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Abstract

We construct a non-trivial extension of the Collatz function to the
the 2-adic integers adjoined with i (where i = /—1). We show that
our extension is non-trivial in that not only is it not the cross product
of the original function with itself, but it is not even conjugate to it via
a Zy-module isomorphism (though they are topologically conjugate).
We then prove that most of the interesting properties of the original
function are preserved by the extension. Finally, we prove that the
extension is chaotic.

1 Introduction

The 3z + 1 problem, also known as the Collatz problem, is traditionally
credited to Lothar Collatz at the University of Hamburg in 1930’s. It is
a simple problem to state and it seems as though its solution should be
trivial. Yet, it has proved to be intractable thus far. Perhaps that is why
it is such a frustratingly addictive problem. Jeffrey C. Lagarius at AT&T
Bell Laboratories has written an excellent exposition containing the history
of the 3z + 1 problem and a survey of the literature on the subject [Lag].
The 3z + 1 problem has appeared in many forms over the years but is
most elegantly expressed in terms of iteration of the function 7' : Z* — Z*
by
% if n is odd

% if n is even.

T(n) = {



T is known as the Collatz function. The conjecture made by Collatz is that
for every positive integer n, T®)(n) = 1 for some k. Given recent claims
that Fermat’s conjecture has been resolved, one could make a strong case
that the Collatz conjecture is among the most famous open questions in all
of mathematics.

The function 7" can be extended in a natural manner to the 2-adic integers,
Zo, and this extension has proven to be quite fruitful. In this paper, we
further extend the domain of T" to Z,|i], hoping to increase our understanding
of the problem.

2 Summary of Main Results

In this section we provide an overview of our main results. A detailed discus-
sion of the definitions, theorems, and proofs can be found in the remainder
of the paper.

We construct an extension, 7', of the Collatz function, T : Zy — Zs to
the metric space (Zsli], D).

Definition 1 Let T : Z,[i] — Zs[i] by

e
Tla) =Yk ey
[

where [x] denotes the equivalence class of x in Zs[i]/2Zs]i].

Our main results separate naturally into roughly three areas.
First, T is an extension of the original function and is non-trivial in the
following sense:

Theorem A

(a) TfZs =T
(b) T is not conjugate to T x T via a Zy-module isomorphism.
(c) T is, however, topologically conjugate to T x T.



Second, T preserves the salient qualities of the original function. In partic-
ular there is a “parity vector function”, (), for T" which has been extremely
important in understanding the nature of the problem. We show that ().
can also be extended in an analogous manner. The original parity vector
function and the extended parity vector function share several important
properties (c.f. [Lag: Theorem B]). We simply state the results here, saving
the details for later in the paper.

Theorem B The extended parity vector function Q. is periodic with
period 2F. In addition, Qs 15 a measure preserving homeomorphism.

Finally, 7" and T' x T are both chaotic functions (in the sense of [Dev])
and thus it follows from part (c) of Theorem A that

Theorem C T is chaotic.

We have constructed T in the hope that by applying the tools of chaos,
complex analysis, and algebraic number theory the theorems presented above
might provide future researchers with further insight into the 3z + 1 problem
and others like it.

3 Background and Notation

In this section, we develop the notation and discuss the relevant background
material. Most of this material can be found in [Lag].

The sequence
0, T(n), T (n), TO(n), ..

is called the orbit of n.
Example 1 The orbit of3is3 —-5—-8—4—-2—-1—-2—->1—....

Another way to state the Collatz conjecture is that for all n € Z*, the
orbit of n enters the cycle

251—22—1—....



This statement of the 3z + 1 problem is also valid on the ring known as
the 2-adic integers, written Zy. The 2-adic integers consist of all infinite
sequences

505 81, 82, - - -

where
s; € {0,1} for all ¢ > 0.
For brevity, we shall often refer to a 2-adic integer as simply a “2-adic”.
Addition is defined on the 2-adic integers by taking

(o)

— i
ag, A1, A9, ... = Ezzoaﬂ

and applying the usual rules for manipulating formal power series. Formally:

ag, a1,0sg, ...+ by, b1,ba, ... =dy,dy,ds,. ..
where
d; — { 1 if (a;,b;,¢) € {(1,1,1),(1,0,0),(0,1,0),(0,0,1)}
0 otherwise
where

C: = { L if (ai—lybi—lv Ci—l) € {(17 17 1)7 (07 17 1)7 (17 07 1)7 (17 17 O)}
' 0 otherwise.

