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Abstract

We construct a non-trivial extension of the 3x + 1 function to the
2-adic integers adjoined with i (where i = /—1). We show that our ex-
tension is non-trivial in that not only is it not the cross product of the
original function with itself, but it is not even conjugate to the cross
product via a Zs-module isomorphism (though they are topologically
conjugate). We then prove that most of the interesting properties of
the original function are preserved by the extension. Finally, we prove
that the extension is chaotic.

1 Introduction

The 3z + 1 problem is most elegantly expressed in terms of iteration of the
function 17" : ZT — Z* by
Bntl i, s

T(n) = { o= if nis odd

% if n is even.

The conjecture attributed to Collatz [Lag] is that for every positive integer
n, T®(n) = 1 for some k.

The function 7" can be extended in a natural manner to the 2-adic integers,
Zso, and this extension has proven to be quite fruitful. In this paper, we
further extend the domain of T" to Z,|i], hoping to increase our understanding
of the problem.



2 Summary of Main Results

In this section we provide an overview of our main results. A more detailed
discussion of the definitions, theorems, and proofs can be found in the re-
mainder of the paper.

We construct an extension, T, of the 3z + 1 function, T": Zy — Z to the
metric space (Zs[i], D).

Definition 1 Let T : Zy[i] — Zs[i] by

fh g
Tla) =Y sdi  4ra el
[

where [x] denotes the equivalence class of x in Zs[i]/2Zs]i].

Our main results separate naturally into roughly three areas.
First, T is an extension of the original function and is non-trivial in the
following sense:

Theorem A

(@) T|Z, =T
(b) T is not conjugate to T x T via a Zy-module isomorphism.
(c) T is, however, topologically conjugate to T x T.

Second, T preserves the salient qualities of the original function. In partic-
ular there is a “parity vector function”, (), for T" which has been extremely
important in understanding the nature of the problem. We show that ().
can also be extended in an analogous manner. The original parity vector
function and the extended parity vector function share several important
properties (c.f. [Lag: Theorem B]). We simply state the results here, saving
the details for later in the paper.

Theorem B The extended parity vector function Qr is periodic with
period 2F. In addition, Q. s an isometric homeomorphism.



Finally, T and T' x T are both chaotic functions (in the sense of [Dev])
and thus it follows from part (c) of Theorem A that

Theorem C T is chaotic.

We have constructed T in the hope that by applying the tools of chaos,
complex analysis, and algebraic number theory the theorems presented above
might provide future researchers with further insight into the 3z + 1 problem
and others like it.

3 Background and Notation

In this section, we develop our notation and discuss the relevant background
material. Jeffrey C. Lagarias has written an excellent exposition containing
the history of the 3x+ 1 problem and a survey of the literature on the subject
[Lag] and we use his notation whenever possible.

The sequence n, T(n), T® (n), T (n), ... is called the orbit of n under 7.
Another way to state the 3z + 1 conjecture is that for all n € Z™, the orbit of
n under T enters the cycle 2 -1 — 2 — 1 — .... Since T extends naturally
to the ring of 2-adic integers, Zo, the statement of the 3z + 1 problem is also
valid on Z,. For brevity, we shall often refer to a 2-adic integer as simply
a “2-adic”. Recall that an element, a, of Z, is just a formal power series of
the form ¥$°a;2" where a; € {0,1}. As is common, we will often abbreviate
this by writing the sequence of Os and 1s ag, aq, aq, . . ... Note that we add
the subscript 2 (to distinguish from base 10) when writing 2-adics and use
an overbar to denote a repeating pattern. Note that both Z and the set
of rationals with odd denominators are subrings of Zs and thus, for clarity,
we will frequently write an integer or rational number in place of its 2-adic

representation. For example, 10, denotes the 2-adic ¥3°,2% associated with
1
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Define the parity vector of length k for T of a [Lag] to be the sequence
given by the function Qy : Zy — Zy /27, by

Qr(a) = xo(a),z1(a), ..., x5 1(a)

where .
z;(n) = T (n) mod 2



and
z;(n) € {0,1}

for all ¢ > 0. The parity vector, Qx(a), completely describes the behavior of
the first k iterates of a under 7. Q. (a) is defined in a similar manner and
completely describes all iterates of a under 7.

Q@ and () have several interesting properties: (), is periodic with period
2F and induces a permutation of Zy/2%Z,, denoted Q,; Qo is a continuous
bijection. The proofs of these properties of (), and (), may be found in
[Lag]. Both have proven to be extremely useful in the study of the 3z + 1
problem.

In this paper we extend 7' to the 2-adic integers adjoined with i, Z[i].
We choose to extend to Zs[i] because many number theoretic problems in Z
have been solved by generalizing to the Gaussian integers Z[i|. In keeping
with this theme, we shall refer to Zs[i] as the set of Gaussian 2-adic integers
or simply, the Gaussian 2-adics.

