewer sign variations+%&'
  than  has.  In this example,  has three variations in sign while  has only two$%&' $%&' +%&'
  variations in sign.  Had the number 152 in the top row been 102 instead, then / / +%&'
  would have had even fewer sign variations as is shown in the next example.
  9

19 =QQ 1J9 =QQ =B*
9I =1*K R9 B*

19 =JB IK 1J *

  In the next example,  has four sign variations while  has only one sign variation.  So$%&' +%&'
  the difference of the sign variation counts in the example below is the odd number .B
  9

19 =QQ 1*9 =QQ 1Q*
9I =1*K =S =1Q*

19 =JB =I =SJ *

proof continued on the next page



page 15

  Finally we show one more example before starting the formal proof.  In this example,  has$%&'
  four sign variations and  has only three sign variations.  Moreover, the coefficients in +%&' $%&'
  and  match signs column by column from left to right through the constant column in +%&' +%&'3
  B

1 =K 11 =11 1J
B =R K =1J

1 =B 9 =J *

  Assume the leading coefficient of  is positive and consider the synthetic substitution$%&'
  form used to compute   Consider the constant term in   If this constant term is$%;'3 $%&'3
  negative as in the first example above, then in the previous column the constant term in +%&'
  must have been positive in order for the final column numbers to add to make 0.  If the
  constant term in  were positive as in the second example above, then in the previous$%&'
  column the constant term in  must have been negative in order for the final column+%&'
  numbers to add to make 0.  So the constant terms in  and  must have opposite signs.$%&' +%&'
  This argument has depended on the facts that  and that ; : * $%;' - *3

  But  and  both start with the same positive coefficient. Next, reading from left to+%&' $%&'
  right, we claim  cannot change signs until  changes signs.  Whenever  changes+%&' $%&' +%&'
  signs from one column to the next,  must also change signs between those same two$%&'
  columns.  But as in the second example above (columns 2 & 3 and columns 3 & 4), can+%&'
  keep the same sign even when  does change sign.  But can never change signs unless$%&' +%&'
   changes signs first.$%&'

  Now suppose in counting sign changes that at some point  changes signs when  does$%&' +%&'
  not as in the first two examples above.  Then  has one more sign variation, and from that$%&'
  point forward,  will continue to lead in the sign variation count because each$%&'
  further time  changes signs, so does   We can rest our case in this case.+%&' $%&'3

  The other case that needs to be considered is when counting sign changes, if we reach the end
  of , and if at that point  and  have the same sign variation count, as in the third+%&' $%&' +%&'
  example above.  Then  and  will have the same sign in the next to the last column, but$%&' +%&'
  then  will change signs one more time in its last column.$%&'

  No matter how you look at it,  has at least one more sign variation count than $%&' +%&'3
  If the leading coefficient of  is not positive, then factor out 1 from  and then$%&' = $%&'
  apply the above argument to the resulting polynomial.

  We have already proved  has at least one more sign variation than the quotient polynomial$%&'
  .  To prove that the difference is always an odd number, we reiterate that the constant+%&'
  terms in both polynomials always differ in sign while the first terms always agree in sign.  So
  when more than one sign variation occurs, it occurs at some interior coefficient.  But
  changing the sign of any interior coefficient either raises or lowers the sign variation count by
  2 because such a change applies to the term before it and to the term after it.  So when the
  difference in the number of sign variations is more than , it must be an odd difference.1
 Q.E.D.
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18. Descartes's Rule of Signs Lemma 2.   
 If  has real coefficients, the number of positive zeros of  is not greater than the$%&' $%&'
 number of variations in sign of the coefficients of $%&'3

 Descartes's Rule of Signs Lemma 2 Proof:
  Let  denote all the positive roots of the equation , @ , @ , @A @ , $%&' - *31 9 B 6

  Then we may write  $%&' - %& = , '%& = , '%& = , '<%& = , ' . T%&'31 9 B 6

  Now consider the following regrouping of these factors:

  $%&' - %& = , ' %& = , '%& = , '<%& = , ' . T%&' 31 9 B 6' (
  By Lemma 1 we know  has at least one more sign variation than the rightmost factor.$%&'
  Let Then  has at least one more sign+ %&' - %& = , '%& = , '<%& = , ' . T%&' 3 $%&'1 9 B 6' (
  variation than  has.  Moreover, since we may write+ %&'1