This is essentially the same algorithm as for the addition of integers in base
2 except that the 2-adic sequences are infinite and written from left to right.
Multiplication is defined in a similar manner. A few examples should make
this clear:

Example 2

101015 4 010105 = 1111,

101101115 + 10010100, = 01101001,
1_02 X 1162 = Tg

1104 x 015 = 011105.

Note that we omit the commas and add the subscript 2 (to distinguish
from base 10) when writing 2-adics. We also use an overbar to denote a
repeating pattern.



Having defined the ring structure on Z, we define the metric d : Zy X Zy —
R by

d(a,b) = |a — by
where || is known as the 2-adic valuation and is given by
2 g~ minfiai=l}  otherwise.

In other words, min{i : a; = 1} is the index of the position in the sequence
where the first 1 appears. So the more leading zeros in the 2-adic, the smaller
its valuation. In a sense, the valuation is a measure of the ‘magnitude’ of a
2-adic. Note that there are infinitely many 2-adics with any given positive
valuation. In terms of the metric, the more leading digits that two 2-adics
have in common, the closer they are.

Example 3
[105]> =1
‘O@Tg‘g :_%
d(102,00015) =1
d(]._Og, 101T2) == %

We partition the usual integers, Z, into even and odd by considering
equivalence in Z/27 = {[0], [1]}. Similarly, we define even and odd on Z, by
considering equivalence in Zy/2Zs = {[0], [1]}. Thus, we define a € Z to be
even if and only if @ = 0 mod 2 and odd if and only if @ = 1 mod 2, just as
in Z. Equivalently, a € Z, is even if the first digit of a is 0 and odd if the

first digit of a is 1.
Example 4 0110101, is even and 1110101, is odd.

Since even and odd are well defined for Zs, T' extends naturally to Z, and
will be referred to as such throughout the rest of this paper.

An interesting fact about Z, is that it contains Z as a subring. By asso-
ciating each positive integer with its base-2 expansion (written backwards)
and completing the sequence with a 0 we obtain the 2-adic representation of
that integer.

Example 5
3 == ].].62
6 = 0110,.



Notice that parity is preserved by conversion between 7Z and Zs.

Because 15 + 10, = 0, we can say that 1, = —1 and we can embed the
entire ring of integers using addition.

Another interesting fact is that the rationals with odd denominators, are
also a subring of Z,. It can be shown that an integer in Z, is invertible if
and only if it is odd. Hence if ¢ is a rational number and b is odd, then we
can associate ¢ with a2b2_1 in Zs.

Example 6 § = %2; = 1101,

Notice that we have obtained a repeating sequence. It is, in fact, a the-
orem that a 2-adic integer is rational if and only if it has an eventually
repeating sequence. The rationals with even denominators are not a subring
of Zs because 2 is not invertible in Zs. For clarity, we will frequently write
an integer or rational number in place of its 2-adic representation.

The extension of T to Z, has led to the development of many very useful
tools for studying the 3z + 1 problem. We shall define several of the more
useful of these tools here. A more extensive collection may be found in
Lagarius [Lag].

First, define the parity vector of length k for T' of a to be the sequence
given by the function Qy : Zy — Zy/2%7Z, by

Qr(a) = xo(a),z1(a), ..., xzx(a)

where
z;(n) = T (n) mod 2
and
z;(n) € {0,1}
for all 7« > 0.

Example 7 Since the orbit of3i1s3 —-5—-8—>4—>2—>1—2— ..., the
first ten digits of the parity vector of 3 are:

Q10(3) = 1100010101.



The parity vector, Q(a), completely describes the behavior of the first &
iterates of @ under T

(o (a) is defined in a similar manner and completely describes all iterates
of a under 7.

