Instructors who would like to create their own Lurch course materials using the rule libraries and content from my Math 299 course can find supporting materials here. NOTE: some of this is under construction.
Cumulative Topics – each link one opens a blank Lurch document whose context consists of the rules for that topic, and those from the topics above it.
and, or, not, implies, iff, and contradiction (view rules)forall $\left(\forall\right)$, exists $\left(\exists\right)$, equality $\left(=\right)$, unique existence $\left(\exists!\right)$ (view rules)less than $\left(\lt\right)$, divides $\left(\mid\right)$, prime, even, odd (view rules)summation $\left(\sum\right)$, Fibonnaci numbers $\left(F_n\right)$, factorial $\left(!\right)$, multinomial coefficients $\binom{n}{k}$, binomial coefficients, exponentiation $\left(z^n\right)$ (view rules)in $\left(\in\right)$, subset $\left(\subseteq\right)$, intersection $\left(\cap\right)$, union $\left(\cup\right)$, complement $\left(‘\right)$, set difference $\left(\setminus\right)$, powerset $\left(\mathscr{P}\right)$, Cartesian product $\left(\times\right)$, finite set $\left(\{ \ldots \}\right)$, tuple $\langle\ldots\rangle$, Indexed Union $\left(\bigcup\right)$, Indexed Intersection $\left(\bigcap\right)$, Set Builder notation $\left(\{ z : \ldots\}\right)$ (view rules)maps $\left(f\colon A \to B\right)$, function application $\left(f(x)\right)$, maps to $\left(\mapsto\right)$, image $\left(f(U)\right)$, identity map $\left(\text{id}_A\right)$ inverse image $\left(f^\text{inv}(U)\right)$, composition $\left(\circ\right)$, inverse function $\left(f^{-1}\right)$, injective, surjective, bijective (view rules)reflexive, symmetric, transitive, irreflexive, antisymmetric, total, partial order, strict partial order, total order, equivalence relation, partition, equivalence class $[a]$ (view rules)Some Other Useful Contexts
Prove it! Topics – each link one opens a blank Lurch document whose context consists of the rules for that topic.
or, not, and contradiction (view rules)