# STEENROD # A Maple Package for Computing with the Steenrod Algebra > # # by: Ken Monks # Department of Mathematics # University of Scranton # Scranton, PA 18510 # (717) 941-6101 # monks@scranton.edu # # MBasis routine by: # Vince Giambalvo # University of Connecticut # Storrs, CT 06269 # vince@math.uconn.edu # # Version 10.3 # [Last Revised - March 2007 - made the pretty printers global] # Source Code: > restart; > > Steenrod:=module() > > local MakeProc; > > global Sq,xi,T,Q,`print/T`,`print/&x`; > > export init,IsInAn,MBasis,`&rlex`,SqDickson,tri,V,v, > NULLSpace,ReduceToBasis,ExtendToBasis,FindPivotColumns, > Equal,Inverse,ZERO,id,delta,w,s1,s2,omega,nu,alpha, > Alpha,multinom,Parts,IntSolve,Top,Bottom,Nil,ChangeBasisMatrix, > AdmisAnBasis,AnBasis,Filtration,May,DEGREE,Excess, > K,ActOn,chi,Coproduct,`&^`,`&x`,`&xx`,`&*`,MilnorMult, > > DualMult,TensorMilnorMult,TensorDualMult,Gamma,Flip,BinaryChart, > Adem; > > init:=proc() > local MakeProc,Zero,One,ListAtoms; > global > Sq,xi,T,Q,`type/MilnorBasis`,`type/Milnor`,`type/Dual`,`type/P_s`, > `type/Inert`,`type/MonomialSqn`,`type/List`,`type/TensorDual`, > `type/TensorMilnor`,`type/AdmissibleBasis`,`type/Admissible`, > > `convert/List`,`convert/Dual`,`convert/P_s`,`convert/Admissible`, > `convert/Milnor`,`convert/Inert`,`print/T`,`print/&x`; > > print("Steenrod package: by Ken Monks, Version 10.3"): > print("MBasis routine by Vince Giambalvo"): > printf("\n"); > > Zero:=identical(0); > One:=identical(1); > `type/MilnorBasis`:={One,specfunc(nonnegint,Sq)}: > `type/Milnor`:={Zero,MilnorBasis,''`+`''(MilnorBasis)}: > > `type/Dual`:={Zero,One,xi[posint],''`*`''(Dual),''`+`''(Dual),Dual^pos > int}: > > `type/P_s`:={Zero,One,X[posint],''`*`''(P_s),''`+`''(P_s),P_s^posint}: > `type/Inert`:={Milnor,specfunc(Inert,`&x`),''`+`''(Inert)}: > > `type/MonomialSqn`:={Zero,One,''Sq''(posint),specfunc(MonomialSqn,`&x` > )}: > ListAtoms:={Zero,One,list(nonnegint)}; > > `type/List`:={ListAtoms,specfunc(ListAtoms,T),list(specfunc(ListAtoms, > T)),list(ListAtoms)}: > > `type/TensorDual`:={Dual,specfunc(TensorDual,T),''`+`''(TensorDual)}: > > `type/TensorMilnor`:={Milnor,specfunc(TensorMilnor,T),''`+`''(TensorMi > lnor)}: > `type/AdmissibleBasis`:=proc(a) > local i,A; > if not type(a,MonomialSqn) then RETURN(false) fi; > A:=[op(convert(a,List))]; > for i to nops(A)-1 do > if A[i]<2*A[i+1] then RETURN(false) fi; > od; > true; > end: > `type/Admissible`:={Zero,AdmissibleBasis,''`+`''(AdmissibleBasis)}: > > `convert/List`:=proc(a) > local m,ans,i,j; > > # don't convert Lists > if type(a,List) then RETURN(a) > > # convert sums to lists > elif type(a,`+`) then RETURN(map(`convert/List`,[op(a)])) > > # Monomials in Sq(n) > elif type(a,MonomialSqn) then > RETURN([seq(op(op(i,a)),i=1..nops(a))]); > > # Milnor > elif type(a,Milnor) then RETURN([op(a)]) > > # Dual or P_s > elif type(a,{Dual,P_s}) then > if nargs>1 then m:=max(args[2],max(op(map(op,indets(a))))) > else m:=max(op(map(op,indets(a)))) > fi; > ans:=array([seq(0,i=1..m)]); > if type(a,`*`) then > for i in a do > if type(i,`^`) then ans[op(op(1,i))]:=op(2,i) > elif type(i,indexed) then ans[op(i)]:=1 > fi; > od; > elif type(a,`^`) then ans[op(op(1,a))]:=op(2,a) > elif type(a,indexed) then