  + %&' - %& = , ' %& = , '<%& = , ' . T%&'1 9 B 6' (
  we can again apply Lemma 1 to conclude that  has one at least more sign variation than+ %&'1

  the polynomial .  Let D%& = , '<%& = , ' . T%&'E + %&' - D%& = , '<%& = , ' . T%&'E3B 6 9 B 6

  Now  has at least one more sign variation than  and  has at least one more sign$%&' + %&' + %&'1 1

  variation than  so  has at least two more sign variations than + %&'@ $%&' + %&'39 9

  Clearly we may continue to regroup the rightmost factors and reduce the number of factors.
  + %&' - D%& = , '<%& = , ' . T%&'E - %& = , ' . D%& = , '<%& = , ' . T%&'E39 B 6 B I 6

  So  has one or more sign variations than + %&' + %&' - D%& = , '<%& = , ' . T%&'E39 B I 6

  We argue that for each factor we drop,  has yet at least another sign variation more than$%&'
  the resulting rightmost factor.  After dropping all  factors we conclude that  has  or6 $%&' 6
  more  sign variations than does , since after dropping  factors,  is all thatT%&' 6 T%&'
  remains.

  Now assume  has  sign variations in its coefficients and assume  has  signT%&' 4 $%&' 2
  variations in its coefficients.  Then because ,  implies .  The number of4 0 * 4/ 6 N 2 6 N 2
  positive zeros of  is less than or equal to the number of sign variations in the coefficients$%&'
  of $%&'3
 Q.E.D.
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19. Descartes's Rule of Signs Lemma 3.
 Let  denote  positive numbers and let , @ , @ , @A @ , 6 $%&' - %& = , '31 9 B 6 C

C-1

6,
 Then the coefficients of  are all alternating in sign and this polynomial has exactly  sign$%&' 6
 variations in its coefficients.
 Descartes's Rule of Signs Lemma 3 Proof:
  Either use induction on  or else apply Lemma 2 to conclude that  has  fewer6 T%&' - 1 6
  variations in sign than   But since  has no variations in sign we know  must have $%&'3 1 $%&' 6
  variations in sign which means all the coefficients alternate in sign.
  As a simple example:  %& = , '%& = , ' - & = %, / , '& / =1 , . , 31 9 1 9 1 9

9 9% & % &
  Using induction, if , then we note  has exactly  sign variation.  Next, assume6 - 1 %& = , ' 11

  the theorem is true for any polynomial with  factors or less, and let6

  $%&' - %& = , ' - %& = , ' . %& = , ', ,! "
C-1 C-1

6/1 6

C 6/1 C

  If we consider the second factor to be the quotient polynomial then we can apply the induction
  assumption to conclude this quotient has exactly  sign variations.  Next we apply Lemma  to6 1
   to conclude that  has at least one more sign variation than the quotient.  This means$%&' $%&'
   has exactly  sign variations.  Being a  degree polynomial,  cannot have$%&' 6 / 1 %6 / 1' $%&'UP

  more than  sign variations because it has only  coefficients.6 / 1 6 / 9
 Q.E.D.

20. Descartes's Rule of Signs Lemma 4.
 The number of variations in sign of a polynomial with real coefficients is even if the first and last
 coefficients have the same sign, and is odd if the first and last coefficients have opposite signs.
 Descartes's Rule of Signs Lemma 4 Proof:
  Before giving the proof we look at one example.
  $%&' - & = K& / 11& = 19& / 1J3I B 9

  In this case, the first and last coefficients have the same sign and we can see that
   has an even number of sign changes in its coefficients; it has 4 sign changes.$%&'
  The degree of  is , it has  coefficients, and thus it has an  possibility of$%&' I J a priori
  having at most 4 sign variations.  If we were to change the sign of either the first or the
  last coefficient, we would have one less sign change, or an odd number of sign changes.
  If we were to increase the degree of  by adding just one term, then we would not$%&'
  add a sign change unless the sign of that new term differed from the existing leading
  term's sign.

  We prove this theorem by strong induction on the degree  of the polynomial 2 $%&'3
  When , we assume .  If  and  have the same sign then we have2 - 1 $%&' - ;& / H ; H
  0 or an even number of sign changes.  If  and  have opposite signs then we have 1 or; H
  an odd number of sign changes.  So the theorem is true when 2 - 13

proof continued on the next page
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  Next, assume the theorem is true whenever , and let  be a polynomial of degree2 N 6 $%&'
    Must show the theorem is true for 6 / 13 $%&'3

  Consider the polynomial of degree , obtained by dropping the leading term from 6 $%&'3
  Call this polynomial   The theorem is assumed true for  since its degree can be+%&'3 +%&'
  assumed to be either , or even better, less than .6 6

  There are two cases.

