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We use Conway’s Fractran language to derive a function R : Z+ — Z7T of the form
R(n)=rn ifn=14modd

where d is a positive integer, 0 < i < d and 70,71, ...7r4—1 are rational numbers, such that the famous
3z + 1 conjecture holds if and only if the R-orbit of 2" contains 2 for all positive integers n. We then
show that the R-orbit of an arbitrary positive integer is a constant multiple of an orbit that contains a
power of 2. Finally we apply our main result to show that any cycle {zo,...,zm—1} of positive integers

for the 3z 4+ 1 function must satisfy
TR
e 2 o ?
where O = {i:z; is odd}, & = {i:z; is even}, and k = |O|. The method used illustrates a general

mechanism for deriving mathematical results about the iterative dynamics of arbitrary integer functions
from Fractran algorithms.
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1 Introduction and Main Results

The famous 3z + 1 conjecture (cf. [3],[4]) states that for every n € Z™T there exists k € Z* such
that T (n) = 1 where
T(n) = {

and T% = T'oT o---oT denotes the k-fold composition of T' with itself. If we let T (z) = £
—_—

n if n is even
=n + if n is odd.

IS [JSRNI

k
and Ty (z) = 2z + 3, then for any n and k, T%(n) = T,,_, o T,, , -0 T, (n) for some
v0, - . Vg—1 € {0,1} and v; = T* (n) mod 2. Several authors (cf. [3]) have given explicit formulas

for this composition, e.g.

m k-1 3v1+1+ +vp—1
St sz where m = Zvl
=0
subm. to DMTCS (© by the authors Maison de I'Informatique et des Mathématiques Discretes (MIMD), Paris, France

T,

Vk—1

OTvk—2O"'OTU0 (n):
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Compare this somewhat unwieldy expression with the much simpler one
Ry, o Ry, ,0--0Ry, (n) =5

when Ry (n) = 3n and Ry (n) = 3n. With this example in mind, it is natural to ask if there is
some function of the form

TN if n=0mod d
Tn ifn=1modd

R(n) =1 . . (1.1)
rg—in ifn=d—1modd

where 71, ...,74_1 are rational numbers and d > 2 such that knowledge of certain R-orbits would
settle the 3x + 1 problem, i.e. is there an addition-free variant of the 3z + 1 function whose
dynamics encode the conjecture? We answer this question in the affirmative with the following
result

Theorem 1 There are infinitely many functions R of the form (1.1) having the property that
the 3x + 1 conjecture is true if and only if for all positive integers n the R-orbit of 2™ contains 2.
In particular,

&n if11|n
Loy if 15 | n and NOTA
Zn if 17| n and NOTA
an if 5| n and NOTA
2 if 21 | n and NOTA
R = 2 1.2
() Zn  if13|n and NOTA (12)
in if 7| n and NOTA
Bp if 4| n and NOTA
5n if 2| n and NOTA
™m otherwise

(where NOTA means “None of the Above” conditions hold) is one such function. Furthermore,
for any nonnegative integer n the R-orbit of 2" contains the subsequence

277,7 2T(n)7 2T2(n)7 2T3(n)

and these are the only powers of two that occur.
Note that the function R given in the theorem is of the form (1.1) if we take
d =lem(11,15,17,5,21,13,7,4,2) = 1021020

since the first condition satisfied by n will also be the first condition satisfied by n 4 dj for any j.
Proof: The proof is a straightforward application of Conway’s Fractran language and its
mathematical consequences. We refer the reader to [2] for details. A Fractran program consists
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of a finite list of positive rational numbers, [rq,...r:]. The state of a Fractran machine consists
of a single positive integer S. The exponents of the primes in the prime factorization of S are
used as registers for storing nonnegative integers. The program is executed by multiplying S by
the first rational number in the list for which the product is a nonnegative integer (and halts if
no such integer exists). Thus, each Fractran program corresponds to a function of the form (1.1)
where execution of the program corresponds to iteration of the function.