ans[op(a)]:=1 > fi; > RETURN(convert(ans,list)); > elif type(a,{TensorMilnor,TensorDual}) then > RETURN(map(`convert/List`,a)); > fi; > args; > end: > > `convert/Dual`:=proc(a::{List,Dual}) > # don't convert Duals (this takes care of 0,1) > if type(a,Dual) then RETURN(a) > # handle nonsums > elif type(a,list(nonnegint)) then > RETURN(mul(xi[i]^a[i],i=1..nops(a))) > # if the List is a tensor of Lists > elif type(a,specfunc(List,T)) then RETURN(map(`convert/Dual`,a)) > # otherwise it's a list of Lists > else RETURN(convert(map(`convert/Dual`,a),`+`) mod 2) > fi; > end: > > `convert/P_s`:=proc(a::{List,P_s}) > # don't convert P_s > if type(a,P_s) then RETURN(a) > # handle nonsums > elif type(a,list(nonnegint)) then > RETURN(mul(X[i]^a[i],i=1..nops(a))) > # if the List is a tensor > elif type(a,specfunc(List,T)) then RETURN(map(`convert/P_s`,a)) > # otherwise it's a list(List) > else RETURN(convert(map(`convert/P_s`,a),`+`) mod 2) > fi; > end: > > `convert/Milnor`:=proc(a::{Milnor,List,Inert}) > # don't convert Milnors (handles 0,1 too) > if type(a,Milnor) then RETURN(a) > # do sums mod 2 (because of Inerts) > elif type(a,`+`) then RETURN(map(`convert/Milnor`,a) mod 2) > # do ordinary lists of nonnegint > elif type(a,list(nonnegint)) then RETURN(Sq(op(a))) > # Tensored Lists to TensorMilnor > elif type(a,specfunc(List,T)) then > RETURN(map(`convert/Milnor`,a)) > # list of Lists to Milnor > elif type(a,list(List)) then > RETURN(convert(map(`convert/Milnor`,a),`+`) mod 2) > # Inert to Milnor > elif type(a,Inert) then > RETURN(eval(subs( `&x`=`&*` , a)) mod 2) > fi; > end: > > `convert/Inert`:=proc(a::{List,Inert}) > # don't convert Inert > if type(a,Inert) then RETURN(a) > # do nonsums mod 2 > elif type(a,list(nonnegint)) then RETURN(&x(op(map(Sq,a)))) > # tensored lists > elif type(a,specfunc(List,T)) then RETURN(map(`convert/Inert`,a)) > # list(Lists) > elif type(a,list(List)) then > RETURN(convert(map(`convert/Inert`,a),`+`) mod 2) > fi; > end: > > > `convert/Admissible`:=proc(a::{List,Milnor,MonomialSqn,`'+'`(MonomialS > qn)}) > local t; > # don't convert Admissible's > if type(a,Admissible) then RETURN(a) > # do sums mod 2, of course > elif type(a,`+`) then RETURN(map(`convert/Admissible`,a) mod 2) > # use Adem relations for MonomialSqn > elif type(a,MonomialSqn) then RETURN(Adem(a)) > # Lists and Inerts to Milnor first > elif not type(a,Milnor) and type(a,{List,Inert}) then > RETURN(convert(convert(convert(a,Inert),Milnor),Admissible)); > # Milnors > elif type(a,Milnor) then > t:=Gamma(a); > RETURN(t+convert(a+convert(t,Milnor) mod 2,Admissible) mod 2) > fi; > end: > > `print/&x`:=proc() > local i,ans,s; > ans:=``; > for i to nargs do > s:=convert(args[i],string); > ans:=``||ans||s; > od; > ans; > end: > > `print/T`:=proc() > local i,ans,s; > if type([args],list(Dual)) then RETURN('T'(args))fi; > ans:=convert(args[1],string); > for i from 2 to nargs do > s:=convert(args[i],string); > ans:=``||ans||`@`||s; > od; > ans; > end: > > Sq:=proc() > local i; > if not type([args],list(integer)) then > ERROR(`invalid arguments`) > fi; > # convenient to say it is 0 if any index is negative > if not type([args],list(nonnegint)) then RETURN(0) fi; > for i from nargs by -1 to 1 while args[i]=0 