Q@ and () have several interesting properties: (), is periodic with period
2F and induces a permutation of Z,/2¥Z,, denoted Q,; Qs is a continuous
bijection. The proofs of these properties of (), and (), may be found in
[Lag]. Both have proven to be extremely useful in the study of the 3z + 1
problem. One approach to the 3x+1 problem where 7' is defined on Zy which
is explored by [FLW] uses the inverse of the @), function. Their approach
illustrates the power and usefulness of the (., function and the value of
extending the function 7" to larger domains.

With these examples in the literature of the usefulness of the extension
of T to the 2-adic integers in terms of new approaches to the 3x + 1 problem,
one naturally might ask if 7" could be extended to a larger set in a non-trivial
way which would yield new insight while preserving the important properties
of T. As a result, we investigate the 2-adic integers adjoined with ¢, written
Zslt]. We choose to extend to Zs|i] because many number theoretic problems
in Z have been solved by generalizing to the Gaussian integers Z[i]. It is our
hope that the same might happen here and that by working in Z,|[i] we might
understand the dynamics of a new, more general function, thus solving the
original problem for Z*. In keeping with this theme, we shall refer to Z,|i]
as the set of Gaussian 2-adic integers or simply, the Gaussian 2-adics.

4 The Gaussian 2-adics

We are now in a position to construct the metric space (Zs[i|, D). Let
Zoli) ={a+bi:abeZs}

and define the metric D : Zs|i] x Zs[i] — R by
D(a, 8) = D'((a,0), (¢, d))

where o = a + bi, 6 = ¢ + di and

D'((a,b), (¢,d)) = max{d(a,c),d(b,d)}



is the product metric on Z, x Z,. Hence Z,[i] and Z, X Z, are isometric.
For that reason, we are justified in freely associating a + bi € Z,[i] and
(a,b) € Zy X Zy for clarity. This relationship will be formalized later.
Addition and multiplication in Z,[i] are defined in the usual manner. It
is important to note that Z,[i] is a commutative ring with identity, but not
a field (the equation 2z = 1 has no solution x in Z,[i]). In addition, Z, is a
commutative subring of Z[i] with identity and is also not a field.

5 Extension to Z,|i]

Now we are ready to propose an extension of the Collatz function T to
Zsli]. Since T was piecewise defined depending on equivalence in Z/27Z,
our proposed extension is piecewise defined depending on equivalence in

Lot} /22 1) = {[0], [1], [4], [1 + 4] }.
Definition 1 Let T : Z,[i| — Z[i] by

L e
Tla) =9 st el
[

2 .
Satdbi if o e [1+41).

T'(a) is defined by dividing by 2 if a is equivalent to 0 and multiplying by 3,
adding a representative member of the equivalence class, and then dividing
by 2 otherwise. Notice that T'(a) is defined in a similar manner and in fact
resembles 7' x T to a great degree.

It is then natural to ask how T is different from T and T x T'; after all, we
claim that 7' is a non-trivial extension of 7. Our response may be surprising;
not only is 7 not equal to T x T, but T and T x T are not even conjugate
via a Zy-module isomorphism (though they are topologically conjugate, as
we shall see in a later section.)

We begin by noting that T restricted to Z, is the original Collatz function,
ie. T\Zg = T. This is because for any o € Zy we have o = a + 0i € [0] or

[1]. Hence,
- g if a € [0]
Ta) = { Sarlif o e [1

and therefore, T restricted to Z, is equal to T'.

8



It~is also clear that T is not the trivial extension T'x T : Loy X iy — iy X Loy,
ie. T#T xT. If a=(a,b) € Zy X Zy then

and it is easy to see that in the cases when o € [(1,0)] or o € [(0,1)], the
functions differ for most values of o = a + bi.