  Case 1:  's leading and trailing terms have the same sign.+%&'
   Then we know by the induction assumption that  has an even number of sign+%&'
   changes.
   There are only two possibilities for the sign of the leading term that was dropped.
   If the dropped leading term has the same sign as the leading term in , then there is no+%&'
   sign change when this term is added back.  So  would still have an even number of$%&'
   sign changes and the leading and trailing terms of  would still agree in sign.$%&'
   If the dropped leading term has a different sign from the leading term in  then there+%&'@
   is one additional sign change that gets added when this term is put back.  So in this case
    would have an odd number of sign changes.  But also in this case, the leading and$%&'
   trailing terms of  would have opposite signs.$%&'

  Case 2:  's leading and trailing terms have opposite signs.+%&'
   Then we know by the induction assumption that  has an odd number of sign changes.+%&'
   There are only two possibilities for the sign of the leading term that was dropped.
   If the dropped leading term has the same sign as the leading term in , then there is no+%&'
   sign change when this term is added back.  So  would still have an odd number of$%&'
   sign changes and the leading and trailing terms of  would still have opposite signs.$%&'
   If the dropped leading term has a different sign from the leading term in  then there+%&'@
   is one additional sign change that gets added when this term is put back.  So in this case
    would have an even number of sign changes.  But also in this case, the leading and$%&'
   trailing terms of  would have the same signs.$%&'

  In either case, the theorem is true for  with degree   This completes the proof by$%&' 6 / 13
  induction on .2
 Q.E.D.
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21. Descartes's Rule of Signs Lemma 5.
 If the number of positive zeros of  with real coefficients is less than the number of sign$%&'
 variations in , it is less by an even number.$%&'
 Descartes's Rule of Signs Lemma 5 Proof:
  If the leading coefficient of  isn't , we can factor it out and just assume $%&' 1 $%&' -
  ' ( ' ( ' (%& = , '<%& = , ' . %& = 2 '<%& = 2 ' . %& / H & / 5 '<%& / H & / 5 '1 6 1 O 1 1 V V

9 9

  where the  denote all the positive zeros of , the  denote the all the negative zeros of, $%&' 2C C

  , and the remaining factors are quadratics corresponding to all the complex-conjugate$%&'
  paired complex zeros of .  Let  be the number of sign changes in the coefficients of $%&' U $%&'3
  We assume  and we must show there exists an even integer  such that  and6 G U W W : *
  6 / W - U3
  Let X%&' - %& = 2 '<%& = 2 ' . %& / H & / 5 '<%& / H & / 5 ' 3' (' ( ' (1 O 1 1 V V

9 9

  By Lemma 2, we know the polynomial has at least  fewer sign variations than X%&' 6 $%&'3
  We let  be the number of sign changes in the  polynomial.  Then we know P X%&' P 0 U = 6 : *3
  Next we note a special property of each of the irreducible quadratic factors.  The discriminant
  of each quadratic must be negative, so we know   So   and weH = I . 1 . 5 G *3 * N H G I5C C

9 9
C C

  conclude that all the  coefficients are strictly positive.5C
  Also, each  factor of  may be written as  where  is positive.  So%& = 2 ' X%&' %& / $ ' $ - =2C C C C

  we may write X%&' - %& / $ '<%& / $ ' . %& / H & / 5 '<%& / H & / 5 ' 3' (' ( ' (1 O 1 1 V V
9 9

  Now it is clear that the leading coefficient of  is , and the constant term of  is alsoX%&' /1 X%&'
  positive since it is the product of all positive numbers.

  The constant term of  .  By Lemma 4, the number of sign variationsX%&' - $ 53 4, ,! "
C-1 C-1

O

C C

V

  in the coefficients of  is even.   is even.  From above we have X%&' P P 0 U = 6 : *3
  Therefore   Now if it happens that  then we let  and we are done.P / 6 0 U3 P / 6 - U W - P

  Otherwise, if  then we have to argue about the first  factors in   Having justP / 6 : U 6 $%&'3
  established that the constant term in  is positive, the sign of the constant term in  isX%&' $%&'

  the sign of the sign of  since all the  values are positive.  If  is even% & % &! ",=1 . , - =1 , 66 6