do od; > if i=0 then RETURN(1) > else RETURN('procname'(args[1..i])) > fi; > end: > > xi[0]:=1: > > T := proc() > local i,j,ans,newargs,f; > > newargs:=[args]; > # T() = 0 > if nargs<1 then RETURN(0) fi; > # check argument types > if not type(newargs,list({TensorMilnor,TensorDual,List})) then > ERROR(`invalid arguments`) > fi; > # T(a) = a > if nargs=1 then RETURN(args) fi; > # zero=0 > if member(0,{args}) then RETURN(0) fi; > # associative > newargs:=map(proc(x) > if type(x,function) and op(0,x)=`T` then > op(x) > else > x > fi; > end, > newargs); > # multilinearity > for i to nops(newargs) while not type(newargs[i],`+`) do od; > if i<=nops(newargs) then > > f:=subs(a1=op(newargs[1..i-1]),a2=op(newargs[i+1..nops(newargs)]), > proc(x) > `T`(a1,x,a2) > end); > RETURN(map(f,newargs[i]) mod 2); > fi; > 'procname'(op(newargs)); > end: > > Q := proc(k,s) > if k=s then RETURN(1) fi: > if s<0 then RETURN(0) fi; > Q(k-1,s-1)^2+V(k)*Q(k-1,s); > end: > > end: # of init > > IsInAn:=proc(a::Milnor,n::nonnegint) > local i; > if type(a,`+`) then > for i in [op(a)] do > if not IsInAn(i,n) then RETURN(false) fi; > od; > else > for i from 1 to nops(a) do > if not op(i,a)<2^(n+2-i) then RETURN(false) fi; > od; > fi; > true; > end: > > `&rlex`:=proc(R::{MilnorBasis,List,MonomialSqn}, > S::{MilnorBasis,List,MonomialSqn}) > local m,n,i,r,s; > r:=R; s:=S; > if type(r,{MilnorBasis,MonomialSqn}) then r:=convert(r,List) fi; > if type(s,{MilnorBasis,MonomialSqn}) then s:=convert(s,List) fi; > if type(r,0) and not type(s,0) then RETURN(true) fi; > if type(r,1) and not type(s,{0,1}) then RETURN(true) fi; > m:=nops(r); n:=nops(s); > r:=[op(r)]; s:=[op(s)]; > if m if m=n then > for i from m by -1 to 1 while r[i]=s[i] do od; > if i>0 and r[i] fi; > false; > end: > > Gamma:=proc(a::Milnor) > local ans,i,dig; > if a=0 or a=1 then RETURN(a) > elif type(a,`+`) then ERROR(`can't handle sums yet`) > else > ans:=NULL; dig:=0; > for i from nops(a) by -1 to 1 do > dig:=op(i,a)+2*dig; > ans:=dig,ans; > od; > RETURN(convert([ans],Inert)); > fi; > end: > > Adem:=proc(a::{MonomialSqn,`+`(MonomialSqn)}) > local i,A,B,C,S; > options remember; > # don't change if already Admissible > if type(a,Admissible) then RETURN(a) > # do sums term by term > elif type(a,`+`) then RETURN(map(procname,a) mod 2) > # Monomials in Sq(n) > else > # find the first non admissible pair > for i to nops(a)-1 while op(1,op(i,a))>=2*op(1,op(i+1,a)) do > od; > A:=op(1,op(i,a)); B:=op(1,op(i+1,a)); > S:=add(multinom(B+C-A-1,A-2*C)*(Sq(A+B-C) &x Sq(C)), > C=max(A-B+1,0)..floor(A/2)) mod 2; > RETURN(Adem(eval(subsop(i=(S),i+1=NULL,a)) mod 2)); > fi; > end: > > Flip:=proc(a::{TensorMilnor,TensorDual}) > if type(a,{identical(0),identical(1)}) then RETURN(a) > elif type(a,TensorMilnor) then > RETURN(convert(convert(a,List),Dual)) > elif type(a,TensorDual) then > RETURN(convert(convert(a,List),Milnor)) > fi; > end: > > BinaryChart:=proc(R::MilnorBasis) > local i,j,m,r: > r:=[op(convert(R,List))]; > m:=nops(r); > for j from max(op(map(omega,r)))-1 by -1 to 0 do > for i to m do > if j printf(`%1d `,Alpha(j,r[i])) > else > printf(` `) > fi > od; > printf(`\n`); > od; > end: > > `&*`:=proc() > if type([args],list(TensorMilnor)) then > RETURN(TensorMilnorMult(args)) > elif