But what is more surprising is that 7" and T x T are not conjugate via a
Zo-module isomorphism. Consider that Zy X Z, is a Zy-module (a module is an
object which satisfies all of the axioms for a vector space with the exception
that the ring of scalars need not be a field) having basis {(1,0), (0,1)} and
thus dimension 2. A Zs-module isomorphism on Zs X 7o is an invertible
function A : Zy X Zo — 7o X 7o satisfying the following properties:

1. Ala+8) = A(a) + A(B),
2. A(ac) = aA(a)

for all a, § € Z,[i] and for all scalars a € Z, (here we are freely identifying
elements of Zs[i| and Zy X Zs in the natural manner). Essentially, a Zo-
module isomorphism is analogous to an invertible linear transformation where
the scalars are members of the ring Z, instead of a field. We say that two
functions F': Zy X Zg — 7y X Ty and G : Zy X 7Ly — 7o X Zsy are conjugate
via a Zo-module isomorphism if there exists a Zy-module isomorphism A :
Ziy X Loy — Ty X Ly such that F' = A~ o G o A. Because dim(Zy x Zy) = 2,
any such Zs-module isomorphism can be represented as a 2 x 2 matrix:

()
Y1 Y2
where x1, T, Y1, Y2 € Zo.
We must now formalize our association between elements of Z,[i] and
Zs X Zsy. Define a continuous bijection B : Zy[i] — Zo X Zy where

B(a + bi) = (a,b).

This provides us WiEh a way to convert betweeAn Zs]i] and Zy X Zy and also
allows us to define T' : Zy X Zoy — Zy X Zo by T = BoT o B!,

9



TheoremAl There is no Zo-module isomorphism A : Zo X Ly — Ty X 7
such that T = A1 oT x T o A.

Proof. Assume that such a Zs-module isomorphism A exists. Let e; =
(1,0) and e; = (0,1). Then Ae; = (xy,y;) and Aey = (3,y2) where z,
To, y; and y, are 2-adics and (a,b) € Zy X Zy. Then for all a,b € Zy X Z,,
AoT((a,b)) =T x T o A((a,b)). Let (a,b) € (1,0).

T x T(A((a,b))) = A(T((a,b)))
:>TXT<<332 yj)(g B A((3“21,37b 3a+1
= T x T((axy + bry, ay; +byp)) = o )
= T x T((axy + bxy, ayy + byz)) = (3az1+3bm2+m 3ay1+3by2+y1)

Thus, we have T’ x T((azy + bxy, ay; + by,)) = (Sexitsbeater Saut3bptu )
In order to evaluate 7' x T'((ax; + bxo,ay; + byy)), we must determine the
parity of ax; 4+ bxs and ay; + by,. Because b is even and a is odd, the parities
are completely determined by, and equivalent to, the parities of x; and y;.
This yields the following four cases:

(ewtbes aunthy) if x; is even, y; is even

<3a1:1+3b1:2+1 ay1+bys )
2 ? 2
<a131+b172 3ay14+3byo+1 )
2 ? 2
(3ax1+3bz2+1 3ay1+3by2+1)
2 ? 2

if x; is odd, y; is even
if x; is even, y; is odd
if x; is odd, y; is odd

T'xT((ar1+bxy, ay+bys)) =

From this it is easy to check that T'xT'((az,+bxs, ay,+by,)) = (Sazidbeate, Saut3uty,)

if and only if xy = 1 and y; = 1. Thus, A must be of the form <} §2> In
2

a similar manner, Let (a,b) € (0, 1)

T><T( ((a,0))) = A(T((a,b)))
T a 3b+1
=TxT < > < = A 3_7 bl
(o (%)
x4 T 24
= T x T((axy + bxg, ayy + byz)) = ' y;) 351
= T x T'((axy + brg, ay; + bys)) = (3am1+3bm+m2, 3%U1+32buz+w)

Now, we have (aztdbeatey Sen3bptin) — T x T((az; + bxy, ay; + bys)).
In this case, the parities of ax 4 bz, and ay; + by, are completely determined

10



by, and equivalent to, the parities of x5 and ¥y, respectively and again this
yields four cases:

aritbry ﬁ%bl) if x, is even, ¥, is even
3a1:1+3b1:2+1 ay1+by2)

if £y is odd, ¥, is even
if x9 is even, s is odd
if x5 is odd, ¥, is odd

(
TXT((ax1+bx2v ay1+by2)) Ea:z:l—‘rb.%z 3a1/1+3bu22+1)
(

3a1:1+3b1:2+1 3ay1+3by2+1 )
’ 2

This time we see that T'x T'((az1+bxs, ay;+by,)) = (dezitsbeates Soun bty )

if and only if 7, = 1 and y, = 1. This means A is <} }),but <} }) is

not invertible and thus not a Z,-module isomorphism.

