The $3 x+1$ Problem

(OR HOW TO ASSIGN INTRACTABLE OPEN QUESTIONS TO UNDERGRADUATES)

The Conjecture

"Mathematics is not yet ready for such problems" - Erdos

The $3 x+1$ Map

Definition The $3 x+1$ map:

$$
T(x)=\left\{\begin{array}{cl}
\frac{x}{2} & \text { if } x \text { is even } \\
\frac{3 x+1}{2} & \text { if } x \text { is odd }
\end{array}\right.
$$

Dynamical Systems Terminology

Orbit: Let X be a set, $f: X \rightarrow X$, and $x \in X$. The f-orbit of x is the infinite sequence

$$
x, f(x), f^{2}(x), f^{3}(x), \ldots
$$

where $f^{k}=f \circ f^{k-1}$ for all $k \geq 1$ and f^{0} is the identity map.

Cycle: If $f^{m}(x)=x$ for some $m>0$ we say $\left\{f^{k}(x): k \in \mathbb{N}\right\}$ is a cycle.

Eventually Cyclic: If $f^{n}(x)=f^{n}(x)$ for some m, n with $m \neq n$ we say the orbit is eventually cyclic.

Divergent: An orbit that is not eventually cyclic is said to be divergent.

Conjecture (L. Collatz circa 1932) The T-orbit of any positive integer contains 1.

Example Here are the T-orbits of the first 20 positive integers:
$\overline{1,2}$
$3,5,8,4,2, \overline{1,2}$

```
4,2,\overline{1,2}
5,8,4,2, \overline{1,2}
6,3,5,8,4,2, \overline{1,2}
7,11,17,26,13,20,10,5,8,4,2,\overline{1,2}
8,4,2,\overline{1,2}
9,14,7,11,17,26,13,20,10,5, 8, 4,2, \overline{1,2}
10,5,8,4,2, , ,2
11,17,26,13,20,10, 5, 8,4,2, \overline{1,2}
12,6,3,5,8,4,2,\overline{1,2}
13,20,10,5,8,4,2, \overline{1,2}
14,7,11,17,26,13,20,10,5,8,4,2, \overline{1,2}
15,23,35,53, 80, 40,20, 10, 5, 8, 4,2, 1,2
16,8,4,2,1,2
17,26,13,20,10,5,8,4,2, \overline{,2}
18,9,14,7,11,17,26,13,20,10,5, 8, 4, 2, \overline{1,2}
19,29,44,22,11,17,26,13,20,10,5,8,4,2, 1,2
20,10,5,8,4,2, \overline{,2}
```

Example The T-orbit of 27 is:
$27,41,62,31,47,71,107,161,242,121,182,91,137,206,103,155,233,350,175$, $263,395,593,890,445,668,334,167,251,377,566,283,425,638,319,479,719$, $1079,1619,2429,3644,1822,911,1367,2051,3077,4616,2308,1154,577,866,433$, $650,325,488,244,122,61,92,46,23,35,53,80,40,20,10,5,8,4,2,1$

More Well Known Open Problems

Conjecture Divergent Orbits Conjecture: No positive integer has a divergent T-orbit.

Conjecture Nontrivial Cycles Conjecture: The only T-cycle of positive integers is: $\{1,2\}$

Conjecture Finite Cycles Conjecture: The only T-cycles of integers are:

```
{1,2}
    {0}
    {-1}
    {-5,-7,-10}
    {-17,-25,-37,-55,-82,-41,-61,-91,-136,-68,-34}
```


Background

What DO we know?

Literature

- Jan 1985 Lagarias, The 3x+1 Problem and its Generalizations, MAA Monthly
- 1991 Wirsching, The Dynamical System Generated by the 3n+1 Function
- Aug 1999 - Eichstät, Germany

International Conference on the Collatz Problem and Related Topics

- Lagarias 3x+1 Problem Annotated Bibliography: 95 mathematical publications since 1985

Verification

- Eric Roosendaal: Verified for

$$
n \leq 184 \cdot 2^{50}=207,165,582,859,042,816
$$

- Crandall's Result: No nontrivial cycle can have less than 338,466, 909 elements!
- Conway: There are similar problems which are algorithmically undecidable!