By freely associating a + bi € Z,[i] with (a,b) € Zy x Zy we can define
the metric D on Z,li] to be the product metric on Zs X Zs induced by the
usual metric on Zs which is derived from the 2-adic valuation. Addition
and multiplication in Z,|i] are defined in the usual manner. It is important
to note that Z,[i] is a commutative ring with identity, but not a field. In
addition, Z, is a commutative subring of Z,[i| with identity and is also not
a field.

4 Extension to Zs|i]

Since T" was piecewise defined depending on equivalence in Z/2Z, our ex-
tension is piecewise defined depending on equivalence in Zy[i|/27Z5[i] =

{[0, (1], fdl, [1 + ]}

Definition 1 Let T : Zs[i| — Z[i] by

" ?a—i—l z;g 2 Fﬂ
Tla) =9 s o el
[



Notice that T resembles T x T to a great degree. It is then natural to ask
how T is different from T and T x T’; after all, we claim that T is a non-trivial
extension of 7. Our response may be surprising: not only is 7 not equal to
T xT,but T and T x T are not even conjugate via a Zy-module isomorphism
(though they are topologically conjugate, as we shall see in section 7.)

Notice that 7' is an extension of the T, i.e. T|Zy = T. It is also clear that
T is not the trivial extension T x T : Zy X Zy — Zy X Lo, e.g. T xT((1,2)) =
(2,1) while T(1 + 2i) = 2 + 3.

What is more surprising, though, is that 7 and T x T are not conjugate
via a Zs-module isomorphism. In order to show this, we must formalize
our association between elements of Z,[i| and Zy X Z,. Define a continuous
bijection B : Zs[i] — Za X Zs by B(a+bi) = (a,b). Let T : Doy X Ty — Ty X Do
by T =BoToB

TheoremAl There is no Zo-module isomorphism A : Zo X Ly — Ty X Zio
such that T = A1 oT x T o A.

Proof. Assume that such a Zs-module isomorphism A exists. Let e; =
(1,0) and e; = (0,1). Then Ae; = (x1,7:1) and Aes = (2,y2) where z,
To, y1 and ys are 2-adics and (a,b) € Zs X Zs. Then for all a,b € Zsy X Zs,
AoT((a,b)) =T x T o A((a,b)). Let (a,b) € (1,0).

T x T(A((a,b))) = A(T((a,b)))

=717 ) (F) = A )
Y Y2 b 3a+1
= T x T((axy + bxg, ayy + byz)) = o >

= T x T((az1 + bza, ays + b)) = (3‘”"1Jrs’l’”[’z’“’1 3”””31’”””1)

Thus, we have T’ x T((azy + bxy, ay; + by,)) = (Sexitsbeator Sayt3byptu )
In order to evaluate 7' x T'((ax; + bxo,ay; + byy)), we must determine the
parities of ax; 4+ bxrs and ay; + by;. Because b is even and a is odd, the
parities are completely determined by, and equivalent to, the parities of z;
and y;. This yields the following four cases:

(azl—i-bmz M/1—2i'b1/2) if x1 even, y; even

<3a1:1+3b1:2+1 au1+bu2)
TxT((ax1+bx2,ay1+by2)) = (aml—i-bmg 3a1/1+3b1/22+1)
(

if 1 odd, y; even

if x1 even, y; odd
3a1:1+3b1:2+1 3ay1+3by2+1) lf o) Odd, yl Odd
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From this it is easy to check that T' x T'((ax; + bxs,ay, + bys)) =
(Bowvtdbeote, Semt3burtul) if and only if 2; = 1 and y; = 1. Thus, A must be

of the form <1 2 )
Ly
Similarly, choosing (a,b) € (0,1) implies zo =y, = 1.

This means A = < bl >, but < 1 1 > is not invertible, which contradicts

11
our assumption.
QFED

Since T is conjugate to T via the Z,-module isomorphism B, we have:

Corollary 1 T is not conjugate to T x T via a Zy-module isomorphism.

5 Extension of ), and ()

One of our main reasons for extending to Z,[i] was to add the tools associated
with Z,[i] to the current tools for studying the 3z + 1 problem. With this in
mind, we redefine Qy, in terms of T. Let Qy, : Zy[i] — Zs[i] /2% Zs[i] by

Qk(a) = To(a), T1(a), Ta(@), . .. T_1 ()

where B
Zi(2) = TY(a) mod 2 for all i > 0

and
T;(a) € {0,1,4,1 + 13}

be the parity vector of length k for T of .

As with Qi, Qr completely describes the behavior of the first k iterates
of a under 7.