C-1

6

6 C

  then by Lemma ,  has an even number of sign variations in its coefficients which meansI $%&'
   is even.  If  is odd then again by Lemma 4 we conclude  is odd.U 6 U
  So  and  are even together or are odd together. Now consider that   What kind6 U P / 6 = U : *3
  of a positive number is this?  Well  is even, and if  and  are both even then  mustP 6 U P / 6 = U
  be even. By the same token, if  and are both odd, then  is still even, and since  is6 U 6 = U P
  always even,  must be even. Therefore  for some positive integer P / %6 = U' P / 6 = U - 9Y Y3
  Then Let   All that remains is to show that  is a%P = 9Y' / 6 - U3 W - %P = 9Y'3 %P = 9Y'
  positive even integer.  First,  and  since , we know  is%P = 9Y' - U = 6 U = 6 : * %P = 9Y'
  a positive integer. Second, both  and  are even, so their difference  is even. In anyP 9Y %P = 9Y'
  case, there exists a positive even integer  such that   So when  is larger than , it isW W / 6 - U3 U 6
  larger by a positive even integer.
 Q.E.D.
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22. Descartes's Rule of Signs Lemma 6.
 Each negative root of  corresponds to a positive root of   That is, if $%&' $%=&'3 ; G *
 and  is a zero of , then  is a positive zero of ; $%&' =; $%=&'3
 Descartes's Rule of Signs Lemma 6 Proof:
  The graph of the function  is just the graph of  reflected over the -axis.Z - $%=&' Z - $%&' Z
  So, if  and , then  and when  then; G * $%;' - * =; : *@ & - =;@
    So  is a positive zero of $%=&' - $ = =; - $%;' - *3 =; $ =& 3% & % &% &
 Q.E.D.

23. Descartes's Rule of Signs Theorem
 Let  be any polynomial with .$%&' real coefficients
 ( )  The number of positive roots of  is either equal to thePositive Roots $%&' - *
  number of sign variations in the coefficients of  or else is less than this$%&'
  number by an even integer.
 ( )  The number of negative roots of  is either equal to theNegative Roots $%&' - *
  number of sign variations in the coefficients of  or else is less than$%=&'
  this number by an even integer.
 Note that when determining sign variations we can ignore terms with zero coefficients.

 Proof of Descartes's Rule of Signs Theorem:
  The statement about the number of positive roots of  is exactly the statement of$%&' - *
  Lemma 5 that has already been proved.
  To prove the statement about the number of negative roots of  we need only apply$%&'
  Lemma 6.  Each negative root of  corresponds to a positive root of  and by$%&' $%=&'
  Lemma 5, the number of positive roots of any polynomial like  is either equalD $%=&' E
  to the number of sign variations in that polynomial , or is less than the numberD $%=&' E
  of sign variations in that polynomial  by a positive even integer.D $%=&' E

 Q.E.D.
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24. Lemma On Continuous Functions.
 Let  and  be two continuous real-valued functions with a common domain that isX%&' [%&'
 an open interval .  Furthermore let  and assume that except when  we have%;@ H' 5 \ %;@ H' & - 5
 for all   Then we must also have X%&' - [%&' & \ %;@ H'3 X%5' - [%5'3
 Proof of Lemma On Continuous Functions:
 By contradiction.  Assume Without loss of generality we may assume X%5' 7 [%5'3 X%5' G [%5'

 and choose   Note that   By the continuity of both  and  at! !- 3 : *3 X%&' [%&'
[%5' = X%5'

9

 , there exists a  0 and there exists a   such that for all & - 5 : : * & \ %;@ H'" "X [

  1)  if    then  * G & = 5 G X%&' = X%5' G/ / / /" !X

 and  2)  if    then  * G & = 5 G [%&' = [%5' G/ / / /" ![

 Let   and choose  such that " " " "- 4C2D @ E & \ %;@ H' * G & = 5 G 3X [ 1 1/ /
 Note that since  is chosen so that , we must have & & 7 5 [%& ' - X%& '31 1 1 1

 Also, by our choice of , parts 1) and 2) above apply so we can conclude that " !X%& ' = X%5' G1

 and with a little bit of thought, we can see that we must also have [%5' = [%& ' G 31 !

 So adding both inequalities we must have  X%& ' = X%5' / [%5' = [%& ' G 9 - [%5' = X%5'31 1 !

 Now since  the left expression simplifies and may be rearranged so that we have[%& ' - X%& '1 1

 , a contradiction.[%5' = X%5' G [%5' = X%5'
 Q.E.D.