Meanwhile at Scranton...

- 1991: Faculty Student Research Program (FSRP) formed at Scranton.
- Student Publications:
- C. Farruggia, M. Lawrence, B. Waterhouse; The Elimination of a Family of Periodic Parity Vectors in the $3 x+1$ Problem, Pi Mu Epsilon Journal, 10 (4), Spring (1996), 275-280 (1996 Richard V. Andree award winner)
- Fusaro, Marc, A Visual Representation of Sequence Space, Pi Mu Epsilon Journal, Pi Mu Epsilon Journal 10 (6), Spring 1997, 466-481 (1997 MAA EPADEL section student paper competition winner and 1997 Richard V. Andree award winner)
- Joseph, J.; A Chaotic Extension of the $3 x+1$ Function to $\mathbb{Z}_{2}[i]$, Fibonacci Quarterly, 36.4 (Aug 1998), 309-316 (1996 MAA EPADEL section student paper competition winner)
- Fraboni, M.;Conjugacy and the $3 x+1$ Conjecture (1998 MAA EPADEL section student paper competition winner)
- Kucinski, G.; Cycles for the $3 x+1$ Map on the Gaussian Integers, to appear, Pi Mu Epsilon Journal
- Yazinski, J.; Elimination of Φ-fixed point candidates (in preparation)
- Publications:
- Monks, K.; $3 x+1$ minus the + , Discrete Mathematics and Theoretical Computer Science, 5, no. 1, (2002), 47-54
- Monks, K. and Yazinski, J.; The Autoconjugacy of the $3 x+1$ Function, to appear in Discrete Math
- Monks, K.; A Category of Topological Spaces Classifying Acyclic Set Theoretic Dynamics, in preparation

Possible Approaches

1. Extend T to other domains
2. Simplify T 's iterations
3. Study T's cousins
4. Study T as its own cousin!
5. Study T 's distant cousins

Extending the Domain

The OddRats:

$$
\mathbb{Q}_{\text {odd }}=\left\{\frac{a}{b}: a, b \in \mathbb{Z}, \operatorname{gcd}(a, b)=1, \text { and } b \text { odd }\right\}
$$

i.e. it is the set of all rational number having an odd denominator in reduced fraction form.

The 2-adic integers:

$$
\mathbb{Z}_{2}=\left\{a_{0} a_{1} a_{2} \cdots(2): a_{i} \in\{0,1\}\right\}
$$

with + and \cdot defined by the ordinary algorithms for binary arithmetic, i.e. we interpret each element as the formal sum:

$$
a_{0} a_{1} a_{2} \ldots(2)=\sum_{i=0}^{\infty} a_{i} 2^{i}
$$

Some Basic Facts about the 2-adics:

- $\mathbb{Z} \hookrightarrow \mathbb{Q}_{\text {odd }} \hookrightarrow \mathbb{Z}_{2}$
- a 2-adic is an (ordinary) integer iff its digits end with $\overline{0}$ or $\overline{1}$
- a 2-adic is an oddrat iff its digits are eventually repeating
- $a_{0} a_{1} a_{2} \cdots(2)$ is even $\Leftrightarrow a_{0}=0$
- We can define a metric on \mathbb{Z}_{2} by $d(x, x)=0$ and $d\left(a_{0} a_{1} a_{2} \ldots(2), b_{0} b_{1} b_{2} \ldots(2)\right)=\frac{1}{2^{k}}$ where $k=\min \left\{j: a_{j} \neq 0\right\}$ if $a_{0} a_{1} a_{2} \ldots(2) \neq b_{0} b_{1} b_{2} \ldots$ (2)

Example

$$
\begin{aligned}
13 & =1011 \overline{0}_{(2)} \\
-1 & =\overline{1}_{(2)} \\
2 & =01 \overline{0}_{(2)} \\
2 / 5 & =01 \overline{0110}_{(2)}
\end{aligned}
$$

Simplifying the Iteration

$3 x+1$ minus the +

Results from: Monks, K.; $3 x+1$ minus the + , Discrete Mathematics and Theoretical Computer Science, 5, no. 1, (2002), 47-54