We also define Qo : Zs[i] — Z,[i] in a similar manner and note that, as
you would expect, @Oo completely describes the behavior of all iterates of a
under 7.

Q) and Q. have properties similar to Qj and Q. as will be demonstrated
in the following theorems which mirror analogous theorems for @, and )
found in [Lag]:



Theorem 2 The function Qk 2 Lo

Lemma 1 T%(a 4 w2*)

[i] — Zsi] /28 Zyi] is periodic with period

In order to show that Q is periodic, we begin by showing:

= T%(a) + w mod 2, for any a,w € Zyi].

Proof. We will proceed by induction on k. Let a,w € Zy]i].

Base Case: (k=1)
In this case,

2 +w=T(a)+wmod 2
ol 4 3w = T(a) 4+ w mod 2

T(a+w2) = : A
(a +w2) %_FngT(a)—i—medz

W—l—&uzf(a)—i—wmon

if a € [0]
if a € [1]
if a € [i]
if @ € [1+1)].

General Case: Assume 7% (o + w2 1) = TF () +w mod 2 for all n

(inductive hypothesis).

Case 1: a € [0]. Then
THa +w2b) = TFYT(a+ w2))

T
[y

~—_ N N /N /N
|

N
=
Q
+
&
=
o
2.
)

Case 2: a € [1]. Then

TH o+ w2k) = Tk !
-1

I'(a +kw2k))
a+w2 )

gas1” + w2k + w2k-1)

Tk—1

’ﬂ’ﬂﬂ

Tk—1(3a+1 +w2k 1) mod 2
Tk-1 3°‘+1)+wm0d2
T*(a) + w mod 2

(T
(MloteZ el
(s5=
Ik 1(30”rl + w2k) 4+ w mod 2
(S5=
(

Th1(atw2t) (since a € [0])

(by ind hyp)
(since a € [0])

(since a € [1])

(by ind hyp)
(by ind hyp)
(by ind hyp)
(since a € [1])

Case 3 (a € [1]) and Case 4 (a € [1 +i]) are very similar to this case.
Therefore, T*(a + w2*) = T*(a) + w mod 2 for all k by induction on k.

QED

It follows easily that ), is also periodic in the same sense.
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Corollary 2 For every a,w € Zs[i], T;(a + w2’) = Z;(o) + w mod 2 for all
0<j< oo

From this we obtain Theorem 2.
Proof of Theorem 2. We shall proceed using induction on k.

Base Case :(k =1)

Qi(a+2w) = To(a+2w)
Zo(ar) (by Corollary 2)
= Qi(a)

General Case: Assume Qg (o +w2F~1) = Qu_1(cv) (inductive hypoth-
esis).

Qo +w2k) = {C_ o Tj(a 4 w2k)27
Y50 T+ w22 + 7y (a0 + w2k) 2!
Qr_1(a +w2F) + 7y (a)28 1 (by Corollary 2)
Qr-1(a) + Ty ()2 (by ind hyp)
PR T()2 + T ()28
th 0 x](“)zj
= Qu(a)

QED

Theorem 3 ()., is an isometric homeomorphism.

Proof. We begin by showing that Q. is one-to-one.

Let a, 3 € Zsli], « # [B. Then there exists w € Zs[i] such that o =
B + w2k where k = min{j : a; # B;}, @ = ag,4,..., B = 5o, bu,..., and
w is not equivalent to 0 mod 2. By Corollary 2, Zy(a) = Z,(8 + w2k) =
T1(8) + w mod 2. Consequently, Zj(«) — Zx(8) = w mod 2. Since w is not
equlvalent to 0 mod 2, Z(a) # Tx(B) and therefore by definition of Qoos

Qoo(®) # Qoo (B). Thus, Qu is one-to-one.



Next we show that Q. preserves the metric (and is therefore continuous).

Let «, 8 € Zs[i] where @ = g, 1, ..., B = Bo, B1,.... Choose k so that
D(a,3) = 27F. Then a = B mod 2*. By Theorem 2, Qi(a) = Qu(3),
50 Quo(a) = Quo(f) mod 28, Thus, D(Qs(a), Qu(3)) < 27%. However,
because « is not equivalent to 3 mod 281 a = 3 + w2* for some w € Z,i,
where w is not equivalent to 0 mod 2. Hence, Z1,(a) = Zp(8+w2k) = 7,(8) +
w mod 2 by Corollary 2. However, because w is not equivalent to 0 mod 2,
Tr(a) # Zx(B). Tt follows that Qu(c) is not equivalent to Qo () mod 2F+1.
Therefore, D(Qus(c), Quo(3)) = 27F and so Qo preserves the metric.

Finally, we show that Q.. is onto.

