Affine - the IFS Generator

1998 (by Mark Volchek

Affine

The deterministic IFS generator

-- complete documentation --

updated for version Affine 1.5

Copyright (1998 Mark Volchek

Table of Contents

3

1. Introduction

1.1. A brief summary of IFS theory
3

1.2. Characteristic Features of Affine
3

2. Using Affine - The IFS Generator
4

2.1. The Main Menu
4

2.2. The Drawing Screen
5

2.3. Program Parameters
6

2.4. Editing Transformations in Matrix Form
7

2.5. Editing Transformations in Geometric Form
7

2.6. Choosing Preset Examples
8

2.7. Loading and Saving Data
9

3. Mathematical Calculations & Theorems used
9

3.1. The size of the attractor
9

3.2. Length of addresses
10

4. Future improvements
11

Introduction

1.1. A brief summary of IFS theory

An Iterated Function System (IFS) is a Hutchinson operator on Kk, namely it consists of a choice of Kn (the set of compact subsets of (n) and contraction mappings T0..Tn-1 on (n. Contraction mappings are functions that reduce the diameter of the initial set by a factor of s (0< s <1), which we call the contraction factor. If this Hutchinson operator is repeatedly applied to a compact set, in the limit it will render the unique attractor of the IFS. This attractor is independent of the set you start with, since any set will become a single point in the limit, as the number of times the transforms are applied goes to infinity.

Each point in the attractor can be assigned an address, which is not necessarily unique. This address is assigned by using the numbers of the transformations that yield the point as digits in a base n representation of the address. Given an address, the corresponding point can be found by using this formula:

, x (A

Every address has infinitely many digits, since each time the transformation is applied the diameter of the resulting set is reduced by s. This means that we can only reach a diameter of zero in the limit as the number of iterations goes to infinity. To approximate the attractor, a finite address length will suffice. (see Peitgen, chapter 6)

1.2. Characteristic Features of Affine

Most programs that plot IFS attractors use the random chaos method. By employing this technique, it is not ensured that we will ever hit every point on the screen that belongs in the attractor. Many points, on the other hand, will be plotted a large number of times.

Affine generates all addresses of a certain length systematically and plots the corresponding screen pixels, sizing the attractor to fit on the screen (see section 3). This ensures that all points will be hit in a finite amount of time. Affine also gives many options concerning the directions of address generation and the initial compact set (see 2.3). By choosing specific options you can even render your IFS as a parameterized curve.

By plotting certain addresses in a specific color, you can see which transformations render a certain part of the fractal. The effect of removing or altering single transformation can be explored almost real-time, by pressing designated keys while viewing the attractor.

These feature make Affine, not only a unique program, but a powerful tool for exploring IFS attractors, both mathematically and graphically.

2. Using Affine - The IFS Generator

2.1. The Main Menu

When the program is started, the main menu will appear. This screen gives you access to all program functions. There are three ways of choosing an option from this screen:

1) press the letter corresponding to the option

2) use the cursor keys to move the arrow to the left of list up and down and press -enter- to select the desired option

3) click on the bottom selection bar with the mouse pointer to select an option

The following are the keys that can be used in the main menu (most of them are listed next to the corresponding option):

‘d’
draw the IFS specified by the currently loaded transforms using the current parameters (these can be changed while drawing: see section 2.2)

‘p’
view and change parameters

‘m’
view and edit affine transformations in their matrix form

‘g’
view and edit affine transformations in their geometric form

‘e’
load preselected example transforms

‘s’
save current transform data and parameters (the program will not warn you if you are overwriting existing data!)

‘l’
load a set of transformations and parameters (you must know the name of the file beforehand, because this routine will not list any filenames)

esc
exit the program (you must confirm by pressing ‘y’)

enter
select the option currently marked by the arrow to the right of it

bckspc
reset all parameters to preset values

2.2. The Drawing Screen

This is the most important and exciting screen of the entire program. This is the place where the transformations come to life and become the IFS attractor, often rendering beautiful images of various fractals.

When you select this option, a few directions will appear at the bottom of the screen. Press any key to continue. Now an image of the IFS will appear on the screen. This image is often not the full size of the screen, because of the way the size of the figure is determined (see explanation in Section 3). To enlarge the image, press return. This will use the visible boundaries of the image as the edges of the new image.