- Define $T_{0}(x)=x / 2$ and $T_{1}(x)=\frac{3 x+1}{2}$ so that

$$
T(x)=\left\{\begin{array}{lc}
T_{0}(x) & \text { if } x \underset{2}{\equiv 0} \\
& \text { if } x \equiv 1 \\
T_{1}(x) & 2
\end{array}\right.
$$

- T is messy to iterate...

$$
\begin{aligned}
& \quad T^{k}(n)=T_{v_{k-1}} \circ T_{v_{k-2}} \circ \cdots \circ T_{v_{0}}(n)=\frac{3^{m}}{2^{k}} n+\sum_{i=0}^{k-1} v_{i} \frac{3^{v_{i+1}+\cdots+v_{k-1}}}{2^{k-i}} \\
& \text { where } m=\sum_{i=0}^{k-1} v_{i}, v_{0}, \ldots v_{k-1} \in\{0,1\}, \text { and } v_{i} \equiv T_{2}^{i}(n)
\end{aligned}
$$

- Compare with...

$$
R_{v_{k-1}} \circ R_{v_{k-2}} \circ \cdots \circ R_{v_{0}}(n)=\frac{3^{m}}{2^{k}} n
$$

where $R_{0}(n)=\frac{1}{2} n$ and $R_{1}(n)=\frac{3}{2} n$.
Q : Is there some function of the form

$$
R(n)= \begin{cases}r_{0} n & \text { if } n \equiv 0 \\ r_{1} n & \text { if } n \equiv 1 \\ \vdots & \vdots \\ r_{d-1} n & \text { if } n \underset{d}{\equiv d-1}\end{cases}
$$

where $r_{1}, \ldots, r_{d-1} \in \mathbb{Q}$ and $d \geq 2$ such that knowledge of certain R-orbits would settle the $3 x+1$ problem?

Theorem There are infinitely many functions R of the form shown above having the property that the Collatz conjecture is true if and only if for all positive integers n the R-orbit of 2^{n} contains 2 .

In particular,

$$
R(n)=\left\{\begin{aligned}
\frac{1}{11} n & \text { if } 11 \mid n \\
\frac{136}{15} n & \text { if } 15 \mid n \text { and NOTA } \\
\frac{5}{17} n & \text { if } 17 \mid n \text { and NOTA } \\
\frac{4}{5} n & \text { if } 5 \mid n \text { and NOTA } \\
\frac{26}{21} n & \text { if } 21 \mid n \text { and NOTA } \\
\frac{7}{13} n & \text { if } 13 \mid n \text { and NOTA } \\
\frac{1}{7} n & \text { if } 7 \mid n \text { and NOTA } \\
\frac{33}{4} n & \text { if } 4 \mid n \text { and NOTA } \\
\frac{5}{2} n & \text { if } 2 \mid n \text { and NOTA } \\
7 n & \text { otherwise }
\end{aligned}\right.
$$

(where NOTA means "None of the Above" conditions hold) is one such function.

Corollary If $\left\{x_{0}, \ldots, x_{n-1}\right\}$ is a T-cycle of positive integers, $\mathcal{O}=\left\{i: x_{i}\right.$ is odd $\}$, $\mathcal{E}=\left\{i: x_{i}\right.$ is even $\}$, and $k=|\mathcal{O}|$ then

$$
\sum_{i \in \mathcal{E}}\left\lfloor\frac{x_{i}}{2}\right\rfloor=\sum_{i \in \mathcal{O}}\left\lfloor\frac{x_{i}}{2}\right\rfloor+k .
$$

Relatives of T and Conjugacies

Definition Maps $f: X \rightarrow X$ and $g: Y \rightarrow Y$ are conjugate with conjugacy h if and only if there exists a bijection h such that

commutes.
If, in addition, X, Y are topological spaces and h is a homeomorphism then we say that h is a topological conjugacy.