The Fractran program
1 136 5 4 26 7 1335
— L —— =, Ty Ty Dy —y = 7 1.3
11715717°5721°13° 77 472’ (13)
when started with S = 2", will produce S = 27(") as the next S power of 2 in the orbit. To see
this, consider the flowchart for this program indicated in Figure 1. (In what follows we will only
be concerned with an initial state that is a power of 2, as required.)

n p
311 1 217 5
2? 11 3.5 17
start ~ to start
s © 2
2 5
7 1
q 7
to start
213 7
37 13

Figure 1: A Fractran program for T

The edges of the flowchart are labeled in order of decreasing priority using a single arrow,
double arrow, and triangle respectively. At a given node, the current state S is multiplied by
the fraction labeling the edge of highest priority for which the product is a positive integer. The
powers of the primes 5,7,11,13,17 in S correspond to the nodes o, g, n, r, p respectively, a positive
exponent of one of the primes indicating the program is at that node (and it is at node m if it
is at no other node). The exponents of 2 and 3 in S are used as registers to compute 7. We will
refer to these exponents as « and 3 respectively.

When the program is started with S = 2™ at node m, it will execute the loop between nodes
m and n exactly ¢ = L%J times, each time decreasing o by 2 and incrementing S. This results in
S = 9on mod 23q.

If n is odd then n = 2¢ + 1 for some positive integer ¢ and execution proceeds to node o where
the state becomes S = 395. The loop between nodes o and p then produces S = 2395 which is
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then multiplied by % to produce

G — 93¢+2 _ 9(6q+4)/2 _ 9(6g+3+1)/2 _ 9(3(2¢+1)+1)/2 _ 9(3n+1)/2 _ 9T(n)

as required.
If n is even, then upon completion of the mn loop S is multiplied by 7 moving execution to
node ¢q. The loop between nodes ¢ and r produces S = 297 which is then multiplied by 1/7 to

produce
S =920 — 2n/2 — 2T(n)

as required.

Tteration of the function R given in the theorem starting with seed 2™ corresponds exactly to
execution of this Fractran program (the sequence of states being the R-orbit of 2™). Since the
choice of primes and algorithm used in this program was arbitrary, there are infinitely many such
programs, and thus infinitely many such functions. This completes the proof.

O

Theorem 1 shows the relationship between the R-orbits of two powers and the 3x + 1 problem.
One might ask for its own sake’ how the iterates of R behave for arbitrary positive integer inputs.
We answer this question with the following result.

Theorem 2 Let R be defined as in (1.2). Then for all a,b,c,d,e, f,g,h € N
1. for all m € Z* with ged (m,2-3-5-7-11-13-17) =1,

R (2°3°5°7711°137179m) = m - R (2*3"5°7911°137179)

and
2. there exists k € N such that RF (2‘131’557‘111613“79) =27 for some j.

Thus if we iterate R starting with an arbitrary positive integer n, the prime factors of n that
are greater than 17 are left unchanged, and the iterates of the remaining factor eventually reach
a two power (after which the behavior proceeds as indicated in Theorem 1).

Proof: The proof of part (1) follows immediately from the definition of R, since prime factors
greater than 17 are not affected when a positive integer is multiplied by any of the rational
numbers listed in (1.3).

To prove part (2), let S be the set of positive integers that are not divisible by a prime greater
than 17. Since no prime greater than 17 is a factor of the numerator of any fraction in (1.3), R
maps elements of S to elements of S.

Let S’ be the subset of S consisting of integers of the form 2¢3° for some a,b € N. Let a,b € N.
By the definition of R, R? (2%+23%) = 293%+1 5o that R?" (2°72") = 293" Thus any element of S’
is in the R-orbit of a power of two. Since the R-orbit of 2472 contains infinitely many terms that
are powers of two by Theorem 1, so does the R-orbit of 2¢3% for any a,b € N. Thus it suffices to
show that the R-orbit of any element of S contains an element of S’.

Define o : S — N by «(2°13°25°37¢4119513%17°7) = 23:2 e;. We argue by contradiction,
and suppose that we have an element n of S so that all iterates R*(n) ¢ S’. Then all terms in
the R-orbit of n are divisible by some prime in {5,7,11,13,17}. Thus by the definition of R,

T Thanks to the anonymous referee of an earlier draft of this paper for suggesting this line of inquiry.
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for all k > 1, R¥ (n) = rpRF~1 (n) for some 1, € {3, 52, %,%,3%, 15,5 }. For any k € N, if
Te+1 € {ﬁv %567 %7 %7%} then

o (R’“Jrl (n)) =« (re41RF (n)) <a (Rk (n))

and if 7,41 € {3, 15} then

a (RM (n)) = a (rg+1RF (n)) = a (R* (n)).