25. Theorem On the Equality of Polynomials
 Let   and let$%&' - ; & / ; & /</ ; & / ; & / ; & / ;2 2=1 B 1 *

2 2=1 B 9
9

   be any two real polynomials of+%&' - H & / H & /</ H & / H & / H & / H4 4=1 B 9 1 *
4 4=1 B 9

 degrees  and  respectively.  If for all real numbers ,  then2 4 & $%&' - +%&'

  1)  4 - 2

 and 2) for all , if 0  then  C N C N 2 ; - H 3C C

 Proof of Theorem On the Equality of Polynomials:
 The following informal argument can be formalized using Mathematical Induction.  However,
 we prefer a more relaxed discussion that emphasizes technique over formality.
 First note that if  ; & / ; & /</ ; & / ; & / ; & / ; -2 2=1 B 1 *

2 2=1 B 9
9

  for all , we may letH & / H & /</ H & / H & / H & / H &4 4=1 B 9 1 *
4 4=1 B 9

  to conclude that & - * ; - H 3* *

proof continued on the next page
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 Next, we subtract the common constant term from both sides of the equation to
 conclude that for all &

 ; & / ; & /</ ; & / ; & / ; & -2 2=1 B 1
2 2=1 B 9

9

 H & / H & /</ H & / H & / H &34 4=1 B 9 1
4 4=1 B 9

 Now divide both sides of this last equation by , assuming .  Then we have:& & 7 *

 ; & / ; & /</ ; & / ; & / ; -2 2=1 B 1
2=1 2=9 9

9

 H & / H & /</ H & / H & / H4 4=1 B 9 1
4=1 4=9 9

 for all nonzero .  However, both of these last polynomials are defined and are continuous in a&
 neighborhood about , so we may apply the above Lemma with  to conclude this new& - * 5 - *
 equation is true for all including when &@ & - *3

 Now we can repeat the above argument and let  to conclude that  and we again& - * ; - H @1 1

 subtract this common constant term from both sides of the last equation to obtain the statement
 that for all &

 ; & / ; & /</ ; & / ; & - H & / H & /</ H & / H &32 2=1 B 4 4=1 B 9
2=1 2=9 9 4=1 4=9 9

9

 Again we divide both sides by  to obtain the simpler equation that&

 ; & / ; & /</ ; & / ; - H & / H & /</ H & / H 32 2=1 B 4 4=1 B 9
2= 2= 4= 4=

9
2 3 2 3

 Even though this equation is only true for nonzero  because we just divided by , we can& &
 apply the above Lemma to conclude this equation must also be true when   So again we& - *3
 may let  to conclude that & - * ; - H 39 9

 
 Clearly this argument may be continued to repeatedly pick off each of the coefficients one by one
 in order until we run out of both coefficients.  So every coefficient of  matches the same$%&'
 degree term coefficient of .  That we must run out of both coefficients at the same time is+%&'
 because otherwise, if  and  had different degrees, we could find a  coefficient in one of$%&' +%&' *
 these polynomials that would match a nonzero coefficient in the other and that would be a
 contradiction.

 A final note about this theorem and its lemma is that the lemma is very easy for a non-calculus
 student to understand when continuity is presented in an intuitive way (no epsilons or deltas!).
 This theorem can also be proved assuming the Fundamental Theorem of Algebra, but the advantage
 of this alternative approach is that we don't have to assume the Fundamental Theorem of Algebra
 and we can introduce the fundamental property of continuity of polynomials.

 Q.E.D.
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26. Theorem Euclidean Algorithm for Polynomials
Let  and  be any two polynomials with degrees 1.  Then there exists a polynomial $%&' +%&' 0 (%&'
such that  divides evenly into both  and .  Moreover, is such that if  is any(%&' $%&' +%&' (%&' ;%&'
other common divisor of  and , then  divides evenly into .  The polynomial  is$%&' +%&' ;%&' (%&' (%&'
called the Greatest Common Divisor of  and  is sometimes denoted by $%&' +%&' !"#%$%&'@ +%&''3
Except for constant multiples,  is unique.(%&'

Proof of the Euclidean Algorithm for Polynomials

Without loss of generality we assume the degree of  is larger than or equal to the degree of $%&' +%&'3
By the Division Algorithm we may write

 (1)$%&' - +%&' . + %&' / , %&'1 1

where  is the quotient polynomial and  is the remainder.  If  then we stop.+ %&' , %&' , %&' ) *1 1 1

Otherwise, if  we note from the above equation that any common divisor of both  and, %&' ) * +%&'81

, %&'1  must be a divisor of the right side of the above equation and therefore a divisor of the left side.
Any common divisor of  and  must be a divisor of   Next, by writing+%&' , %&' $%&'31

$%&' = +%&' . + %&' - , %&'1 1

we can see that every common divisor of  and  must be a divisor of  and thus a$%&' +%&' , %&'1

common divisor of  and   So +%&' , %&'3 !"#%$%&'@ +%&'' - !"#%+%&'@ , %&''31 1

We continue by applying the Division Algorithm again to write

 (2)+%&' - , %&' . + %&' / , %&'1 9 9

If  we stop.  Otherwise, repeating the above reasoning,, %&' ) *9

!"#%+%&'@ , %&'' - !"#%, %&'@ , %&''1 1 9 .    Now apply the Division Algorithm again.