- Conjugacies preserve the dynamics of a map

Two Important Maps

Definition The shift map, $\sigma: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$, is defined by

$$
\sigma(x)= \begin{cases}\frac{x}{2} & \text { if } x \text { is even } \\ \frac{x-1}{2} & \text { if } x \text { is odd }\end{cases}
$$

Facts about the shift map:

- The effect of the shift map on a 2 -adic is to erase the first digit, i.e. it shifts all digits one place to the left

$$
\sigma\left(a_{0} a_{1} a_{2} \cdots(2)\right)=a_{1} a_{2} a_{3} \cdots \text { (2) }
$$

- The σ-orbit of x is cyclic (resp. eventually cyclic) iff the 2-adic digits of x are periodic (resp. eventually periodic)

Example The σ-orbit of $-\frac{11}{33}=\overline{11010}_{(2)}$ is a cycle of period five

$$
\overline{11010}_{(2)}, \overline{10101}_{(2)}, \overline{01011}_{(2)}, \overline{10110}_{(2)}, \overline{01101}_{(2)}, \overline{11010}_{(2)}, \ldots
$$

Definition (Lagarias) Define the parity vector map, $\Phi^{-1}: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$ by

$$
\Phi^{-1}(x)=v_{0} v_{1} v_{2} \cdots(2)
$$

where $v_{i} \in\{0,1\}$ and $v_{i} \equiv T^{i}(x)$ for all $i \in \mathbb{N}$, i.e. the digits of the parity vector of x are obtained by concatenating the mod 2 values of the T-orbit of x.

Example Since the T-orbit of 3 is

$$
3,5,8,4, \overline{2,1}
$$

the parity vector of 3 is

$$
\Phi^{-1}(3)=1100 \overline{01}_{(2)}=-\frac{23}{3}
$$

Facts about Φ^{-1}

- Φ^{-1} is a topological conjugacy between T and σ ! (Lagarias)
- Bernstein gave an explicit formula for the inverse map Φ, namely,

$$
\Phi\left(2^{d_{0}}+2^{d_{1}}+2^{d_{2}}+\cdots\right)=-\sum_{i} \frac{1}{3^{i+1}} 2^{d_{i}}
$$

whenever $0 \leq d_{0}<d_{1}<d_{2}<\cdots$ is a finite or infinite sequence of natural numbers.

- (Lagarias) Φ^{-1} and Φ are solenoidal, that is to say that to say that for all $a, b \in \mathbb{Z}_{2}$ and any $k \in \mathbb{Z}^{+}$

$$
a \underset{2^{k}}{\equiv} b \Leftrightarrow \Phi(a) \underset{2^{k}}{\equiv} \Phi(b)
$$

Even More Open Problems...

Conjecture (Lagarias) Periodicity Conjecture:

$$
\Phi^{-1}\left(\mathbb{Q}_{\text {odd }}\right) \subseteq \mathbb{Q}_{\text {odd }}
$$

- Bernstein and Lagarias: Periodicity Conjecture \Rightarrow Divergent Orbits Conjecture.

Conjecture (Bernstein-Lagarias)

Φ-Fixed Point Conjecture: The only odd fixed points of Φ are $\frac{1}{3}$ and -1 .

In Search of Interesting Conjugacies

Fraboni - Classification of Linear Conjugacies

Q: What other functions are there analogous to the shift map and parity vector map?

Definition A function $f_{a, b, c, d}: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$ is modular if it is of the form

$$
f_{a, b, c, d}(x)= \begin{cases}\frac{a x+b}{2} & \text { if } x \text { even } \\ \frac{c x+d}{2} & \text { if } x \text { odd }\end{cases}
$$

with $a, b, c, d \in \mathbb{Z}_{2}$.

Definition Let \mathcal{F} be the set of modular functions, $f_{a, b, c, d}$, such that a, c and d are odd and b is even.

Example $T=f_{1,0,3,1}$ and $\sigma=f_{1,0,1,-1}$ are both in \mathcal{F}

Theorem (Fraboni)

(1) A modular function f is conjugate to T if and only iff $\in \mathcal{F}$.
(2) Every element of \mathcal{F} is topologically conjugate to T.
(3) Every function that is conjugate to T by a linear map is in \mathcal{F}.

