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We use Conway�s Fractran language to derive a function R : Z+ → Z+ of the form

R (n) = rin if n ≡ i mod d
where d is a positive integer, 0 ≤ i < d and r0, r1, . . . rd−1 are rational numbers, such that the famous
3x + 1 conjecture holds if and only if the R-orbit of 2n contains 2 for all positive integers n. We then
show that the R-orbit of an arbitrary positive integer is a constant multiple of an orbit that contains a
power of 2. Finally we apply our main result to show that any cycle {x0, . . . , xm−1} of positive integers
for the 3x+ 1 function must satisfy X
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where O = {i : xi is odd}, E = {i : xi is even}, and k = |O|. The method used illustrates a general
mechanism for deriving mathematical results about the iterative dynamics of arbitrary integer functions
from Fractran algorithms.
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1 Introduction and Main Results
The famous 3x+ 1 conjecture (cf. [3],[4]) states that for every n ∈ Z+ there exists k ∈ Z+ such
that T k (n) = 1 where

T (n) =

(
1
2n if n is even
3
2n+

1
2 if n is odd.

and T k = T ◦ T ◦ · · · ◦ T| {z }
k

denotes the k-fold composition of T with itself. If we let T0 (x) = x
2

and T1 (x) = 3
2x +

1
2 , then for any n and k, T

k (n) = Tvk−1 ◦ Tvk−2 ◦ · · · ◦ Tv0 (n) for some
v0, . . . vk−1 ∈ {0, 1} and vi ≡ T i (n) mod 2. Several authors (cf. [3]) have given explicit formulas
for this composition, e.g.

Tvk−1 ◦ Tvk−2 ◦ · · · ◦ Tv0 (n) =
3m

2k
n+

k−1X
i=0

vi
3vi+1+···+vk−1

2k−i
where m =

k−1X
i=0

vi.
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Compare this somewhat unwieldy expression with the much simpler one

Rvk−1 ◦Rvk−2 ◦ · · · ◦Rv0 (n) =
3m

2k
n

when R0 (n) = 1
2n and R1 (n) =

3
2n. With this example in mind, it is natural to ask if there is

some function of the form

R(n) =


r0n if n ≡ 0 mod d
r1n if n ≡ 1 mod d
...

...
rd−1n if n ≡ d− 1 mod d

(1.1)

where r1, . . . , rd−1 are rational numbers and d ≥ 2 such that knowledge of certain R-orbits would
settle the 3x + 1 problem, i.e. is there an addition-free variant of the 3x + 1 function whose
dynamics encode the conjecture? We answer this question in the affirmative with the following
result

Theorem 1 There are inÞnitely many functions R of the form (1.1) having the property that
the 3x+1 conjecture is true if and only if for all positive integers n the R-orbit of 2n contains 2.
In particular,

R (n) =



1
11n if 11 | n
136
15 n if 15 | n and NOTA
5
17n if 17 | n and NOTA
4
5n if 5 | n and NOTA
26
21n if 21 | n and NOTA
7
13n if 13 | n and NOTA
1
7n if 7 | n and NOTA
33
4 n if 4 | n and NOTA
5
2n if 2 | n and NOTA
7n otherwise

(1.2)

(where NOTA means �None of the Above� conditions hold) is one such function. Furthermore,
for any nonnegative integer n the R-orbit of 2n contains the subsequence

2n, 2T (n), 2T
2(n), 2T

3(n) . . .

and these are the only powers of two that occur.

Note that the function R given in the theorem is of the form (1.1) if we take

d = lcm (11, 15, 17, 5, 21, 13, 7, 4, 2) = 1021020

since the Þrst condition satisÞed by n will also be the Þrst condition satisÞed by n+dj for any j.
Proof : The proof is a straightforward application of Conway�s Fractran language and its

mathematical consequences. We refer the reader to [2] for details. A Fractran program consists



3x+ 1 Minus the + 3

of a Þnite list of positive rational numbers, [r1, . . . rt] . The state of a Fractran machine consists
of a single positive integer S. The exponents of the primes in the prime factorization of S are
used as registers for storing nonnegative integers. The program is executed by multiplying S by
the Þrst rational number in the list for which the product is a nonnegative integer (and halts if
no such integer exists). Thus, each Fractran program corresponds to a function of the form (1.1)
where execution of the program corresponds to iteration of the function.
The Fractran program ·

1
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(1.3)

when started with S = 2n, will produce S = 2T (n) as the next S power of 2 in the orbit. To see
this, consider the ßowchart for this program indicated in Figure 1. (In what follows we will only
be concerned with an initial state that is a power of 2, as required.)