type([args],list(TensorDual)) then > RETURN(TensorDualMult(args)) > else ERROR(`All arguments must have type TensorMilnor or > TensorDual`) > fi; > end: > > TensorMilnorMult:= proc(R::TensorMilnor,S::TensorMilnor) > local ans,n,i; > if type([args],list(Milnor)) then RETURN(MilnorMult(args)) fi; > if nargs>2 then > ans:=args[1] &* args[2]; > RETURN(procname(ans, args[3..nargs])) > fi; > # from here down there are only two args > if type(S,`+`) then > RETURN(map(unapply('TensorMilnorMult'(R,x),x),S) mod 2) > fi; > if type(R,`+`) then RETURN(map(TensorMilnorMult,R,S) mod 2) fi; > # check tensor lengths > if not type(R,specfunc(Milnor,T)) or > not type(S,specfunc(Milnor,T)) then > ERROR(`Invalid arguments`); > fi; > n:=nops(R); > for i from 1 to nargs do > if nops(args[i])<>n then > ERROR(`All Tensors must have the same dimension`) > fi; > od; > # Multiply them > T(op(zip((x,y)->x &* y,[op(R)],[op(S)]))); > end: > > TensorDualMult:= proc(R::TensorDual,S::TensorDual) > local ans,n,i; > > if type([args],list(Dual)) then RETURN(DualMult(args)) fi; > if nargs>2 then > ans:=args[1] &* args[2]; > RETURN(procname(ans, args[3..nargs])) > fi; > # from here down there are only two args > if type(S,`+`) then > RETURN(map(unapply('TensorDualMult'(R,x),x),S) mod 2) > fi; > if type(R,`+`) then RETURN(map(TensorDualMult,R,S) mod 2) fi; > # check tensor lengths > if not type(R,specfunc(Dual,T)) or not type(S,specfunc(Dual,T)) > then > ERROR(`Invalid arguments`); > fi; > n:=nops(R); > for i from 1 to nargs do > if nops(args[i])<>n then > ERROR(`All Tensors must have the same dimension`) > fi; > od; > # Multiply them > T(op(zip((x,y)->x * y,[op(R)],[op(S)]))); > end: > > DualMult:= proc() > expand(convert([args],`*`) mod 2) > end: > > MilnorMult:= proc(R::Milnor,S::Milnor) > local lr,ls,lm,M,x,y,i,j,k,n,T,FOUND,ans,SUM; > if nargs>2 then > ans:=args[1] &* args[2]; > RETURN(procname(ans, args[3..nargs])) > fi; > if type(S,`+`) then > RETURN(map(unapply('MilnorMult'(R,x),x),S) mod 2) > fi; > if type(R,`+`) then RETURN(map(MilnorMult,R,S) mod 2) fi; > if R=0 or S=0 then RETURN(0) fi; > if R=1 then RETURN(S) elif S=1 then RETURN(R) fi; > lr:=nops(R); ls:=nops(S); lm:=lr+ls; ans:=0; > # Initialize the matrix > M:=array(0..lr,0..ls,[seq([seq(0,i=0..ls)],j=0..lr)]); > for i to lr do M[i,0]:=op(i,R) od; > for i to ls do M[0,i]:=op(i,S) od; > # Main Computation Loop > FOUND:=true; > while FOUND do > # Check the matrix diagonals > for n to lm while > multinom(seq(M[n-i,i],i=max(n-lr,0)..min(ls,n)))=1 do > od; > # If matrix was good...compute T > if n>lm then > T:=array(1..lm,[seq(0,i=1..lm)]); > for n to lm do > T[n]:=add(M[n-j,j],j=max(n-lr,0)..min(ls,n)) > od; > # Truncate T and save it > for i from lm by -1 to 0 while T[i]=0 do od; > ans:=ans+Sq(seq(T[j],j=1..i)); > fi; > # Find the position to increment > FOUND:=false; > for x to lr while not FOUND do > SUM:=M[x,0]; > for y from 1 to ls while not FOUND do > # is there enough to the left of it to increment it > if SUM>=2^y then > # if all zeros are above it then it's no good > for k from 0 to x-1 while M[k,y]=0 do od; > if k # found a candidate > FOUND:=true; > # ...and make the new matrix > for i to x-1 do > M[i,0]:=op(i,R); > for j to