Therefore by contradiction there is no Zs-module isomorphism between
Tand T x T.

QED

Corollary 1 T is not conjugate to T x T by a Zy-module isomorphism.

Proof. Since T is conjugate to T via the Zy-module isomorphism B, if T
was conjugate to T x T' via a Zy-module isomorphism, C, then CoB~! would
be a Zs-module isomorphism between 7" and 7' x T' contradicting Theorem
1.

QED

6 Extension of ), and ()

One of our main reasons for extending to Z,[i] was to add the tools associated
with Zs[i] to the current tools for studying the Collatz problem. With this
in mind, we redefine @ in terms of 7. This can be accomplished in a
natural manner by simply replacing the 7" in the definition of the parity
vector with 7' and extending the domain of Q) to include Z,[i]. Thus we
obtain Qy, : Zs[i] — Zs[i]/287Z,i] by

Qk(a) = To(a), Z1(a), To(), ... Tp(a)

11



where B
Zi(a) = TY(a) mod 2 for all i > 0.

and
T;(a) € {0,1,4,1 +3}.

Example 8 Since the orbit of 5+2i is 5+2i — 843t — 12451 — 18481 —
944i —144+6i > 7+3i — 11 +51 — 1748 — 26+ 12i — ..., the first
ten digits of the parity vector of 5+ 2¢ are:

Quo(5+2i) =1,4,i,0,1,0,1 +14,1+14,1,0

As with Qg, Qx completely describes the behavior of the first k iterates
of a under 7.

We also define Qu : Zs[i] — Zs[i] in a similar manner and note that, as
you would expect, Qo completely describes the behavior of all iterates of «
under 7.

Q; and Q, have properties similar to Q; and Q. as will be demonstrated
in the following theorems which mirror analogous theorems for Q; and )
found in [Lag]:

Theorem 2 The function Qy, : Zy[i] — Zs[i)/25Zs[i] is periodic with period
2k,

In order to show that Q is periodic, we begin by showing:
Lemma 1 T%(a 4+ w2*) = T*(a) +w mod 2, for any a,w € Zsi].

Proof. We will proceed by induction on k. Let a,w € Zs]i].
Base Case: (k=1)
In this case,

2 +w=T(a)+wmod 2 if o € [0]
=T 1]

fati 4 3w =T(a) +wmod2  if a € [i]

W+3wzf(a)+wmod2 ifaE[l-i-i].

% 3atl = .
T(a+w2) = =+ 3w =T(a) +w mod 2 if a €

General Case: Assume 7% (o + w2 1) = TF () +w mod 2 for all n
(inductive hypothesis).

12



Case 1: a € [0]. Then

T*(a + w2¥)

Case 2: a € [1]. Then

jjk—l a+w2’“) (since a € [0])
jjk—l %—i—ka_l)
%) + w mod 2 (by ind hyp)

THa +w2k) = T’f YT (o + w2k))
= TFY (o‘+”2k lafwz)il) (since a € [1])
_ Pk 1<3a+1 + 3w2k-1)
— Tk 1<3a+1 +w2k+w2k 1)
= TF1(322 4+ w2F) 4+ wmod 2 (by ind hyp)
= Tk 1(3””rl + w2*1) mod 2 (by ind hyp)
= Tk H(255) +w mod 2 (by ind hyp)
= Tk YT(a)) + w mod 2 (since a € [1])
= T"(a)+w mod 2

Case 3 (a € [i]) and Case 4 (« € [1 + i]) are very similar to this case.
T

Therefore, Tk(a + w2k) =
QED
It follows easily that 7,

T*(a) +w mod 2 for all £ by induction on k.

is also periodic in the same sense.

Corollary 2 For every a,w € Zs[i], T;(a + w2’) = Z;(o) + w mod 2 for all

0<j<oo.