The Nontrivial Autoconjugacy of T

Results from: Monks, K. and Yazinski, J.; The Autoconjugacy of the $3 x+1$ Function, to appear in Discrete Math

- Hedlund (1969): $\operatorname{Aut}(\sigma)=\{i d, V\}$ where $V(x)=-1-x$ and $i d$ is the identity map
- $\quad V(x)$ is the 2-adic whose digits are the bit-complement of the digits of x

Example $V\left(\overline{11010}_{(2)}\right)=\overline{00101}_{(2)}$

Q: What is $\operatorname{Aut}(T)$?

- Notice

$$
\begin{array}{rlll}
\mathbb{Z}_{2} & \xrightarrow{T} & \mathbb{Z}_{2} \\
\Phi^{-1} \downarrow & & \downarrow \Phi^{-1} \\
\mathbb{Z}_{2} & \rightarrow & \mathbb{Z}_{2} \\
\mathrm{~V} \downarrow & & \\
\mathbb{Z}_{2} & & \downarrow \mathrm{~V} & \mathbb{Z}_{2} \\
\Phi \downarrow & & \downarrow \Phi \\
\mathbb{Z}_{2} & \rightarrow & \mathbb{Z}_{T}
\end{array}
$$

commutes.

Definition Define

$$
\Omega:=\Phi \circ V \circ \Phi^{-1}
$$

We call Ω the nontrivial autoconjugacy of T.
Answer:

$$
\operatorname{Aut}(T)=\{i d, \Omega\}
$$

Facts about Ω :

- $\Omega^{2}=i d$ and $\Omega \circ T=T \circ \Omega$
- Ω maps a 2-adic integer x to the unique 2-adic integer $\Omega(x)$ whose parity vector is the one's complement of the parity vector of x, i.e. all corresponding terms in the T-orbits of x and $\Omega(x)$ have opposite parity.

[^0]$$
-\frac{11}{3}, \overline{-5,-7,-10}
$$
and the T-orbit of $8 / 5$ is
$$
\frac{8}{5}, \frac{4}{5}, \frac{2}{5}, \frac{1}{5} .
$$

By uniqueness we conclude that $\Omega(-11 / 3)=8 / 5$.

Example Suppose we wish to compute $\Omega(3)$. The T-orbit of 3 is

$$
3,5,8,4, \overline{2,1}
$$

so that

$$
\Phi^{-1}(3)=1100 \overline{01}
$$

and its one's complement is

$$
V \circ \Phi^{-1}(3)=0011 \overline{10}
$$

By Bernstein's formula for Φ we obtain

$$
\Omega(3)=\Phi \circ V \circ \Phi^{-1}(3)=\Phi(0011 \overline{10})=-\frac{4}{9}
$$

whose T-orbit is

$$
-\frac{4}{9},-\frac{2}{9},-\frac{1}{9}, \frac{1}{3}, \overline{1,2} .
$$

Parity Neutral Collatz

Definition Let $\xi: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$ by

$$
\xi(x)= \begin{cases}\frac{x}{2} & \text { if } x \text { is even } \\ \Omega(x) & \text { if } x \text { is odd }\end{cases}
$$

for all $x \in \mathbb{Z}_{2}$.

Example

Definition Define \sim on \mathbb{Z}_{2} by

$$
x \sim y \Leftrightarrow(x=y \text { or } x=\Omega(y))
$$

$$
\text { for all } x, y \in \mathbb{Z}_{2}
$$

- \sim is an equivalence relation on \mathbb{Z}_{2}
- $\mathbb{Z}_{2} / \sim=\left\{\{x, \Omega(x)\}: x \in \mathbb{Z}_{2}\right.$ and x is odd $\}$

Example [3] $=[-4 / 9]=\{3,-4 / 9\}$

Definition $\Psi: \mathbb{Z}_{2} / \sim \rightarrow \mathbb{Z}_{2} / \sim$ by $\Psi([x])=[T(x)]$ for all $x \in \mathbb{Z}_{2}$.