ls do > M[0,j]:=M[0,j]+M[i,j]; > M[i,j]:=0; > od; > od; > for j to y-1 do > M[0,j]:=M[0,j]+M[x,j]; > M[x,j]:=0; > od; > M[0,y]:=M[0,y]-1; > M[x,y]:=M[x,y]+1; > M[x,0]:=SUM-2^y; > else > SUM:=SUM+M[x,y]*2^y; > fi; > else > SUM:=SUM+M[x,y]*2^y; > fi; > od; > od; > od; > ans mod 2; > end: > > `&^` := proc(a::{TensorMilnor,TensorDual},p::nonnegint) > options remember; > if p=0 then RETURN(1) > elif p=1 then RETURN(a) > else RETURN(`&*`(a,`&^`(a,p-1))); > fi; > end: > > `&x`:=proc() > local i,j,ans,newargs,f; > # this routine is almost exactly like tensor product, T... > newargs:=[args]; > if nargs<1 then > ERROR(`&x product must have at least one argument.`); > fi; > if nargs=1 then RETURN(args) fi; > # zero=0 > if member(0,newargs) then RETURN(0) fi; > # identity=1 > for i to nops(newargs) do > if type(newargs[i],1) then > > RETURN(&x(op(newargs[1..i-1]),op(newargs[i+1..nops(newargs)]))) > fi; > od; > # associative > newargs:=map(proc(x) > if type(x,function) and op(0,x)=`&x` then > op(x) > else > x > fi; > end, > newargs); > # multilinearity > for i to nops(newargs) while not type(newargs[i],`+`) do od; > if i<=nops(newargs) then > > f:=subs(a1=op(newargs[1..i-1]),a2=op(newargs[i+1..nops(newargs)]), > proc(x) > `&x`(a1,x,a2) > end); > RETURN(map(f,newargs[i]) mod 2); > fi; > 'procname'(op(newargs)); > end: > > `&xx` := proc(a::Inert,p::nonnegint) > if p=0 then RETURN(1) > elif p=1 then RETURN(a) > else RETURN(`&x`(a,`&xx`(a,p-1)) mod 2) > fi; > end: > > Coproduct:=proc(a::{Milnor,Dual}) > local i; > # 0 and 1 > if type(a,0) then RETURN(0) fi; > if type(a,1) then RETURN(T(1,1)) fi; > # Milnor first > if type(a,Milnor) then > if type(a,`+`) then RETURN(map(Coproduct,a) mod 2) > else > RETURN(convert([seq(T(Sq(op(i[1])),Sq(op(i[2])) ), > i=Parts([op(a)]))],`+`) ); > fi; > # now Dual > else > if type(a,`+`) then RETURN( expand(map(Coproduct,a)) mod 2) > elif type(a,`*`) then > RETURN( expand(`&*`( op( map(Coproduct,[op(a)]) ) ) ) mod > 2 ) > elif type(a,`^`) then > RETURN( expand(Coproduct(op(1,a)) &^ op(2,a)) mod 2 ) > elif type(a,xi[posint]) then > RETURN(add(T(xi[op(a)-i]^(2^i),xi[i]),i=0..op(a))) > fi; > fi; > 'procname(args)'; > end: > > chi := proc(a::{Milnor,Dual}) > local f,cp; > options remember; > # handle 0,1 first > if type(a,{0,1}) then RETURN(a) > # distribute sums and Dual products > elif type(a,{`+`,`*`}) then RETURN(expand(map(chi,a)) mod 2) > # Dual powers > elif type(a,`^`) then RETURN(expand(chi(op(1,a))^op(2,a)) mod 2) > # xi[n] > elif type(a,xi[posint]) then > RETURN(expand( add( xi[op(a)-i]^(2^i)*chi(xi[i]), > i=0..op(a)-1) ) mod 2) > # Milnors > elif type(a,Milnor) then > # make a function to convert T(a,b) to a &* chi(b) > f:=x-> op(1,x) &* chi(op(2,x)); > # the appropriate terms from the coproduct > cp:=Coproduct(a)-T(1,a); > if type(cp,`+`) then RETURN(map(f,cp) mod 2) > else RETURN(f(cp) mod 2) > fi; > fi; > 'procname(args)'; > end: > > ActOn:=proc(a::Milnor,p::P_s) > local m,P,i,cp,s,k; > > P:=expand(p) mod 2; > if type(P,`+`) then > RETURN(expand( map( unapply('ActOn'(a,x),x),P) ) mod 2) > fi; > if type(a,1) then RETURN(P) fi; > if type(a,`+`) then RETURN(expand(map(ActOn,a,P)) mod 2) fi; > # P is not a sum, so it is a monomial > if type(P,X[integer]) then > s:=op(1,P); > RETURN(multinom(1-Excess(a),op(a))*X[s]^(1+DEGREE(a))) > fi; > if type(P,`^`) then > k:=op(2,P); s:=op(1,op(1,P)); > RETURN(multinom(k-Excess(a),op(a))*X[s]^(k+DEGREE(a))) > fi; > if type(P,`*`) then > m:=nops(P); > cp:=Coproduct(a); > s:=seq(ActOn(op(1,i),op(1,P))*ActOn(op(2,i),P/op(1,P)),i=cp); > RETURN(expand(convert([s],`+`)) mod 2); > fi; > end: > > K := proc(R::Milnor,a::Inert) > local cp,s,i; > if type(R,`+`) then > ERROR(`Kristensen operators are only defined for Basis > elements.`) > fi; > if type(a,`+`) then RETURN(map(unapply('K'(R,x),x),a) mod 2) fi; > if type(R,0) then RETURN(0) fi; > if type(R,1) then RETURN(a) fi; > if type(a,specfunc(nonnegint,Sq)) then > if nops(R)>nops(a) then RETURN(0) > else RETURN(Sq(op(zip((x,y)->x-y,[op(a)],[op(R)],0)) ) ); > fi; > fi; > if type(a,specfunc(Milnor,`&x`)) then > cp:=map(Flip,[op(Coproduct(Flip(R)))]); > s:=seq(K(op(1,i),op(1,a)) &x > K(op(2,i),&x(op(2..nops(a),a))),i=cp); > RETURN(convert([s],`+`) mod 2); > fi; > 'procname(args)' > end: > > Excess:=proc(a::{Milnor,Inert}) > local f,s,i,t,ans; > > if type(a,0) then ERROR(`The excess of 0 is undefined`) fi; > # not the most efficient way to do inerts, but hey... > if not type(a,Milnor) then RETURN(Excess(convert(a,Milnor))) fi; > # Now Milnors > if type(a,`+`) then > if member(1,[op(a)]) then RETURN(0) fi; > min(op(map(unapply('convert([op(i)],`+`)',i),[op(a)]))) > else > convert([op(a)],`+`) > fi > end: > > DEGREE := proc(a::{TensorMilnor,TensorDual}) > local i,ans; > # sums > if type(a,`+`) then > ans:=map(DEGREE,{op(a)}); > if nops(ans)=1 then RETURN(op(ans)) else RETURN(ans) fi; > fi; > # 0,1 have degree 0 > if type(a,{0,1}) then RETURN(0) fi; > # a pure Milnor > if type(a,Milnor) then > RETURN(add((2^i-1)*op(i,a),i=1..nops(a))) > fi; > # a pure Dual - trick: convert to a Milnor via list first > if type(a,Dual) then > RETURN(DEGREE(convert(convert(a,List),Milnor))) > fi; > # a Tensored Milnor or Dual that's not Milnor or Dual > if type(a,{TensorMilnor,TensorDual}) then > RETURN(add(DEGREE(op(i,a)),i=1..nops(a))) > fi; > 'procname(args)' > end: > > May:=proc(a::Milnor) > local x,i,ans; > > if type(a,{0,1}) then RETURN(0) fi; > if type(a,`+`) then > RETURN(min(op(map(May,{op(a)})))); > else > RETURN(add(alpha(op(i,a))*i,i=1..nops(a))) > fi; > end: > > Filtration:=proc(R::Milnor) > local g,x,y; > g:=convert(Gamma(R),Milnor); > if g=R then > RETURN(0) > else > x:=g+R mod 2; > if type(x,`+`) then y:=[op(x)] > else y:=[x]; > fi; > RETURN(max(op(map(Filtration,y) ) )+1); > fi; > end: > > AnBasis:=proc(g::nonnegint) > local c,m,i,n; > if nargs=1 then n:=infinity > else n:=args[2] > fi; > if not type(n,{nonnegint,infinity}) then > ERROR(`Invalid value of n`); > fi; > if type(n,infinity) then > if g<2 then m:=1 > else m:=ceil(evalf(ln(g)/ln(2))) > fi; > c:=[seq(2^i-1,i=1..m)]; > RETURN(op(sort(map(x->Sq(op(x)),IntSolve(g,c)),`&rlex`))) > fi; > m:=n+1; > c:=[seq(2^i-1,i=1..m)]; > > op(sort(select(IsInAn,map(x->Sq(op(x)),IntSolve(g,c)),n),`&rlex`)); > end: > > AdmisAnBasis:=proc(g::nonnegint) > local n; > if nargs=1 then n:=infinity > else n:=args[2] > fi; > op(map(Gamma,[AnBasis(g,n)])); > end: > > macro(CBM=`ChangeBasisMatrix`); > > ChangeBasisMatrix:=proc(g::nonnegint) > local