So the R-orbit of n has nonincreasing values of «, i.e. the sequence

a(n),a(R(n)),a(R*(n),... (1.4)

is a nonincreasing. Since none of the terms are a two power (by our assumption), (1.4) is a
nonincreasing sequence of positive integers whose terms are all less than or equal to « (n). Thus
there must be some h > 0 such that a (R* (n)) = a (R" (n)) for all k > h. Sorj, € {Z, &} for
all kK > h. But multiplication by these values of r; decreases the exponent of either 13 or 17 in
the prime factorization of an integer, so that repeated multiplication by these fractions eventually
produces a non-integer value. This contradicts our assumption and completes the proof.

O

Conway [1] used an argument similar to the proof of Theorem 1 to show that there exist
functions of the form (1.1) for which the fate of the orbit of an arbitrary positive integer is
algorithmically undecidable. In Theorem 1 we turn this method around to obtain a positive
result, and now illustrate how this result can be used to obtain mathematical results about the
conjecture itself.

2 An Application

Let xq,..., 2,1 be positive integers such that z; = T (z;—1) for 0 < i < n and zg = T (zp_1) .
In this situation we say {zo,...,zn_1} is a T-cycle. If the 3z 4+ 1 conjecture is true, then the
only T-cycle of positive integers is {1, 2} (the existence of any other positive integer in a T-cycle
being a counterexample). Thus it is of interest to study the properties of positive integer T-cyles.

Suppose {xq, ..., Zn—_1} is a T-cycle of positive integers with x; = T (z;-1) for 0 < i < n and
xo =T (zn—1) . Then by Theorem 1 the R-orbit of 27° is also cyclic and contains {27, ..., 2%»-1}
as a subset. Thus there exists some positive integer ¢ such that R? (zq) = xo. But each application
of R is simply multiplication by one of the rational numbers in {ﬁ, %, 1%, %, %, 1—73, %, %, %, 7}
so that we must have

1\ 7136\ /5 \° 74\ /26\° / 7\ /117 /33\" /5\"_,
zo = R (20) <1l> (15) (17) <5> (21) <13> <7) <4) <2> o
for some nonnegative integers a, b, c,d, e, f, g, h,i,j witha+b+c+d+e+ f+g+h+i+j=t.

Collecting prime factors on the right hand side and dividing by xo gives us

23b+2d+672h7i37b7€+h57b+cfd+i77€+f*g+j117a+h 1367]“ 171)70 —1.
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This yields the system of linear equations
3b+2d+e—2h—1=0
—b—e+h=0
~b+c—d+i=0
—e+f—g+j=0

—a+h=0
e—f=0
b—c=0
which is equivalent to the system
a=2+1 (2.1)
b=c
d=1
e=c+1
f=c+i
g=1J
h =2c+1i.

Now define O = {i : x; is odd} and £ = {i : x; is even} and let k = |O] so that |E] = n— k. Then
as explained in the proof of Theorem 1 we see that

i=k (2.2)
j=n—k

]

St

Substituting (2.2) into @ = 2¢ + ¢ from (2.1) we obtain

:io {%J - 2;(9 L%J k. (2.3)

But Z?;Ol 1% =Y ice | 5] + X ico | %] - Substituting this into (2.3) and simplifying proves
Corollary 1 If {zg,...,zn_1} 8 a T-cycle of positive integers and O = {i: z; is odd} and

E ={i:x; is even} then . s
Yz=X 5]
ic€ €0
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It should be noted that this formula can be proven directly from the known relationship

€€ €O

(obtained by noticing that {zg,...,xn_1} = {T (x0),..., T (xn—1)} so that > z; = > T (x;) and
thus > ce T+ D ico Ti = Dico 25+ 3, ce & which can be solved to obtain (2.4)). However,
the method used here reveals the results of the Corollary without specifically searching for those
results. Thus this method provides a general approach for discovering new mathematical results
by simply coding different algorithms for computing 7" (or any other computable integer function)
and solving a simple linear system.
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