Theorem The following are equivalent.
(a) The Collatz Conjecture.
(b) The ξ-orbit of any positive integer contains 1 .
(c) The Ψ-orbit of the class of any positive integer contains [1].

Example The T-orbit of 3 is

$$
3,5,8,4, \overline{2,1}
$$

while the ξ-orbit of 3 is

$$
3,-4 / 9,-2 / 9,-1 / 9,8,4, \overline{2,1}
$$

and the Ψ-orbit of $[3]$ is

$$
\left\{3,-\frac{4}{9}\right\},\left\{-\frac{2}{9}, 5\right\},\left\{-\frac{1}{9}, 8\right\},\left\{4, \frac{1}{3}\right\}, \overline{\{2,1\}}
$$

Application to Divergent Orbits

Conjecture Autoconjugacy Conjecture:

$$
\Omega\left(\mathbb{Q}_{\text {odd }}\right) \subseteq \mathbb{Q}_{\text {odd }}
$$

Theorem The following are equivalent.
(a) The Periodicity Conjecture.
(b) The Autoconjugacy Conjecture.
(c) No oddrat has a divergent T-orbit.

Furthermore, the statement $\Omega\left(\mathbb{Z}^{+}\right) \subseteq \mathbb{Q}_{\text {odd }}$ is equivalent to the Divergent Orbits Conjecture.

Application to Cycles

Definition T-cycle C is self conjugate if $\Omega(C)=C$.

Example $\{1,2\}$ is a self-conjugate T-cycle.

Theorem A T-cycle C is self conjugate if and only if C is the set of iterates of x where

$$
x=\Phi\left(\overline{v_{0} v_{1} \cdots v_{k} v_{0}^{*} v_{1}^{*} \cdots v_{k}^{*}}\right)
$$

for some $v_{0}, v_{1}, \ldots, v_{k} \in\{0,1\}$ (note $0^{*}=1$ and $1^{*}=0$)

Example To illustrate the theorem, start with any finite binary sequence, e.g. 11, and catenate its one's complement:

$$
111^{*} 1^{*}=1100 .
$$

Extend this to a periodic sequence, $\overline{1100}$, and compute $x=\Phi(\overline{1100})=5 / 7$. Then by the previous theorem the T-orbit of 5/7 is self conjugate. Indeed the T-orbit of $\frac{5}{7}$ is

$$
\frac{5}{7}, \frac{11}{7}, \frac{20}{7}, \frac{10}{7}
$$

and $\Omega(5 / 7)=20 / 7$.

Self Conjugate T-cycles with ten elements or less
$\{1,2\}$
$\left\{\frac{5}{7}, \frac{11}{7}, \frac{20}{7}, \frac{10}{7}\right\}$
$\left\{\frac{19}{37}, \frac{47}{37}, \frac{89}{37}, \frac{152}{37}, \frac{76}{37}, \frac{38}{37}\right\}$
$\left\{\frac{17}{25}, \frac{38}{25}, \frac{19}{25}, \frac{41}{25}, \frac{74}{25}, \frac{37}{25}, \frac{68}{25}, \frac{34}{25}\right\}$
$\left\{\frac{13}{35}, \frac{37}{35}, \frac{73}{35}, \frac{127}{35}, \frac{208}{35}, \frac{104}{35}, \frac{52}{35}, \frac{26}{35}\right\}$
$\left\{\frac{211}{781}, \frac{707}{781}, \frac{1451}{781}, \frac{2567}{781}, \frac{4241}{781}, \frac{6752}{781}, \frac{3376}{781}, \frac{1688}{781}, \frac{844}{781}, \frac{422}{781}\right\}$
$\left\{\frac{373}{781}, \frac{950}{781}, \frac{475}{781}, \frac{1103}{781}, \frac{2045}{781}, \frac{3458}{781}, \frac{1729}{781}, \frac{2984}{781}, \frac{1492}{781}, \frac{746}{781}\right\}$
$\left\{\frac{383}{781}, \frac{965}{781}, \frac{1838}{781}, \frac{919}{781}, \frac{1769}{781}, \frac{3044}{781}, \frac{1522}{781}, \frac{761}{781}, \frac{1532}{781}, \frac{766}{781}\right\}$

- One immediate consequence is that any self conjugate cycle must have an even number of elements.