To stop the drawing at any time, simply press esc. The computer will not respond to any other keys while it is plotting the fractal. Once the drawing had finished or has been stopped, the mouse pointer will appear. Now a you have a variety of options that can be selected by pressing the following keys: (for details about the function of each parameter see section 2.3)

enter redraw the image using current edges as boundaries

‘q’
toggle blinking fixed points on/off

‘y’
draw x and y axis with ticks at each unit

‘z’
rotates the color palette to create a nice effect

‘+’
increase manual address length by 1 (max address length is 20)

‘-‘
decrease manual address length by 1 (if set to the minimum value, the address length is determined by the computer)

‘<’
decrease the color depth of the image (min = -1)

‘>’
increase the color depth of the image (max = address length)

‘w’
change the starting figure

‘m’
change the order of points plotted

‘0’ to ‘9’ select a transformation (they are numbered from 0 to n-1)

Once a transformation has been selected it can edited by pressing the following keys:

(capital letters will decrease the values, instead of increasing them)

 ‘a’ - ‘f’
increase entries in the matrix of the transformation by a “matrix increment” (default=0.1)

‘r’, ‘s’
increase the scaling factor (r - horizontal, s - vertical) by a “matrix increment” (default=0.1)

‘t’, ‘p’
increase the rotation angle (t - horizontal, p - vertical) by a “degree increment” (default=15()

‘x’
toggle selected transformation on/off

note: by pressing the number equal to the current number of transforms, a new transformation is activated. Any number higher than n has no effect.

2.3. Program Parameters

Selecting this option will take you to a screen showing all parameters and their values.

The following is a table of these parameters, their min and max values and their function:

parameter
min
max
function

color depth
-1
20
determines how many address levels are taken into account when calculating the address

number of transforms
1
20
sets the number of transforms being used (setting this number too high, so that null transforms are included will slow down the drawing process)

delay factor
0
999
slows down the drawing of the image to allow the user to follow the plotting sequence (often useful with “plot by address”)

included transforms
string of ‘0’and ‘1’s

each digit represents a transform (digit one corresponds to transform 0); a 1 activates the transform, 0 toggles it off

method used
plot by address,
see fractal fast
“plot by address” will plot the points in the following order: 0000, 0001, 0002, 0010, 0011, 0012, 0020, 0021, 0022…

“see fractal fast” will plot the points in the following order: 0000, 1000, 2000, 0100, 1100, 2100, 0200, 1200, 2200…

starting with
one point, unit square,
Mr. Face,
Mr. Skeleton (small/big)
this option selects the starting figure; IFS theory states that when taking the address length to infinity all starting figures will converge to the same IFS, so that this option is only useful when using low manual address settings

detail factor
1
30000
this influences the automatic address calculation; it has no effect if the address length is set manually

address length
0
20
manually sets the address length used to plot the IFS
0 activates automatic setting of this length using the detail factor set above

matrix increments
0.001
1
sets the amount by which a, b, c, d, e, f, r and s are increased or decreased while in the drawing screen

degree increments
1
180
sets the amount by which t and p are increased or decreased while in the drawing screen

Section 3 describes some more details of how some of the above parameters are incorporated when the IFS is drawn.

2.4. Editing Transformations in Matrix Form

This option allows you to view and edit each affine transformation in its matrix form:

By pressing

‘a’ through ‘f’ you can enter a new value for that particular coefficient, ‘x’ will prompt you to enter a new value for all coefficients of that transformation.

‘Page-up’ and ‘page-down’ let you scroll through all the transforms from 0 to n-1.

‘Esc’ or ‘enter will put you back to the main menu.

This screen also displays the contraction factor and the fixed point for the current transformation. For the IFS to have an attractor, the contraction factor must be less than 1, but since contraction factors over 1 can give interesting pictures (though not IFS attractors), I decided not to limit this value. These are updated as soon as you alter any value.

2.5. Editing Transformations in Geometric Form

This option allows you to view and edit the geometric coefficients for each affine transformation.

‘r’ and ‘s’ are the horizontal and vertical scaling factors

‘t’ and ‘p’ are the horizontal and vertical rotation angles

‘e’ and ‘f’ are equal to e and f in the matrix form (horizontal and vertical translation factors)

The following graph illustrates the function of the geometric coefficient by showing the outcome of transforming the unit square using r, s, t, p, e and f.

By pressing

‘r’, ‘s’, ‘t’, ‘p’ you can enter a new value for that particular coefficient, ‘x’ will prompt you to enter a new value for all coefficients of that transformation.

‘Page-up’ and ‘page-down’ let you scroll through all the transforms from 0 to n-1.

‘Esc’ or ‘enter will put you back to the main menu.

This screen, just like the matrix edit screen, also displays the contraction factor and the fixed point for the current transformation.

2.6. Choosing Preset Examples

There are 8 preset examples built into Affine 1.5 standard version. These can be selected by entering the examples screen (‘e’ off the main menu) and then pressing the number key that corresponds to the example you wish to load.

The values in the following list are the matrix coefficients for the transforms.