 (3), %&' - , %&' . + %&' / , %&'1 9 B B

If  we stop.  Otherwise we note  and we, %&' ) * !"#%, %&'@ , %&'' - !"#%, %&'@ , %&''B 1 9 9 B

continue to apply the Division Algorithm to get

 (4), %&' - , %&' . + %&' / , %&'2 3 4 4

proof continued on the nex page



page 24

If  we stop.  Otherwise we continue this process.  However, we cannot this process forever, %&' ) *I

because the degrees of the remainders  keep decreasing by 1., %&'C

degree degree degree degree degree%, %&'' G %, %&'' G %, %&'' G %, %&'' N %+%&''I B 9 1

So after applying the Division Algorithm at most the number of times that is the degree of  we+%&'
must have some remainder become the identically zero polynomial.

We claim  is the last nonzero remainder.  For example, suppose!"#%$%&'@ +%&''

 , %&' - , %&' . + %&' / , %&' %2'2=9 2=1 2 2

and

 , %&' - , %&' . + %&' %2 / 1'2=1 2 2/1

where  and is not written.  The last equation shows  is a divisor of  so, %&' ) * , %&' , %&'2/1 2 2=1

!"#%, %&'@ , %&'' - , %&'2=1 2 2 .

Now !"#%$%&'@ +%&'' - !"#%+%&'@ , %&'' - !"#%, %&'@ , %&'' - !"#%, %&'@ , %&''1 1 9 9 B

- < - !"#%, %&'@ , %&'' - , %&'2=1 2 2 , the last nonzero remainder.

 Q.E.D.
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27.  Corollary to the Euclidean Algorithm for Polynomials
The  of any two polynomials  and  may be expressed as a linear combination of !"# $%&' +%&' $%&'
and +%&'3

Proof of the Corollary to the Euclidean Algorithm for Polynomials.

The following were the series of equations that led up to the creation of the  polynomial.!"#

$%&' - +%&' . + %&' / , %&' %1'1 1

+%&' - , %&' . + %&' / , %&' %9'1 9 9

, %&' - , %&' . + %&' / , %&' %B'1 9 B B

, %&' - , %&' . + %&' / , %&' %I'2 3 4 4

  ]

, %&' - , %&' . + %&' / , %&' %2 = 1'2=B 2=9 2=1 2=1

, %&' - , %&' . + %&' / , %&' %2'2=9 2=1 2 2

Now starting with the last equation, we solve for the .!"#

, %&' - , %&' = , %&' . + %&' %^'2 2=9 2=1 2

Note this shows how to write the  as a linear combination of  and !"# , %&' , %&'32=9 2=1

But in the next to the last equation we can solve for  and substitute into ., %&' %^'2=1

, %&' - , %&' = > , %&' = , %&' . + %&' ? . + %&'2 2=9 2=B 2=9 2=1 2  

- , %&' = , %&' . + %&' / , %&' . + %&' . + %&'2=9 2=B 2 2=9 2=1 2

- >1 / + %&' . + %&'? . , %&' / > = + %&'? . , %&'2=1 2 2=9 2 2=B

We have now shown how to write  as a linear combination of  and , %&' , %&' , %&'32 2=9 2=B

Clearly we can continue to work backwards, and solve each next equation for the previous
remainder, and then substitute that remainder (which is a linear combination of its two previous
remainders) into our equation to continually write  as a linear combination of the two most, %&'2

recent remainders.

proof continued on the next page
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As we work our way up the list, we will eventually have