Theorem If C is a self conjugate T-cycle then $C \subseteq \mathbb{Q}_{\text {oddd }}^{+}$, i.e. any self conjugate T-cycle contains only positive rational entries.

Q: Are there self conjugate cycles integer cycles other than $\{1,2\}$?
Theorem For any self conjugate T-cycle C

$$
0<\min (C) \leq 1<\max (C)
$$

Hence, the only self conjugate T-cycle of integers is $\{1,2\}$.

Proofs

Definition Let $\kappa_{n}(x)$ be the number of ones in the first n digits of the parity vector of x.

Facts about $\kappa_{n}(x)$

- $\kappa_{n}(x)+\kappa_{n}(\Omega(x))=n$
- Dividing by n,

$$
\frac{\kappa_{n}(x)}{n}+\frac{\kappa_{n}(\Omega(x))}{n}=1
$$

Theorem Let $x \in \mathbb{Z}_{2}$. Then

$$
\underline{\lim } \frac{\kappa_{n}(x)}{n}+\overline{\lim } \frac{\kappa_{n}(\Omega(x))}{n}=1 .
$$

The following theorem is a generalization of results of Lagarias and Eliahou.

Theorem Let $x \in \mathbb{Q}_{\text {odd }}$.

(a) If the orbit of x is eventually cyclic then $\lim _{n \rightarrow \infty} \frac{\kappa_{n}(x)}{n}$ exists and

$$
\frac{\ln 2}{\ln \left(3+\frac{1}{m}\right)} \leq \lim _{n \rightarrow \infty} \frac{\kappa_{n}(x)}{n} \leq \frac{\ln 2}{\ln \left(3+\frac{1}{M}\right)}
$$

where m, M are the least and greatest cyclic elements in $\mathcal{O}(x)$.
(b) If the orbit of x is divergent then

$$
\frac{\ln 2}{\ln 3} \leq \lim \frac{\kappa_{n}(x)}{n}
$$

Distant Cousins - Changing Categories

Results from: Monks, K.; A Category of Topological Spaces Classifying Acyclic Set Theoretic Dynamics, in preparation

Definition A set theoretic discrete dynamical system is a pair (X, f) where X is a set and $f: X \rightarrow X$.

Definition Let $f: X \rightarrow X$ and $g: Y \rightarrow Y$. Then $h: X \rightarrow Y$ is a semi-conjugacy if and only if

$$
\begin{array}{ccc}
X \xrightarrow{f} & X \\
h \downarrow & & \downarrow h \\
Y \underset{g}{\rightarrow} & Y
\end{array}
$$

commutes.

Definition Let $f: X \rightarrow X$. Define

$$
\tau_{f}=\{A \subseteq X: f(A) \subseteq A\}
$$

Theorem τ_{f} is a topology on X.

Remark We call τ_{f} the topology induced by f.

Theorem Semiconjugacies are continuous with respect to the induced topologies. Conjugacies are homeomorphisms.

Theorem The Collatz conjecture is true if and only if the topological space $\left(\mathbb{Z}^{+}, \tau_{T}\right)$ is connected.

Yazinski - Work on the Φ-fixed point conjecture

Theorem Let $b \in \mathbb{Z}_{(2)}, a, t \in \mathbb{N}$ with $2^{t}>a$, and m the number of ones in the binary digits of a. Then

$$
\Phi\left(a+b 2^{t}\right)=\Phi(a)+\frac{\Phi(b)}{3^{m}} 2^{t}
$$

- $3^{2^{i} k} \equiv 1$ for all $i \geq 1$, so for $m=2^{i} k$ with $i \geq 1$ we have

$$
\Phi\left(a+b 2^{t}\right) \underset{2^{t+i+2}}{\equiv} \Phi(a)+\Phi(b) 2^{t}
$$

Corollary There is no Φ-fixed point of the form

$$
\overbrace{11 \cdots 11}^{2 k+1 \text { ones }} 0 \ldots(2)
$$

or

$$
\overbrace{11010 \cdots 101011}^{2 k+1 \text { ones }} 0 \ldots \text { (2) }
$$

where $k \in \mathbb{Z}^{+}$.