Let @ = ag,ay,... € Zyli], o) = ap,...,,0 € Zy[i], and @, €
Zy[i] /25 Zy[i] such that « € a;,. We first note that Q) is onto as can be seen by
induction on k using Corollary 2. There exists a 3}, such that Qx(0}) = .
Let 8, = fo,...,0:,0. We can see that Qu(3,) = o} mod 2*. Thus,
limy,_o0 D(Qu(B), ) = 0. Consequently, limy_,o Qoo(B;) = limy_ o0 af, =
a. Now, because Q. is continuous, limy, ., Qm(ﬁ;) = Qoo (limy_ o0 B,) = a.
So all that remains is to show that lim; ., 3} exists as a Gaussian 2-adic.
Since the sequence {@oo (B).)} converges to « it is Cauchy. Because Qoo pre-
serves the metric, the sequence {3} in Zy[i] is also a Cauchy sequence. Now,
Zsli] is a compact metric space by the Tychonoff theorem, so every Cauchy
sequence in Zy[i] has a limit in Zy[i]. Thus the sequence {f,} converges to
some 3 € Zyi] and Qo () = . Therefore Q. is onto.

"’_1 . . ~ . . ~ .

(), is continuous because () is an isometry and therefore ()., is an
isometric homeomorphism.

QED

Now that we have shown Q. is a continuous bijection, we shall see just
how powerful a tool it is in our exploration of the dynamics of 7.

6 Chaos and the 3x + 1 Problem

Chaoticity in the sense of [Dev] is preserved by topological conjugacy, so we
can show that a function is chaotic if it is topologically conjugate to a known
chaotic map. Such a map is the shift map on the sequence space, o : ¥ — ¥,



where
Y= {So, S1,892,... ‘Sj S {O, 1}}

and
0 (S0, 1,82, ..) = S1,52,83, ...

() provides a conjugacy between T and . Thus we have shown:
Theorem 4 T : Zy — 7o is chaotic.

Since the product of chaotic maps is itself a chaotic map, we have:
Corollary 3 T x T is chaotic

Certainly if T' is chaotic, any reasonable extension of T" should also be
chaotic. We show that 7" is chaotic by showing that it is conjugate to some
known chaotic system. With this in mind we define o4 (34, ds)— (24, ds)
and show that o4 and o X o are conjugate via a homeomorphism, F'.

Let o4 :(X4,ds)—(24,ds) be the shift map on the sequence space with
four elements {0, 1,7,1+ 4} where

6k<57 t)
4k

ds((so0, 51, .), (to, t1,...)) = 272,

and
k 1 otherwise.

It can easily be shown that oy :(34, ds)— (24, ds) is chaotic.
Lemma 2 The function F': Xy — X X X by
F(s) = ((a1(s),aa(s),as(s),...), (bi(s), b2(s),bs(s),...))

where each , _
{ 0 ifs;=0o0r:

1 ifs;=1o0rl+1

and each ,
{O ifsi=0o0rl

1 ifs;=1o0rl+1.

s a homeomorphism.
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Proof. 1t is clear that F'is a bijection. We now show that F'is continuous.

Let € > 0, § = 47% where k is chosen to make 27% < €, s = 59, 51,... €
Yy, t = to,t1,... € By If ds(s,t) < 6 then s; = ¢; forall 0 < 5 < k.
Consequently, if we consider that F'(s) = (z,y) and F(t) = (z,w) for some
(x,y), (z,w) € ¥ x ¥ where x = z¢,x1,... € X, Yy = Yo, Y1,-.- € X, 2 =
20,21, € 28, and w = wy, wy, ... € ¥ then z; = z; and y; = w; for all 0 <
j < k by definition of ds. Thus, by definition of F', d,(F(s), F(t)) <27% < ¢
where d, is the product metric on ¥. So F' is continuous.

By letting € > 0 and choosing § = 27% where k is such that 4% < ¢, we
can apply a similar argument to show that F~! is continuous. Therefore, F'
is a homeomorphism.

QED

It easily follows that:

Corollary 4 o4 and o x o are conjugate via F.
Since T is conjugate to o4 via Qo We have:
Theorem 5 T is chaotic.

It turns out that in proving the chaoticity of T, T, and T x T we have
defined some very useful conjugacies as we shall see in the next section.

7 Relationship between T and T x T

Though T and T'x T are not conjugate via a Z,-module isomorphism, they are
topologically conjugate. Since topological conjugacy is transitive, T=c4=0 x
o=T x T where = denotes topological conjugacy and thus:

Theorem 6 T and T x T are topologically conjugate (via (Qoo X Qo) Lo
FoQy).
These theorems allow us to work in the system of our choice and then

convert the results to any other system using the homeomorphisms defined
above.
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