, %&' - X%&' . , %&' / [%&' . , %&'2 1 2

and when we solve the second equation for  and substitute we get, %&'9

, %&' - X%&' . , %&' / [%&'> +%&' = , %&' . + %&' ?2 1 1 9

- X%&' . , %&' / [%&'+%&' = [%&' . , %&' . + %&'1 1 9

- > X%&' = [%&' . + %&' ? . , %&' / > [%&' ? . +%&'9 1

Lastly we solve the first equation for  and substitute and we get, %&'1

, %&' - > X%&' = [%&' . + %&' ? . > $%&' = +%&' . + %&' ? / > [%&' ? . +%&'2 9 1

- > X%&' = [%&' . + %&' ? . $%&' = > X%&' = [%&' . + %&' ? . +%&' . + %&' / [%&' . +%&'9 9 1

- > X%&' = [%&' . + %&' ? . $%&' / > [%&' . + %&' = X%&' ? . + %&' / [%&' . +%&'9 9 1' (
This shows that the  can be written as a linear combination of  and !"# $%&' +%&'3

 Q.E.D.



page 27

28. Lemma 1 for Partial Fractions

If   where   then there exist polynomials  and  suchX%&' - !"#%H%&'@ 5%&'' - 1 (%&' W%&'
;%&'

H%&'5%&'
that

X%&' - /
(%&' W%&'

H%&' 5%&'

Proof of Lemma 1 for Partial Fractions

The two polynomials  and  are called relatively prime when their  is .  Of course thisH%&' 5%&' !"# 1
means that  and  have no common factor.  Apply the Corollary to the Euclidean AlgorithmH%&' 5%&'
for polynomials to construct polynomials  and  such thatU%&' P%&'

1 - U%&' . H%&' / P%&' . 5%&'

Then multiply both sides of this equation by  to get;%&'

;%&' - ;%&' . U%&' . H%&' / ;%&' . P%&' . 5%&'

and finally divide both sides of this last equation by the product H%&' . 5%&'

;%&' ;%&' . U%&' . H%&' ;%&' . P%&' . 5%&'

H%&' . 5%&' H%&' . 5%&' H%&' . 5%&'
- /

X%&' - - /
;%&' ;%&' . U%&' ;%&' . P%&'

H%&' . 5%&' 5%&' H%&'

Now let  and let (%&' - ;%&' . U%&' W%&' - ;%&' . P%&'3

 Q.E.D.
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29. Lemma 2 for Partial Fractions

If  then there exists a polynomial  and for  there exist polynomialsX%&' - [%&' 1 N C N 4
$%&'

+%&'# $4
U %&' +%&'C  each with degree less than  such that

X%&' - - [%&' / / / /</
$%&' U %&' U %&' U %&' U %&'

+%&' +%&' +%&'+%&' +%&'# $ # $# $ # $4 4
1 9 B 4

9 B

Proof of Lemma 2 for Partial Fractions

Apply the Division Algorithm for the first time to write _

$%&' - +%&' . + %&' / , %&'3 , %&' +%&'3# $1 1 1  Note the degree of  is less than the degree of 

Now divide  by  to get a second quotient and a second remainder so we may write+ %&' +%&'1

$%&' - +%&' . +%&' . + %&' / , %&' / , %&'# $9 9 1

$%&' - +%&' . + %&' / +%&' . , %&' / , %&'# $9 9 9 1

Note that the degree of  is less than the degree of , %&' +%&'39

Now divide  by  to get a third quotient and a third remainder and write+ %&' +%&'9

$%&' - +%&' . +%&' . + %&' / , %&' / +%&' . , %&' / , %&'# $ # $9
B B 9 1

$%&' - +%&' . + %&' / +%&' . , %&' / +%&' . , %&' / , %&'# $ # $B 9
B B 9 1

We continue to divide each newest quotient  by  to get a newer quotient and a newer+ %&' +%&'C

remainder and substitute for the  quotient.  Each remainder has a degree smaller than the degree+ %&'C

of +%&'3

$%&' - +%&' . +%&' . + %&' / , %&' / +%&' . , %&' / +%&' . , %&' / , %&'# $ # $ # $B 9
I I B 9 1

$%&' - +%&' . + %&' / +%&' . , %&' / +%&' . , %&' / +%&' . , %&' / , %&'# $ # $ # $I B 9
I I B 9 1

We may continue breaking down and substituting for each  quotient until we have+ %&'C

$%&' - +%&' . + %&' / + & . , %&' /</ +%&' . , %&' / +%&' . , %&' / , %&'# $ # $ # $% &4 4=1 9
4 4 B 9 1

Finally we divide both sides of this last equation by    to get# $+%&' 4

X%&' - - + %&' / /</ / /</
$%&' , %&' , %&' , %&' , %&'

+%&' +%&' +%&'+%&' +%&'# $ # $# $ # $4 44
4 B 9 1

4=9 4=1

Now we may let  and let [%&' - + %&' U %&' - , %&'34 C 4=C/1

 Q.E.D.
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30. Partial Fraction Decomposition Theorem