In Search of the "Collatz Fractal"

Joseph's Extension

- Extension to $\mathbb{Z}_{2}[i]$
- Even and odd correspond to equivalence classes in $\mathbb{Z} / 2 \mathbb{Z}$.
- $\mathbb{Z}_{2}[i] / 2 \mathbb{Z}_{2}[i]=\{[0],[1],[i],[1+i]\}$

Definition Let

$$
\widetilde{T}: \mathbb{Z}_{2}[i] \rightarrow \mathbb{Z}_{2}[i]
$$

by

$$
\widetilde{T}(x)=\left\{\begin{array}{cl}
\frac{x}{2} & \text { if } x \in[0] \\
\frac{3 x+1}{2} & \text { if } x \in[1] \\
\frac{3 x+i}{2} & \text { if } x \in[i] \\
\frac{3 x+1+i}{2} & \text { if } x \in[1+i]
\end{array}\right.
$$

Kucinski - Cycles in $\widetilde{T} \mathbb{Z}[i]$

Theorem (Kucinski) $\widetilde{T} \mid \mathbb{Z} i]$ has exactly 77 distinct cycles of period less than or equal to 400 distributed as follows:

Period	Number T\|Z్Z Cycles	Number $\widetilde{T} \mid \mathbb{Z} i]$ Cycles
1	2	4
2	1	3
3	1	9
5	0	2
8	0	10
11	1	5
19	0	30
46	0	2
84	0	10
103	0	2

Conjecture Further computations will make it more plausible that we should make a finite cycles conjecture for \widetilde{T}.

- Wanted: a continuous (preferably entire) function that interpolates $T \mid \mathbb{Q}_{\text {odd }}$ or $\widetilde{T} \mid \mathbb{Q}_{\text {odd }}[i]$
- No way!
- M. Chamberland:

$$
f(x)=\frac{x}{2} \cos ^{2}\left(\frac{\pi}{2} x\right)+\frac{3 x+1}{2} \sin ^{2}\left(\frac{\pi}{2} x\right)
$$

is entire and extends $T \mid \mathbb{Z}$.

An analytic extension of $\widetilde{T} \mathbb{Z}[i]$

Definition: Let $\left\{a_{0}, a_{1}, a_{2}, \ldots\right\}=\mathbb{Z}[i]$ be the enumeration of the points of $\mathbb{Z}[i]$ as shown:

Theorem (Joseph, Monks) Let $F: \mathbb{C} \rightarrow \mathbb{C}$ by

$$
\begin{aligned}
f_{0}(z) & =0, \text { and for } n>0 \\
f_{n}(z) & =\pi_{n}(z)\left(\frac{z}{a_{n}}\right)^{m_{n}}\left(\widetilde{T}^{n}\left(a_{n}\right)-\sum_{k=0}^{n-1} f_{k}\left(a_{n}\right)\right), \\
\pi_{n}(z) & =\prod_{k=1}^{n} \frac{\left(z-a_{k}\right)}{\left(a_{n}-a_{k}\right)}, \\
p_{n} & =\left|\frac{\sqrt{n}+1}{2}\right|, \\
K_{n} & =\left|\widetilde{T}^{n}\left(a_{n}\right)-\sum_{k=0}^{n-1} f_{k}\left(a_{n}\right)\right|, \\
m_{n} & =\left\lceil\log _{2}\left((1+2 \sqrt{2})^{n-1} p_{n}^{n-1}\right) K_{n}\right\rceil \\
F(z) & =\sum_{n=0}^{\infty} f_{n}(z)
\end{aligned}
$$

F is an entire function which extends $\widetilde{T} \mid \mathbb{Z}[i]$.
Remark Not quite the kind of formula you want to use to make a fractal!

A Collatz Julia set

Using Chamberland's map we get the following Julia set:

$$
\begin{array}{lllll}
-3.3 & -3.2 & -3.1 & -3 & -2.9
\end{array}
$$

[^0]: Example The T-orbit of -11/3 is