BA,BM,M,n,i,j,x,y,k; > > BA:=[AdmisAnBasis(g)]; > BM:=[AnBasis(g)]; > n:=nops(BA); > M:=matrix(n,n,0); > for i from 1 to n do > x:=BA[i]; > y:=convert(x,Milnor); > for j from 1 to n do > M[j,i]:=coeff(y,BM[j]); > od; > od; > eval(M); > end: > > Nil:=proc(a::Milnor,t::posint) > local n,s,st; > s:=a; st:=time(); > for n from 1 while s<>0 and time()-st if s<>0 then > printf(`%3d -- Gave up after %d minutes %d seconds\n`, > op(a), > iquo(trunc(time()-st),60), > irem(trunc(time()-st),60)); > else printf(`%3d --%3d\n`,op(a),n) > fi; > end: > > Bottom:=proc(A::array) op(1,op(2,eval(A))) end: > > Top:=proc(A::array) op(2,op(2,eval(A))) end: > > IntSolve:=proc(g::nonnegint,c::list(posint)) > local t,i,j,k,ans; > > t:=nops(c); > if t=1 then > if g mod c[1] = 0 then RETURN([g/c[1]]) > else RETURN([]); > fi; > else > ans:=NULL; > for i from 0 to iquo(g,c[1]) do > for j in IntSolve(g-i*c[1],c[2..t]) do > ans:=[i,op(j)],ans; > od; > od; > fi; > [ans]; > end: > > Parts:=proc(R) > local m,i,j,ans; > m:=nops(R); > if m=1 then RETURN([seq([[i],[R[1]-i]],i=0..R[1])]) > else > ans:=NULL; > for j in Parts(R[2..m]) do > ans:=ans,seq([[i,op(j[1])],[R[1]-i,op(j[2])]],i=0..R[1]); > od; > fi: > RETURN([ans]): > end: > > multinom:=proc() > local f,L,S; > L:=[args]; > if not type(L,list(integer)) then ERROR(`Invalid arguments`); fi; > # if any arguments are negative, then return zero > if not type(L, list(nonnegint)) then RETURN(0) fi; > f:=n->(n-(n mod 2))/2; > S:=convert(L,set); > if nops(S)=1 and op(1,S)=0 then RETURN(1) > elif convert(L mod 2,`+`) > 1 then RETURN(0) > else multinom(op(map(f,L))) > fi; > end: > > Alpha:=proc(i::integer,n::integer); > RETURN((n-(n mod 2^i))/2^i mod 2) > end: > > alpha:=proc(n::integer) > local n1; > options remember; > if n=0 then RETURN(0): > else > n1:=n mod 2: > n1+alpha((n-n1)/2): > fi: > end: > > nu:=proc(n::integer) > options remember; > > if n=0 then RETURN(0): > elif n mod 2 = 1 then RETURN(0): > else > nu(n/2)+1: > fi: > end: > > omega:=proc(n::integer) > if n=0 then RETURN(0) > elif type(n,odd) then RETURN(omega((n-1)/2)+1); > else RETURN(omega(n/2)+1); > fi; > end: > > s1:=proc(u) > options remember; > if type(u,even) then RETURN(0) > else RETURN(s1((u-1)/2)+1) > fi; > end: > > s2:=u->s1(u+2^s1(u)): > > w:=proc(R::list(integer)) > local i; > add(2^(i-1)*R[i],i=1..nops(R)); > end: > > delta:=proc(x,y) if x=y then 1 else 0 fi end: > > id:=proc(n) if n=0 then RETURN(NULL) else matrix(n,n,delta) fi end: > > ZERO:=proc(n,m) if n=0 or m=0 then RETURN(NULL) else matrix(n,m,0) fi > end: > > Equal:=proc(A,B) > local a1,a2,b1,b2,i; > > a1:=Bottom(A); a2:=Top(A); > b1:=Bottom(B); b2:=Top(B); > if a1<>b1 or a2<>b2 then RETURN(false) fi; > for i from a1 to a2 do > if A[i]<>B[i] then RETURN(false) fi; > od; > true; > end: > > Inverse:=proc(M) > local n,r,m; > > n:=linalg[rowdim](M); > Gaussjord(M,r) mod 2; m:=linalg[coldim](M); > if r<>n or m<>n then ERROR(`Matrix not invertible:`,eval(M)) fi; > linalg[submatrix](Gaussjord(linalg[augment](M,id(n))) mod > 2,1..n,n+1..2*n); > end: > > FindPivotColumns:=proc(B) > local i,j,m,n,ans; > > m:=linalg[rowdim](B); > n:=linalg[coldim](B); > ans:=[]; > for i from 1 to m do > for j from 1 to n while B[i,j]=0 do