1) Right Sierpinski Gasket (one of the classics)
T0: (0.5, 0, 0, 0.5, 0, 0), T1: (0.5, 0, 0, 0.5, 0.5, 0), T2: (0.5,0,0,0.5,0,0.5)

2) Columns (has similar transforms to example 1, only T1 and T2 are rotated by -90(and 90()
T0: (0.5, 0, 0, 0.5, 0, 0), T1: (0, -0.5, 0.5, 0, 1, 0), T2: (0, 0.5, -0.5, 0, 0, 1)

3) Snake (is a variation of columns where T1 is flipped)
T0: (0.5,0,0,0.5,0,0), T1: (0, -0.5, -0.5, 0, 0.5, 0), T2: (0, 0.5, -0.5, 0, 0, 0.5)

The next three examples are purely for the beauty of the subject:

4) Abstract
T0: (0.5, 0, 0.2, 0.5, 0, 0), T1: (0.2, 0.4, -0.4, 0, 0.3, 0.2),

T2: (-0.3, 0.2, -0.55, 0, 0, 0.2), T3: (0.3, 0.45, 0, 0.4, 0.2, 0.1)

5) Fireworks
T0: (0.2, 0.3, 0, -0.5, 0.2, 0), T1: (0, -0.2, 0.5, 0, 1, 0.1),

T2: (0.1, 0.5, -0.5, 0, 0, 0.6), T3: (0.3, 0, 0.4, 0.5, 0.8, 1.3)

6) Palmleaf
T0: (0.8, 0.6, 0, 0.5, 0.3, 0), T1: (0.5, -0.2, 0, 0.2, -1, 0.1),

T2: (0, 0.5, 0.5, 0.2, 0.4, 0.6), T3: (0.3, 0, 0.4, -0.5, 0.8, 1.3)

7) Koch Curve
T0: (0.8, 0.6, 0, 0.5, 0.3, 0), T1: (0.5, -0.2, 0, 0.2, -1, 0.1)

T2: (0, 0.5, 0.5, 0.2, 0.4, 0.6), T3: (0.3, 0, 0.4, -0.5, 0.8, 1.3)

8) Cantor Middle Thirds Set T0: (0.8, 0.6, 0, 0.5, 0.3, 0), T2: (0.5, -0.2, 0, 0.2, -1, 0.1),

T2: (0, 0.5, 0.5, 0.2, 0.4, 0.6), T3: (0.3, 0, 0.4, -0.5, 0.8, 1.3)

2.7. Loading and Saving Data

The loading and saving routines require the user to know the filename, since they will not list the files that exist in the directory. The ‘saving data’ routine will not (!) warn the user if he is about to overwrite an existing file.

The data files contain all the current transformations, stored in matrix form, and all current parameters at the time the file was created.

3. Mathematical Calculations & Theorems used

3.1. The size of the attractor

When drawing the image of the IFS attractor for the first time, we need to be sure that it will fit on the screen. Therefore we must find a rectangle that will certainly contain At. In subsequent renderings, the max and min points of the previous plot are used.

To compute an upper bound for the size of the image Affine uses the following theorem:

Any point in the attractor lies in the intersection of the closed balls of radius

 around the fixed points:

i.e. a closed ball with radius

 around any fixed point contains the entire attractor.

s .. max { s0 .. sn-1 }

r .. max { d(qi, qj) } (q .. fixed points)

The program uses this theorem to construct the smallest rectangle with a 4:3 ratio containing the entire attractor of the current IFS. This is not always the smallest possible rectangle, but it guarantees that At will be contained.

3.2. Length of addresses

This calculation is used when the manual address length is set to 0. It determines the length of addresses used when drawing the attractor (from here on referred to a). The lower this number the faster the image will be plotted, but the less detailed the image. We must consider that the number of points plotted is equal to the number of transforms to the ath power. This makes the length an important factor, since plotting points can take a long time.

The program picks the minimum a that will render one of the following inequalities true:

 (or

)

d … detail factor

n … number of transforms

x-min/max and y/min/max define the size of the IFS attractor and therefore the size of a screen pixel in world coordinates.

Note: 625 and 470 are used instead of 640 and 480 to ensure that the picture will fit on the screen, taking into account any rounding errors that may have occurred by taking finite addresses or by rounding numbers during the calculation.

This method does not ensure that every pixel that should be colored will really be hit by one of the addresses, if the starting figure is a single point. Even though points with the same address up to the ath must be closer than the size of a pixel, the shrunk copy of the initial set can still be contained in more than one pixel if it lies on the boundary between two or more pixels. If the unit square is used as the initial figure, this problem does not occur, because the entire parallelogram containing all points is drawn. This on the other hand can lead to too many points being plotted. By adjusting the detailfactor, the user can influence the length of the addresses and determine how much error he is willing to accept.

4. Future improvements

1) Improved saving and loading routines. But since this isn’t very exciting to work on, it might take a little while longer before this gets implemented.

2) Capability of drawing an IFS with condensation.

3) More built-in examples.

4) Quicker image rendering by employing “adaptive cut methods” (see Peitgen, section 6.5).

References:

· Crownover, Richard M.: Introduction to Fractals and Chaos. Jones and Bartlett Publishers: Boston 1995

· Peitgen, Heinz-Otto, Hartmut Juergens, Dietmar Saupe: Chaos and Fractals: New Frontiers of Science. Springer-Verlag, New York 1992

11

_953739704.doc
�������������

t

p

r

s

(e, f)

_954014402.unknown

_954015999.unknown

_954014177.unknown

_954014298.unknown

_953584287.unknown

_953733962.unknown

_953583152.unknown