Proof. Let a,w € Zsi

4

Ti(a+ w2?)

QED

. Then

Y:’j(a + w27) mod 2
T/(a) +wmod 2  (by Lemma 1)
Z;(a) + w mod 2.

From this we obtain Theorem 2.

13



Proof of Theorem 2. We shall proceed using induction on k.

Base Case :(k =1)

Ql(a + 2CLJ) = f1<04 + 2CLJ)
71 () (by Corollary 2)
= @i(a)

General Case: Assume Q;_; (o + w2 1) = Q,_1(c) (inductive hypoth-
esis).

Qo+ w2k) = {c_ o Tj(a 4 w2k)2i
= Y07 (a+ w2V 4+ 3 (a 4+ w2k) 2!
= Qk 1o+ w2) + Zp_q (o) 281 (by Corollary 2)
= Qk 1( ) + T ()21 (by ind hyp)

{c_ Ti(a)2 + T (a )2k-1
] 033](&)2]
= Qw(a)

QED

Theorem 3 ()., is a measure preserving homeomorphism.

Proof. We begin by showing that Q.. is continuous.
Let € > 0. Choose n so that 27" < € and choose ¢ = 27". For any «, 3 €
Lnli] if D(av — B) < 6 then a = # mod 2". This implies that Qu(c ) = Qn(0)

and, consequently, Qoo(@) = Qu(8) mod 2. Thus D(Que() — Quo(B)) <
27" < € and () is continuous.

We now show that Q. is one-to-one.

Let a, 3 € Zyli], @« # [B. Then there exists w € Z,[i] such that o =
B + w2k where k = min{j : a; # 5;}, @ = ag,4,..., B = 5o, bu,..., and
w is not equivalent to 0 mod 2. By Corollary 2, z;(o) = 7,;(f + w2’) =
z;(f) +w mod 2. Consequently, Z;(a) — Z;(#) = w mod 2. Since w is not

14



equlvalent to 0 mod 2, 7;(a) # 7;(3) and therefore by definition of Qoo
Qoo(®) # Qoo (B). Thus, Qoo is one-to-one.

Next we show that Q. is measure preserving. A map, f (X,d) — (X,d),
is said to be measure preserving if d(a,b) = d(f(a), f(b)).

Let «, 8 € Zy[i] where a@ = g,y ..., B = By, B1,.... Choose k so that
D(a,3) = 2%, Then a = B mod 2*. By Theorem 2, Qu(a) = Qu(3),
50 Quo(@) = Qoo(B) mod 2%, Thus, D(Qu (), Que(3)) < 27*. However,
because « is not equivalent to 8 mod 25!, o = B+ w2k for some w € Zyi),
where w is not equivalent to 0 mod 2. Hence, Tyy1(a) = Tpy1(8 + w2FH) =
T1(6) + w mod 2 by Corollary 2. However, because w is not equivalent to
0mod 2, T 1(a) # Fppr(B). Tt follows that Q. (a) is not equivalent to
Qoo () mod 281, Therefore, D(Qu (@), Quo(3)) = 27% and Qo is measure
preserving.

Finally, we show that Qo is onto.

Let a = ap, ay, . .. € Zoli], &, = ap, . .., a, 0 € Zsli], and Q) € Zs|i]/28Zs]i]
such that a € a;. We first note that Qk is onto as can be seen by induc-
tion on k using Corollary 2. There exists a [, such that Qk(ﬁ;) = .
Let 8, = [Bo,---,3,0. We can see that @m(ﬁ,g) = aj, mod 2F. Thus,
limy .00 D(Qus(B), ) = 0. Consequently, limy .o Qoo () = limy_oo af =
a. Now, because Q. is continuous, limy_,« @m(ﬁ,g) Qoo(limk_,oo Br) = a.
So all that remains is to show that limj .., ) exists as a Gaussian 2-adic.
Since the sequence {Qoo(ﬁk)} converges to a it is Cauchy. Because Q. is
measure preserving, the sequence {f;} in Z,[i] is also a Cauchy sequence.
Now, Zs[i] is a compact metric space so by the Tychonoff theorem every
Cauchy sequence in Z[i] has a limit in Zy[i]. Thus the sequence {3} con-
verges to some 3 € Zs[i] and Qu(8) = . Therefore Q. is onto.