 Let  be a rational function where  and  are polynomials such that the degree of 
$%&'

+%&'
$%&' +%&' $%&'

 is less than the degree of   Then there exist algebraic fractions  such that+%&'3 ` @ ` @A @ `1 9 ,

  and where each  fraction is one of two forms:
$%&'

+%&'
- ` / ` /</ ` `1 9 , C

  or   where ,  ,  are all real numbers and
a a & / b

%; & / H ' %; & / H & / 5 '
a ; @ H @ a @ b ; @ H @ 5

C 6 6

C C 6 6 6
2 9 4 C C C 6 6 6 6 6
C 6

 the  and the  are positive integers and each quadratic expression  has a2 4 ; & / H & / 5C 6 6 6 6
9

 negative discriminant.

 Proof of the Partial Fraction Decomposition Theorem

Since  is a polynomial, by the Linear and Irreducible Quadratic Factors Theorem we may write+%&'

+%&' - %; & / H ' . %; & / H & / 5 '3 4, ,! "
C-1

O

C C 6 6 6
$ 9 +

6-1

V
C 6

 where for each ,  is a real linear factor of  of multiplicity  and for each ,C %; & / H ' +%&' $ 6C C C

  is an irreducible quadratic factor of of multiplicity   The  are%; & / H & / 5 ' +%&' + 3 ; @ H6 6 6 6 C C
9

 different from the   Since the real linear and irreducible quadratic factors have no factors in; @ H 36 6

 common their  is  and we may apply Lemma 1 for Partial Fractions to write:!"# 1

$%&' ;%&' H%&'

+%&'
- /

%; & / H ' %; & / H & / 5 '3 4, ! ",
C-1

O

C C
$

6-1

V

6 6 6
9 +

C 6

Now for each different , each factor of the form  is different from the next so we mayC %; & / H 'C C
$C

again apply Lemma 1 for Partial Fractions  times to split the first fraction above into a sum of O = 1 O
other fractions.  For each of those fractions that have an exponent of  or higher in the denominator9
we apply Lemma 2 for Partial Fractions  more times to split each denominator with$ = 1C

%; & / H ' $C C C
$C  into a sum of  more fractions.

For each different , each factor of the form  is different from the next so we6 %; & / H & / 5 '6 6 6
9 +6

may again apply Lemma 1 for Partial Fractions  times to split the second fraction above into a6 = 1
sum of  other fractions.  For each of those fractions that have an exponent of  or higher in the6 9
denominator we apply Lemma 2 for Partial Fractions  more times to split each denominator+ = 16

with  into a sum of  more fractions.%; & / H & / 5 ' +6 6 6 6
9 +6

As a final note, the  term that appears in Lemma 2 for Partial Fractions will be the  polynomial[%&' *
because we are assuming the degree of  is strictly less than that of   So our partial fraction$%&' +%&'3
decomposition really does break down into a sum of pure algebraic fractions.

 Q.E.D.
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31. Partial Fraction Decomposition Coefficient Theorem

 Let  be a rational function where  and  are polynomials such that the degree of 
$%&'

+%&'
$%&' +%&' $%&'

 is less than the degree of .  If  is a root of  of multiplicity , then in the partial+%&' & - ; +%&' - * 1

 fraction decomposition of  which contains a term of the form , the constant 
$%&' a $%;'

+%&' %& = ;' + %;'
a - 3

L

 Proof of the Partial Fraction Decomposition Coefficient Theorem:

 Assume  is the partial fraction decomposition of  where  is itself
$%&' a $%&'

+%&' %& = ;' +%&'
- / X%&' X%&'

 a rational function, but is such that  is well-defined.  In fact,  will be continuous at X%;' X%&' & - ;3

 Then 
%& = ;' . $%&'

+%&'
- a / X%&'%& = ;'

 Since  is a simple zero of ,     is an indeterminate form  and we may& - ; +%&'
%& = ;' . $%&' *

+%&' *
lim
&c;

 thus apply L'Hopital's Rule when evaluating the limit.  Taking the limit on both sides of the above

 equation we have

 lim lim
&c; &c;

%& = ;'$%&'

+%&'
- a / X%&'%& = ;'# $

 lim lim lim lim
&c; &c; &c; &c;

L

L

1 . $%&' / %& = ;' . $ %&'

+ %&'
- a / X%&' . %& = ;'

 lim lim
&c; &c;L

$%&'

+ %&'
- a / X%&' . *

 
$%;'

+ %;'
- a / X%;' . * - a

L

 Q.E.D.