Figure 1: A Fractran program for T

The edges of the ßowchart are labeled in order of decreasing priority using a single arrow,
double arrow, and triangle respectively. At a given node, the current state S is multiplied by
the fraction labeling the edge of highest priority for which the product is a positive integer. The
powers of the primes 5, 7, 11, 13, 17 in S correspond to the nodes o, q, n, r, p respectively, a positive
exponent of one of the primes indicating the program is at that node (and it is at node m if it
is at no other node). The exponents of 2 and 3 in S are used as registers to compute T. We will
refer to these exponents as α and β respectively.
When the program is started with S = 2n at node m, it will execute the loop between nodes

m and n exactly q =
¥
n
2

¦
times, each time decreasing α by 2 and incrementing β. This results in

S = 2nmod 23q.
If n is odd then n = 2q+1 for some positive integer q and execution proceeds to node o where

the state becomes S = 3q5. The loop between nodes o and p then produces S = 23q5 which is
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then multiplied by 22

5 to produce

S = 23q+2 = 2(6q+4)/2 = 2(6q+3+1)/2 = 2(3(2q+1)+1)/2 = 2(3n+1)/2 = 2T (n)

as required.
If n is even, then upon completion of the mn loop S is multiplied by 7 moving execution to

node q. The loop between nodes q and r produces S = 2q7 which is then multiplied by 1/7 to
produce

S = 2q = 2n/2 = 2T (n)

as required.
Iteration of the function R given in the theorem starting with seed 2n corresponds exactly to

execution of this Fractran program (the sequence of states being the R-orbit of 2n). Since the
choice of primes and algorithm used in this program was arbitrary, there are inÞnitely many such
programs, and thus inÞnitely many such functions. This completes the proof.
¤
Theorem 1 shows the relationship between the R-orbits of two powers and the 3x+1 problem.

One might ask for its own sake� how the iterates of R behave for arbitrary positive integer inputs.
We answer this question with the following result.

Theorem 2 Let R be deÞned as in (1.2). Then for all a, b, c, d, e, f, g, h ∈ N
1. for all m ∈ Z+ with gcd (m, 2 · 3 · 5 · 7 · 11 · 13 · 17) = 1,

R
¡
2a3b5c7d11e13f17gm

¢
= m ·R ¡2a3b5c7d11e13f17g¢

and
2. there exists k ∈ N such that Rk ¡2a3b5c7d11e13f17g¢ = 2j for some j.
Thus if we iterate R starting with an arbitrary positive integer n, the prime factors of n that

are greater than 17 are left unchanged, and the iterates of the remaining factor eventually reach
a two power (after which the behavior proceeds as indicated in Theorem 1).
Proof : The proof of part (1) follows immediately from the deÞnition of R, since prime factors

greater than 17 are not affected when a positive integer is multiplied by any of the rational
numbers listed in (1.3).
To prove part (2), let S be the set of positive integers that are not divisible by a prime greater

than 17. Since no prime greater than 17 is a factor of the numerator of any fraction in (1.3), R
maps elements of S to elements of S.
Let S0 be the subset of S consisting of integers of the form 2a3b for some a, b ∈ N. Let a, b ∈ N.

By the deÞnition of R, R2
¡
2a+23b

¢
= 2a3b+1 so that R2b

¡
2a+2b

¢
= 2a3b. Thus any element of S0

is in the R-orbit of a power of two. Since the R-orbit of 2a+2b contains inÞnitely many terms that
are powers of two by Theorem 1, so does the R-orbit of 2a3b for any a, b ∈ N. Thus it suffices to
show that the R-orbit of any element of S contains an element of S0.
DeÞne α : S → N by α (2e13e25e37e411e513e617e7) =

P7
i=2 ei. We argue by contradiction,

and suppose that we have an element n of S so that all iterates Rk(n) /∈ S0. Then all terms in
the R-orbit of n are divisible by some prime in {5, 7, 11, 13, 17}. Thus by the deÞnition of R,
� Thanks to the anonymous referee of an earlier draft of this paper for suggesting this line of inquiry.
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for all k ≥ 1, Rk (n) = rkR
k−1 (n) for some rk ∈

©
1
11 ,

136
15 ,

5
17 ,

4
5 ,

26
21 ,

7
13 ,

1
7

ª
. For any k ∈ N, if

rk+1 ∈
©
1
11 ,

136
15 ,

4
5 ,

26
21 ,

1
7

ª
then

α
¡
Rk+1 (n)

¢
= α

¡
rk+1R

k (n)
¢
< α

¡
Rk (n)

¢
and if rk+1 ∈

©
5
17 ,

7
13

ª
then

α
¡
Rk+1 (n)

¢
= α

¡
rk+1R

k (n)
¢
= α

¡
Rk (n)

¢
.