ngl is continuous because Q., is an isometry and therefore Q. is a
measure preserving homeomorphism.
QED

Now that we have shown Qo is a continuous bijection, we shall see just
how powerful a tool it is in our exploration of the dynamics of 7.
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7 Chaos and the 3z +1 Problem

The field of dynamical systems can introduce a great number of tools to our
study of the 3z +1 problem. These include orbit analysis, symbolic dynamics
and, most importantly, topological conjugacy to other well understood maps
which can be studied more easily. We shall see in this section that not only
is T chaotic, but 7' x T and T are as well. In discussing chaoticity, we
will employ several definitions and theorems from Devaney [Dev] and use his
notation wherever possible.

A dynamical system is essentially “a process in motion” [Dev]|. Examples
of dynamical systems are the weather, currents in the ocean, and the mixing
patterns created by cream dribbled into hot coffee. Mathematically these can
be described by a metric space (X, d) and a continuous function F : (X, d) —
(X,d). We can construct abstract dynamical systems in this way.

Example 9 Define the metric space known as the sequence space (3,d)
where

E:{So, 81,892, ... ‘Sj S {O, 1}}

and the metric d' on X s

R
(s, )=, 5=l
21
Now define the shift map o : X — X by

0 (S0, S1, 82, - - .) =51, S2, S3, - - - -

This is a well defined and easily understood dynamical system (the behavior
of every seed is completely known).

Example 10 T : (Z,[i], D) — (Z,]i], D) is a dynamical system.

Devaney defines a periodic point to be a point that is a member of a cycle.
i.e. x is a periodic point for F if there exists n > 1 such that F(™ (z) = .

Example 11 101010 € X is a periodic point for o because

o®(101010) = 101010.
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A dynamical system F : (X,d) — (X,d) is defined to be transitive if
Yo,y € X,Ve > 0,3z € X such that d(z,2) < € and d(y, F®)(2)) < € for
some k > 0 [Dev]. Intuitively, F is transitive if given any two points we can
find an orbit that comes arbitrarily close to both.

Example 12 Let 5 € X where
§= (100001 10 11 000 001 010 100 110 101 011 111 0000 ... ).

In other words, 5 is the sequence of all possible sequences of length 1
followed by all possible sequences of length 2, then length 3, and so on. It is
easy to see that the orbit of 5 under o passes arbitrarily close to every point
m . So for any two points in X, the orbit of s passes arbitrarily close to
both. Thus o is a transitive dynamical system.

An orbit such as the orbit of § which passes arbitrarily close to all points
in a dynamical system is called a dense orbit. It is, in fact, a theorem that a
dynamical system is transitive if and only if it has a dense orbit [Dev].

Devaney defines a chaotic dynamical system to be any transitive dynam-
ical system with dense periodic points.

Example 13 o is a chaotic dynamical system. We have already shown that
o is transitive and it is easy to see that it has dense periodic points. Given
any s = §18283... € X and any € > 0, we can choose the periodic point
S05152 - -~ S, where k = man{i : 271 < €}. Then d'(505152--- 5, 8) < € and
hence o has dense periodic points.

It is shown in Devaney that chaoticity is preserved by topological conju-
gacy, so we can show that a function is chaotic if it is topologically conjugate
to a known chaotic map.

Two functions F': X — X and G : Y — Y are said to be topologically
conjugate if there exists a continuous bijection, h : X — Y, such that A=! is
continuous and h o F' = G o h. Such a map, h, is called a homeomorphism.

Theorem 4 T : Z, — 7o is chaotic.