od; > if j<=n then ans:=[op(ans),j] fi; > od; > ans; > end: > > ExtendToBasis:=proc(B) > local m,A,L; > > m:=linalg[rowdim](B); > A:=linalg[augment](B,id(m)); > L:=FindPivotColumns(Gaussjord(A) mod 2); > linalg[submatrix](A,1..m,L); > end: > > ReduceToBasis:=proc(B) > local m,L; > m:=linalg[rowdim](B); > L:=FindPivotColumns(Gaussjord(B) mod 2); > if nops(L)=0 then RETURN(NULL) fi; > linalg[submatrix](B,1..m,L); > end: > > NULLSpace:=proc(B) > local A,L,CL,m,n,r,C1,C2,i,i1,i2,V; > > m:=linalg[rowdim](B); n:=linalg[coldim](B); > A:=Gaussjord(B,r) mod 2; # A is m x n > if n=r then RETURN(NULL) fi; > L:=FindPivotColumns(A); > CL:=sort(convert({seq(i,i=1..n)} minus convert(L,set),list)); > C1:=linalg[submatrix](A,1..m,CL); # C1 is m x n-r > C2:=id(n-r); # C2 is n-r x n-r of course > i1:=1; i2:=1; V:=array(1..n); > for i to n do > if member(i,L) then > V[i]:=linalg[subvector](C1,i1,1..n-r); i1:=i1+1; > else > V[i]:=linalg[subvector](C2,i2,1..n-r); i2:=i2+1; > fi; > od; > linalg[stackmatrix](seq(eval(V[i]),i=1..n)); > end: > > v:=proc(L) > local i,ans; > add(L[i]*X[i],i=1..nops(L))+X[nops(L)+1]; > end: > > V:=proc(k) > local ans,i,Z2,x; > > if k=1 then RETURN(X[1]) fi: > ans:=1; > Z2:=[0,1]; > x:=combinat[cartprod]([seq(Z2,i=1..k-1)]); > while not x[finished] do > i:=x[nextvalue](); > ans:=ans*v(i); > od; > ans; > end: > > tri:=proc(u,v) if v<2^s1(u) then true else false fi end: > > SqDickson:=proc(i,x,k) > local s,t,a,kset,r; > options remember; > if i=0 then x > elif type(x,`+`) then map(unapply(Sq(i,s),s),x) mod 2 > elif type(x,`*`) then > a:=0; > for t from 0 to i do > a:=a+Sq(i-t,op(1,x))*Sq(t,convert([op(2..nops(x),x)],`*`) > ); > od; > expand(a) mod 2; > elif type(x,`^`) then > a:=0; > for t from 0 to i do > a:=a+Sq(i-t,op(1,x))*Sq(t,op(1,x)^(op(2,x)-1)); > od; > expand(a) mod 2; > elif type(x,indexed) then > s:=op(1,x); > if i=2^k-2^s then RETURN(op(0,x)[s]^2) fi; > for r from 0 to s do > for t from s+1 to k do > if i=2^k-2^t+2^s-2^r then > RETURN(op(0,x)[t]*op(0,x)[r]) > fi; > od; > od; > 0 > else 'Sq'(i,x) > fi; > end: > > MBasis:= proc(r::integer, alims, exchk, ipow::integer, > initize::integer) > local t, i, j, k, toppow, lims, ans, pow, rr, qr, chk; > > description " MBasis(deg,n,ex) constructs the Milnor basis for the > Steenrod Algebra " > "in degree deg. If n is supplied, it constructs a basis for An. " > "If ex is supplied, it gives a basis for the elements of excess at > most ex." > " To specify ex without n, use MBasis(deg,infinity,ex)" ; > > if nargs < 5 then > t := ilog[2](r + 1); > pow := 2^t - 1; > if nargs < 3 then chk := infinity else chk := exchk; fi; > if nargs < 2 then > lims := infinity > else > lims := 2^(alims + 2 - t); > fi; > else > pow := ipow; > t := initize; > lims := alims; > chk:= exchk; > fi; > toppow := floor(lims) - 1; > rr := irem(r, pow,'qr'); > if (pow = 1) then > `if`(((rr = 0) and ((qr <= toppow) and (qr <= chk)) ), > RETURN([[qr]]), RETURN([])); > fi; > ans := []; > for i from min(qr, toppow) by -1 to 0 do > if (chk < i) then next; fi; > ans := [op(ans), op(map((a,b)->[op(a),b], > MBasis(r - i*pow, lims*2, chk - i, (pow - 1)/2, t - > 1),i))]; > od; > RETURN(ans); > end: > > end module: # Save to Personal Lib: > savelib('Steenrod'); > >