So the R-orbit of n has nonincreasing values of α, i.e. the sequence

α (n) , α (R (n)) , α
¡
R2 (n)

¢
, . . . (1.4)

is a nonincreasing. Since none of the terms are a two power (by our assumption), (1.4) is a
nonincreasing sequence of positive integers whose terms are all less than or equal to α (n). Thus
there must be some h ≥ 0 such that α ¡Rk (n)¢ = α ¡Rh (n)¢ for all k ≥ h. So rk ∈ © 5

17 ,
7
13

ª
for

all k ≥ h. But multiplication by these values of rk decreases the exponent of either 13 or 17 in
the prime factorization of an integer, so that repeated multiplication by these fractions eventually
produces a non-integer value. This contradicts our assumption and completes the proof.
¤
Conway [1] used an argument similar to the proof of Theorem 1 to show that there exist

functions of the form (1.1) for which the fate of the orbit of an arbitrary positive integer is
algorithmically undecidable. In Theorem 1 we turn this method around to obtain a positive
result, and now illustrate how this result can be used to obtain mathematical results about the
conjecture itself.

2 An Application
Let x0, . . . , xn−1 be positive integers such that xi = T (xi−1) for 0 < i < n and x0 = T (xn−1) .
In this situation we say {x0, . . . , xn−1} is a T -cycle. If the 3x + 1 conjecture is true, then the
only T -cycle of positive integers is {1, 2} (the existence of any other positive integer in a T -cycle
being a counterexample). Thus it is of interest to study the properties of positive integer T -cyles.
Suppose {x0, . . . , xn−1} is a T -cycle of positive integers with xi = T (xi−1) for 0 < i < n and

x0 = T (xn−1) . Then by Theorem 1 the R-orbit of 2x0 is also cyclic and contains {2x0 , . . . , 2xn−1}
as a subset. Thus there exists some positive integer t such that Rt (x0) = x0. But each application
of R is simply multiplication by one of the rational numbers in

©
1
11 ,

136
15 ,

5
17 ,

4
5 ,

26
21 ,

7
13 ,

1
7 ,

33
4 ,

5
2 , 7
ª

so that we must have

x0 = R
t (x0) =

µ
1

11

¶aµ
136

15

¶bµ
5

17

¶cµ
4

5

¶dµ
26

21

¶eµ
7

13

¶f µ
1

7

¶g µ
33

4

¶hµ
5

2

¶i
7jx0

for some nonnegative integers a, b, c, d, e, f, g, h, i, j with a+ b+ c+ d+ e+ f + g+ h+ i+ j = t.
Collecting prime factors on the right hand side and dividing by x0 gives us

23b+2d+e−2h−i3−b−e+h5−b+c−d+i7−e+f−g+j11−a+h13e−f17b−c = 1.
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This yields the system of linear equations

3b+ 2d+ e− 2h− i = 0
−b− e+ h = 0

−b+ c− d+ i = 0
−e+ f − g + j = 0

−a+ h = 0
e− f = 0
b− c = 0

which is equivalent to the system

a = 2c+ i (2.1)

b = c

d = i

e = c+ i

f = c+ i

g = j

h = 2c+ i.

Now deÞne O = {i : xi is odd} and E = {i : xi is even} and let k = |O| so that |E| = n−k. Then
as explained in the proof of Theorem 1 we see that

i = k (2.2)

j = n− k
c =

X
i∈O

jxi
2

k
a =

n−1X
i=0

jxi
2

k
Substituting (2.2) into a = 2c+ i from (2.1) we obtain

n−1X
i=0

jxi
2

k
= 2

X
i∈O

jxi
2

k
+ k. (2.3)

But
Pn−1

i=0

¥
xi
2

¦
=
P
i∈E

¥
xi
2

¦
+
P

i∈O
¥
xi
2

¦
. Substituting this into (2.3) and simplifying proves

Corollary 1 If {x0, . . . , xn−1} is a T -cycle of positive integers and O = {i : xi is odd} and
E = {i : xi is even} then X

i∈E

jxi
2

k
=
X
i∈O

jxi
2

k
+ k.
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It should be noted that this formula can be proven directly from the known relationshipX
i∈E

xi =
X
i∈O

xi + k (2.4)

(obtained by noticing that {x0, . . . , xn−1} = {T (x0) , . . . , T (xn−1)} so that
P
xi =

P
T (xi) and

thus
P
i∈E xi+

P
i∈O xi =

P
i∈O

3xi+1
2 +

P
i∈E

xi
2 which can be solved to obtain (2.4)). However,

the method used here reveals the results of the Corollary without speciÞcally searching for those
results. Thus this method provides a general approach for discovering new mathematical results
by simply coding different algorithms for computing T (or any other computable integer function)
and solving a simple linear system.
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