Proof. We shall proceed by proving that 7' is topologically conjugate to
o : Y — Y. Note that X and Z, are homeomorphic topological spaces and
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equal as sets. Here we will use the homeomorphism @), between Z, and X..
We now must verify that Qo 0T = 0 0 Q.-
Let o € Zy. Then

(R o T)(a) = Qu(T(x))

zo(T (@), z1(T' (), z2(T' (), - ..
zy (@), zo(a), z3(a) . ..

o(zo(a), z1 (), zo(ax), .. .)
0(Qoo(@))

= (00Qx)(a)

So T'is conjugate to o and therefore chaotic.
QED

Corollary 3 T x T is chaotic

Proof. 1t follows directly that T' x T is chaotic via conjugacy to 3 x 3 by
(oo X Qs because the cross product of homeomorphisms is a homeomorphism
between the product spaces, where we take the topology on Y x X to be the
product topology.

QED

Certainly if T is chaotic any reasonable extension of T' should also be
chaotic. Accordingly, our next task is to prove that T is chaotic using Qoo

We would like to show that T is chaotic by showing that it is conjugate to
some known chaotic system. With this in mind we define o4 : (34, ds)— (24, ds)
and show that it is chaotic:

Let o4 :(X4,ds)—(24,ds) be the shift map on the sequence space with
four elements {0, 1,7,1+ 4} where

Or(s,t
dé((sm S1y .- ‘)7 (t(),tl, .- )) = E?:OM

and
k 1 otherwise.

Lemma 2 The function F': Xy — X X X by
F(s) = ((a1(s), az(s), as(s), . ..), (ba(s), b2(s), bs(s), . - ))
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where each , _
0 ifs;=0o0r:

ai(s):{l ifs;=1o0rl+1
and each ,
{O ifsi=0o0rl
1 ifsg=1o0rl+1.

s a homeomorphism.

Proof. 1t is clear that F'is a bijection. We now show that F'is continuous.

Let € > 0, § = 47% where k is chosen to make 2% < €, s = 59,51,... €
Yy, t = to,t1,... € By If ds(s,t) < 6 then s; = ¢; forall 0 < 5 < k.
Consequently, if we consider that F'(s) = (z,y) and F(t) = (z,w) for some
(x,y), (z,w) € ¥ x X where x = z¢,x1,... € X, ¥y = Yo,Y1,-.- € X, 2 =
20,21, € 28, and w = wg, wy, ... € ¥ then z; = z; and y; = w; for all 0 <
j < k by definition of ds. Thus, by definition of F', d,(F(s), F(t)) <27% < ¢
where d, is the product metric on ¥. So F' is continuous.

By letting € > 0 and choosing § = 27% where k is such that 4% < ¢, we
can apply a similar argument to show that F~! is continuous. Therefore, F'

is a homeomorphism.
QED

Corollary 4 o4 and o x o are conjugate via F.

Proof. Let s € ¥4, s = s9,51,.... Then

(Foog)(s) = F(oa(s))

F(s2,83,84,...)

((az(s), as(s), as(s),...), (ba(s), bs(s), ba(s), .. .))

o x o(((ai(s), az(s),az(s),...), (bi(s), ba(s), bs(s),...)))

o x o(F(s))
— (0 x00F)(s)

QED

We are now prepared to show that T is chaotic.

Theorem 5 T is chaotic.
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We see in Corollary 4 that oy is conjugate to o x o and therefore chaotic.
We now show that T is conjugate to o4 by the homeomorphism Q... The
argument is essentially the same as above: Let o € Zs[i]. Then

Qu(T(@) = @(T(a)),75(T(a)), T5(T(a)),. .
= By(a), T3(a), Ta(),

(2

(@

|
28

*(F1(0), Bal0), ), Fx(a0), ..
()

Therefore Qoo oT = 040 Qoo and T is chaotic.
QED

I
Q Q

4

It turns out that in proving the chaoticity of T, f, and 7" x T we have
defined some very useful conjugacies as we shall see in the next section.

8 Relationship between 7 and 7' x T

Though T and T x T are not equal, they are topologically conjugate. We
shall show this using the transitivity of topological conjugacy.

Theorem 6 T and T x T are topologically conjugate (via (Qoo X Qoo)™"
FoQy).

Proof. Since topological conjugacy is transitive,

T=0,=0 x o=T xT

implies that T=T x T where = denotes topological conjugacy.
QED

These theorems allow us to work in the system of our choice and then
convert the results to any other system using the homeomorphisms defined
above.
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